Nothing Special   »   [go: up one dir, main page]

JP3778824B2 - Light control element - Google Patents

Light control element Download PDF

Info

Publication number
JP3778824B2
JP3778824B2 JP2001249032A JP2001249032A JP3778824B2 JP 3778824 B2 JP3778824 B2 JP 3778824B2 JP 2001249032 A JP2001249032 A JP 2001249032A JP 2001249032 A JP2001249032 A JP 2001249032A JP 3778824 B2 JP3778824 B2 JP 3778824B2
Authority
JP
Japan
Prior art keywords
light
input
optical
input signal
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001249032A
Other languages
Japanese (ja)
Other versions
JP2003057701A (en
Inventor
泰夫 柴田
安弘 鈴木
義久 界
泰正 須崎
顕 岡田
一人 野口
里江子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001249032A priority Critical patent/JP3778824B2/en
Publication of JP2003057701A publication Critical patent/JP2003057701A/en
Application granted granted Critical
Publication of JP3778824B2 publication Critical patent/JP3778824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光制御素子に関し、より詳細には、波長多重光ネットワークにおいて、任意波長の入力信号光強度に応じて、この入力信号光の波長と同一または異なる別波長の光を変調する光制御技術に関する。
【0002】
【従来の技術】
従来、複数の異なる波長の光信号を伝送する光伝送システムとして、複数の異なる波長の光信号を1本の光ファイバに結合して伝送する波長多重を利用した光伝送システム(WDMシステム)がある。さらに、このWDMシステムは、1対1の伝送のみならず、ネットワーク化が急速に進みつつある。
【0003】
このようなWDMシステムにおいて、光ファイバを伝送する光信号の波長を同一または異なる波長へと変換する、いわゆる波長変換を行う光制御素子が重要となってくる。
【0004】
図1は、従来の波長変換を行う光制御素子の一例を示す図で、この波長変換回路は、半導体光増幅器(SOA;Semiconductor Optical Amplifier)101と、このSOAに接続されたMMIカプラ(マルチモード干渉カプラ;Multi-Mode Interference coupler)102,103と、このMMIカプラ102,103間に設けられたループ型干渉回路109とから構成されている。
【0005】
このような構成により、MMIカプラ103に波長λjの連続光(CW光)105がポート111に入射され、MMIカプラ103で2つに分かれてループ型干渉回路109へと導かれる。ループ型干渉回路109では、右回りの光と左回りの光に別れてループを一周し、再びMMIカプラ103で合波されてポート111に出射される。この状態で、波長λiの信号光104をMMIカプラ102に入射させる。入射された信号光104はSOA101を通過する。このとき、SOA101内の屈折率が変化する。
【0006】
ループ内を導波している波長λjの光は、屈折率変化の影響を受けて、図2(a)のように位相変化をおこす。右回りの光107は、急峻に位相変化をおこし、その後、SOA101のキャリア変化の回復時間の速度に応じた時間で、元の位相にもどり、MMIカプラ103に入射する。左回りの光106も同様の位相変化を受けるが、右回りの光107に比べて、ループ型干渉回路109を伝播する距離がΔLだけ長いため、伝播時間差Δτだけ遅れてMMIカプラ103へ入射する。MMIカプラ103中では、右回り、左回りの光の位相変化が起きる時間が、Δτの間だけずれることになる。このΔτの間だけ、図2(b)のように、干渉効果により、波長λjの光は、ポート110に出射されることとなる。
【0007】
すなわち、入力した波長λiの光信号が、波長λjの光へ移され、ポート110に出力されるわけである。このループ型干渉回路を有する波長変換回路では、位相変化のキャリア変化の回復時間の速度に制限される領域が、キャンセルアウトされ、その制限を受けずに高速波長変換が可能となる。
【0008】
【発明が解決しようとする課題】
しかしながら、上述したループ型干渉回路を有する波長変換装置を用いた場合、SOA101の長さがΔLと比較して十分に小さいことが必要であった。すなわち、右回りの連続光107は、信号光104と同一方向に伝搬するために、SOA101の長さLSOA全体にわたって屈折率変化の影響をうけるのに対し、左回りの連続光106は、信号光104と逆方向に伝搬するために信号光104と出会うまでは屈折率変化の影響を受けず、立ち上がりにt=2LSOA/(c/neq)(cは光速、neqはSOAの等価屈折率)を要する。
【0009】
その結果、SOA101の長さがΔLと同程度の場合には、右回り、左回りの両連続光の位相変化は、図3(a)のようになり、干渉効果によりポート110の出射される被変換光の波形が図3(b)のように変形してしまう。したがって、tよりもΔτが小さいような動作は不可能であった。また、Δτとして10ps程度を実現するためには

Figure 0003778824
が要求され、SOA長を200μm程度以下にする必要があった。
【0010】
光の位相変化は、屈折率変化の絶対値と媒質の長さの積で決まるため、長さの短いSOAで所望の位相変化を得るためには、屈折率変化の絶対値を大きくせざるを得ず、動作パワーが増大したり、場合によってはSOAの飽和により所望の屈折率変化が得られないといった問題が生じていた。
【0011】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、低パワーで、かつ高速の波長変換機能を有する光制御素子を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、任意波長の第1の入力信号光の光強度に応じて前記第1の入力信号光の波長と異なる波長を有する第2の入力光が変調される光制御素子において、前記第1の入力信号光を分岐させる第1の光分岐手段と、前記第2の入力光を分岐させる第2の光分岐手段と、前記第2の分岐手段により分岐された一方の第2の入力光を遅延させる遅延手段と、前記分岐された一方の第1の入力信号と前記遅延を受けた一方の第2の入力光とを、第1の合流光ポートに合流させる第1の光結合手段と、前記分岐された他方の第1の入力信号光と前記分岐された他方の第2の入力光とを、第2の合流光ポートに合流させる第2の光結合手段と、前記第1の合流光ポートおよび前記第2の合流光ポートが接続され、前記各々の合流光が相対する方向に伝播して、前記第1の入力信号光の光強度に応じて屈折率が変化する媒質からなる位相変調手段と、を有することを特徴とする。
【0013】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記第1の入力信号光の光強度に応じて屈折率が変化する媒質からなる位相変調手段として半導体増幅器を用いることを特徴とする。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について説明する。
図4は、本発明の波長変換を行う光制御素子の一実施例を示す図で、この波長変換回路は、半導体光増幅器(SOA)401と、このSOA401に接続されたMMIカプラ402,412と、このMMIカプラ412に接続されたMMIカプラ403と、このMMIカプラ402,403間に設けられたループ型干渉回路409と、MMIカプラ402,412に接続されたMMIカプラ413とから構成されている。なお、符号405はCW光、408は変換光、410は変換光出力ポート、411はCW光入力ポート、414,415は信号光導波路を示している。
【0015】
このような構成により、基本動作は図1に示した従来例のものに準じて動作する。つまり、MMIカプラ403に波長λjの連続光(CW光)405がポート411に入射され、MMIカプラ403で2つに分かれてループ型干渉回路409へと導かれる。ループ型干渉回路409では、右回りの光と左回りの光に別れてループを一周し、再びMMIカプラ403で合波されてポート411に出射される。この状態で、波長λiの信号光404をMMIカプラ402に入射させる。入射された信号光404はSOA401を通過する。このとき、SOA401内の屈折率が変化する。
【0016】
ただし、信号光が、図4に示すように、MMIカプラ413で分岐されて信号光導波路414,415からSOA401に両方向から入射する。そのためループ内を右回りに伝搬する光407と左回りに伝搬する光406はともに、SOA401内において、分岐された信号光と同方向伝搬するとともに、逆方向にすれ違う。その結果、右回りに伝搬する光407と左回りに伝搬する光406の位相変化は、図5(a)に示すように、急峻かつ完全に同一波形となる。そのため、変換出力波形は、図5(b)に示すように、立ち上がり、立ち下がりとも急峻となり、高速な出力波形を得ることができる。
【0017】
本実施例では、SOAの構造についてはなんら制約を設けるものではない。すなわち、SOAの活性層に関しては、GaAs、AlGaAs、InGaAsP,InGaAs、GaInNAs等、任意の材質について同様な効果が期待できる。また、活性層構造に関しても、バルク、MQW、量子細線、量子ドットを問わず、またSOAの導波路構造に関してもpn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いた場合でも同様な効果が期待できる。
【0018】
また、上述した実施例では、信号光、あるいはCW光を分岐、合流する構造として、MMIカプラを用いた例を示しているが、方向性結合器を用いてもよい。また、第1の入力光の光強度に応じて屈折率が変化する媒質からなる構造として、SOAを用いた例を示しているが、EA変調器等のような光強度に応じて屈折率が変化する構造であれば、すべて適用可能である。
【0019】
【発明の効果】
以上説明したように本発明によれば、任意波長の第1の入力信号光強度に応じて前記入力信号光の波長と同一または異なる波長を有する第2の入力光が変調される光制御素子において、第1の入力光を分岐させる光分岐手段と、第2の入力光を分岐・遅延させる光分岐・遅延手段と、分岐された第1の入力光の一方を、分岐された第2の入力光の一方と合流する第1の光結合手段と、光結合手段により合流された入力光が伝搬するポートに接続された、第1の入力光の光強度に応じて屈折率が変化する媒質と、媒質からの出力を、分岐された第1の入力光の他方と分岐された第2の入力光の他方とを合流する第2の光結合手段とを有するので、低動作パワーで高速の波長変換機能を有する光制御素子を提供することができる。
【図面の簡単な説明】
【図1】従来の波長変換を行う光制御素子の一例を示す図である。
【図2】従来の波長変換回路の動作原理(その1)を示す図で、(a)は位相変化、(b)は光強度を示す図ある。
【図3】従来の波長変換回路の動作原理(その2)を示す図で、(a)は位相変化、(b)は光強度を示す図ある。
【図4】本発明の波長変換を行う光制御素子の第一実施例を示す図である。
【図5】本発明の光制御素子の動作原理を示す図で、(a)は位相変化、(b)は光強度を示す図ある。
【符号の説明】
101 SOA
102,103 MMIカプラ
104 信号光
105 CW光
106 左回りの光
107 右回りの光
108 出力光(被波長変換光)
109 ループ型干渉回路
110,111 ポート
401 SOA
402,403 MMIカプラ
404 信号光
405 CW光
406 左回りの光
407 右回りの光
408 出力光(被波長変換光)
409 ループ型干渉回路
410,411 ポート
412,413 MMIカプラ
414,415 信号光導波路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical control element, and more particularly, in a wavelength division multiplexing optical network, an optical control for modulating light of another wavelength that is the same as or different from the wavelength of the input signal light according to the input signal light intensity of an arbitrary wavelength Regarding technology.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as an optical transmission system that transmits a plurality of optical signals having different wavelengths, there is an optical transmission system (WDM system) that uses wavelength multiplexing to transmit a plurality of optical signals having different wavelengths by combining them with one optical fiber. . Further, this WDM system is rapidly becoming networked as well as one-to-one transmission.
[0003]
In such a WDM system, an optical control element that performs so-called wavelength conversion that converts the wavelength of an optical signal transmitted through an optical fiber into the same or different wavelength becomes important.
[0004]
FIG. 1 is a diagram showing an example of a conventional optical control element that performs wavelength conversion. This wavelength conversion circuit includes a semiconductor optical amplifier (SOA) 101 and an MMI coupler (multimode) connected to the SOA. Multi-Mode Interference couplers (102, 103) and a loop type interference circuit 109 provided between the MMI couplers (102, 103).
[0005]
With such a configuration, continuous light (CW light) 105 having a wavelength λj is incident on the port 111 to the MMI coupler 103 and is split into two by the MMI coupler 103 and guided to the loop interference circuit 109. In the loop type interference circuit 109, it divides into a clockwise light and a counterclockwise light, makes a round of the loop, is multiplexed again by the MMI coupler 103, and is emitted to the port 111. In this state, the signal light 104 having the wavelength λi is incident on the MMI coupler 102. The incident signal light 104 passes through the SOA 101. At this time, the refractive index in the SOA 101 changes.
[0006]
The light having the wavelength λj guided in the loop undergoes a phase change as shown in FIG. 2A due to the influence of the refractive index change. The clockwise light 107 undergoes a steep phase change, and then returns to the original phase and enters the MMI coupler 103 at a time corresponding to the speed of the carrier change recovery time of the SOA 101. The counterclockwise light 106 is also subjected to the same phase change, but the distance propagating through the loop interference circuit 109 is longer than that of the clockwise light 107 by ΔL. . In the MMI coupler 103, the time when the phase change of the clockwise and counterclockwise light occurs is shifted by Δτ. Only during this Δτ, the light of wavelength λj is emitted to the port 110 due to the interference effect as shown in FIG.
[0007]
That is, the input optical signal having the wavelength λi is transferred to the light having the wavelength λj and is output to the port 110. In the wavelength conversion circuit having this loop type interference circuit, the region restricted by the speed of the carrier change recovery time of the phase change is canceled out, and high-speed wavelength conversion is possible without being restricted.
[0008]
[Problems to be solved by the invention]
However, when the wavelength converter having the loop type interference circuit described above is used, it is necessary that the length of the SOA 101 is sufficiently smaller than ΔL. That is, since the clockwise continuous light 107 propagates in the same direction as the signal light 104, it is affected by the refractive index change over the entire length L SOA of the SOA 101, whereas the counterclockwise continuous light 106 Until it encounters the signal light 104 because it propagates in the opposite direction to the light 104, it is not affected by the change in refractive index, and at the time of rising tr = 2L SOA / (c / n eq ) (c is the speed of light, and n eq is the SOA speed) Equivalent refractive index).
[0009]
As a result, when the length of the SOA 101 is about the same as ΔL, the phase change of both the clockwise and counterclockwise continuous light is as shown in FIG. 3A and is emitted from the port 110 due to the interference effect. The waveform of the light to be converted is deformed as shown in FIG. Thus, operations such as Δτ is smaller than t r was impossible. In order to realize about 10 ps as Δτ
Figure 0003778824
And the SOA length had to be about 200 μm or less.
[0010]
Since the phase change of light is determined by the product of the absolute value of the refractive index change and the length of the medium, in order to obtain a desired phase change with a short SOA, the absolute value of the refractive index change must be increased. However, there has been a problem that the operating power is increased, and in some cases, the desired refractive index change cannot be obtained due to the saturation of the SOA.
[0011]
The present invention has been made in view of such problems, and an object thereof is to provide a light control element having a low-power and high-speed wavelength conversion function.
[0012]
[Means for Solving the Problems]
The present invention, in order to achieve the above object, the invention according to claim 1, in accordance with the light intensity of the first input signal light having an arbitrary wavelength, different from the wavelength of the first input signal light in the optical control element in which the second input light having a wavelength is modulated, the first and the first optical branching means for branching the input signal light, the second optical branching means for branching said second input light When the second delay means for delaying the second input light of one which is branched by the branching unit, one of the second input receiving the delayed and the branched one first input signal light A first optical coupling means for combining light with the first combined light port, the second branched first input signal light and the second branched second input light; Second optical coupling means for merging with the merged optical port, the first merged optical port and the second Merging optical port are connected, and wherein each of the merging light propagates in the opposite direction, to have a phase modulation means whose refractive index made from a medium that changes according to the light intensity of the first input signal light It is characterized by.
[0013]
According to a second aspect of the present invention, in the first aspect of the present invention, a semiconductor amplifier is used as the phase modulation means made of a medium whose refractive index changes according to the light intensity of the first input signal light. It is characterized by that.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 4 is a diagram showing an embodiment of an optical control element that performs wavelength conversion according to the present invention. This wavelength conversion circuit includes a semiconductor optical amplifier (SOA) 401 and MMI couplers 402 and 412 connected to the SOA 401. The MMI coupler 403 connected to the MMI coupler 412, the loop type interference circuit 409 provided between the MMI couplers 402 and 403, and the MMI coupler 413 connected to the MMI couplers 402 and 412. . Reference numeral 405 denotes CW light, 408 denotes converted light, 410 denotes a converted light output port, 411 denotes a CW light input port, and 414 and 415 denote signal optical waveguides.
[0015]
With such a configuration, the basic operation operates in accordance with the conventional example shown in FIG. That is, continuous light (CW light) 405 having a wavelength λj is incident on the port 411 to the MMI coupler 403, divided into two by the MMI coupler 403, and guided to the loop interference circuit 409. In the loop type interference circuit 409, the loop is divided into right-handed light and left-handed light, goes around the loop once again, is multiplexed by the MMI coupler 403, and is emitted to the port 411. In this state, the signal light 404 having the wavelength λi is incident on the MMI coupler 402. The incident signal light 404 passes through the SOA 401. At this time, the refractive index in the SOA 401 changes.
[0016]
However, the signal light is branched by the MMI coupler 413 and enters the SOA 401 from the signal optical waveguides 414 and 415 from both directions as shown in FIG. Therefore, both the light 407 propagating clockwise in the loop and the light 406 propagating counterclockwise propagate in the SOA 401 in the same direction as the branched signal light and pass in the opposite direction. As a result, the phase change of the light 407 propagating clockwise and the light 406 propagating counterclockwise has a steep and completely identical waveform as shown in FIG. Therefore, as shown in FIG. 5B, the converted output waveform is steep both rising and falling, and a high-speed output waveform can be obtained.
[0017]
In this embodiment, there is no restriction on the SOA structure. That is, with respect to the active layer of the SOA, the same effect can be expected for any material such as GaAs, AlGaAs, InGaAsP, InGaAs, and GaInNAs. The active layer structure is the same regardless of whether it is a bulk, MQW, quantum wire, or quantum dot, and the SOA waveguide structure is the same even when a pn buried, ridge structure, semi-insulating buried structure, high mesa structure, or the like is used. The effect can be expected.
[0018]
In the above-described embodiments, an example in which an MMI coupler is used as a structure for branching and joining signal light or CW light is shown, but a directional coupler may be used. In addition, although an example using SOA is shown as a structure made of a medium whose refractive index changes according to the light intensity of the first input light, the refractive index varies depending on the light intensity as in an EA modulator or the like. Any structure that changes is applicable.
[0019]
【The invention's effect】
As described above, according to the present invention, in the light control element in which the second input light having the same or different wavelength as the input signal light is modulated according to the intensity of the first input signal light having an arbitrary wavelength. The optical branching means for branching the first input light, the optical branching / delaying means for branching / delaying the second input light, and the second input branching one of the branched first input lights A first optical coupling unit that merges with one of the light; a medium that is connected to a port through which the input light merged by the optical coupling unit propagates and has a refractive index that changes according to the light intensity of the first input light; And a second optical coupling means for combining the output of the medium with the other of the branched first input light and the other of the branched second input light. A light control element having a conversion function can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a conventional light control element that performs wavelength conversion.
FIGS. 2A and 2B are diagrams showing an operation principle (part 1) of a conventional wavelength conversion circuit, where FIG. 2A shows phase change and FIG. 2B shows light intensity;
FIGS. 3A and 3B are diagrams illustrating an operation principle (part 2) of a conventional wavelength conversion circuit, in which FIG. 3A is a phase change and FIG. 3B is a diagram illustrating light intensity;
FIG. 4 is a diagram showing a first embodiment of a light control element for performing wavelength conversion according to the present invention.
FIGS. 5A and 5B are diagrams showing the operation principle of the light control element of the present invention, where FIG. 5A shows phase change and FIG. 5B shows light intensity.
[Explanation of symbols]
101 SOA
102, 103 MMI coupler 104 Signal light 105 CW light 106 Left-handed light 107 Right-handed light 108 Output light (wavelength converted light)
109 Loop interference circuit 110, 111 Port 401 SOA
402, 403 MMI coupler 404 Signal light 405 CW light 406 Left-handed light 407 Right-handed light 408 Output light (wavelength converted light)
409 Loop type interference circuit 410,411 Port 412,413 MMI coupler 414,415 Signal optical waveguide

Claims (2)

任意波長の第1の入力信号光の光強度に応じて前記第1の入力信号光の波長と異なる波長を有する第2の入力光が変調される光制御素子において、
前記第1の入力信号光を分岐させる第1の光分岐手段と、
前記第2の入力光を分岐させる第2の光分岐手段と、
前記第2の分岐手段により分岐された一方の第2の入力光を遅延させる遅延手段と、
前記分岐された一方の第1の入力信号と前記遅延を受けた一方の第2の入力光とを、第1の合流光ポートに合流させる第1の光結合手段と、
前記分岐された他方の第1の入力信号光と前記分岐された他方の第2の入力光とを、第2の合流光ポートに合流させる第2の光結合手段と、
前記第1の合流光ポートおよび前記第2の合流光ポートが接続され、前記各々の合流光が相対する方向に伝播して、前記第1の入力信号光の光強度に応じて屈折率が変化する媒質からなる位相変調手段と、
を有することを特徴とする光制御素子。
In accordance with the light intensity of the first input signal light having an arbitrary wavelength, the optical control device second input light is modulated with a wavelength different from the wavelength of the first input signal light,
A first optical branching means for branching said first input signal light,
A second optical branching means for branching said second input light,
Delay means for delaying one second input light branched by the second branch means;
First optical coupling means for joining one of the branched first input signal light and one second input light subjected to the delay to a first joining optical port ;
A second optical coupling means for joining the other branched first input signal light and the other branched second input light to a second combined light port;
The first combined light port and the second combined light port are connected, the combined light propagates in opposite directions, and the refractive index changes according to the light intensity of the first input signal light. Phase modulation means comprising a medium that
A light control element comprising:
前記第1の入力信号光の光強度に応じて屈折率が変化する媒質からなる位相変調手段として半導体増幅器を用いることを特徴とする請求項1に記載の光制御素子。2. The light control element according to claim 1 , wherein a semiconductor amplifier is used as the phase modulation means made of a medium whose refractive index changes according to the light intensity of the first input signal light.
JP2001249032A 2001-08-20 2001-08-20 Light control element Expired - Fee Related JP3778824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001249032A JP3778824B2 (en) 2001-08-20 2001-08-20 Light control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001249032A JP3778824B2 (en) 2001-08-20 2001-08-20 Light control element

Publications (2)

Publication Number Publication Date
JP2003057701A JP2003057701A (en) 2003-02-26
JP3778824B2 true JP3778824B2 (en) 2006-05-24

Family

ID=19078096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001249032A Expired - Fee Related JP3778824B2 (en) 2001-08-20 2001-08-20 Light control element

Country Status (1)

Country Link
JP (1) JP3778824B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403055B1 (en) * 2002-01-16 2003-10-23 한국전자통신연구원 Filter-free wavelength converter

Also Published As

Publication number Publication date
JP2003057701A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
US9791761B1 (en) Integrated chip
US6282345B1 (en) Device for coupling waveguides to one another
US7999988B2 (en) Optical modulator using a dual output laser embedded in a mach zehnder interferometer
EP1191387B1 (en) Light-controlled light modulator
JP6586063B2 (en) Optical monitor circuit
US6282015B1 (en) Wavelength converter
US9184568B2 (en) Wavelength variable light source and wavelength variable light source module
JP5228778B2 (en) Optical circuit element
JP3778824B2 (en) Light control element
JP7156472B2 (en) Optical monitor circuit
EP1195639B1 (en) Optical wavelength converter
US6377388B1 (en) Optical signal processor
JP3778827B2 (en) Light control element
JP6570418B2 (en) Multi-wavelength modulator
KR101416437B1 (en) Wavelength tunable external cavity laser generating device
JP3778825B2 (en) Light control element
JP3778828B2 (en) Light control element
JP3778826B2 (en) Light control element
JP3778829B2 (en) Light control element
JP3546406B2 (en) Light control element
JP2003121893A (en) Light-control element
Mašanović et al. Photonic integrated circuits for optical routing and switching applications
Coldren Multi-function integrated inp-based photonic circuits
JPH09331100A (en) Wavelength multiplexing light source with converging unit with grating
JP2018005079A (en) Optical semiconductor integrated element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees