JP3774114B2 - Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same - Google Patents
Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same Download PDFInfo
- Publication number
- JP3774114B2 JP3774114B2 JP2000335150A JP2000335150A JP3774114B2 JP 3774114 B2 JP3774114 B2 JP 3774114B2 JP 2000335150 A JP2000335150 A JP 2000335150A JP 2000335150 A JP2000335150 A JP 2000335150A JP 3774114 B2 JP3774114 B2 JP 3774114B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- component
- value
- split
- nonwoven fabric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 title claims description 133
- 239000002131 composite material Substances 0.000 title claims description 67
- 239000004745 nonwoven fabric Substances 0.000 title claims description 33
- 229920001410 Microfiber Polymers 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims 3
- -1 polypropylene Polymers 0.000 claims description 34
- 229920000642 polymer Polymers 0.000 claims description 24
- 239000004743 Polypropylene Substances 0.000 claims description 19
- 229920001155 polypropylene Polymers 0.000 claims description 19
- 239000004698 Polyethylene Substances 0.000 claims description 15
- 229920000573 polyethylene Polymers 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 13
- 238000009987 spinning Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229920000098 polyolefin Polymers 0.000 description 7
- 238000002074 melt spinning Methods 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Filtering Materials (AREA)
- Multicomponent Fibers (AREA)
- Nonwoven Fabrics (AREA)
- Cell Separators (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高圧水流などの物理的手段によって容易に割繊が可能であり、安価に製造が可能である分割型複合繊維に関するものであり、衛生材料、フィルター、ワイパー、電池セパレータなどに好適な極細繊維不織布に関する。
【0002】
【従来の技術】
元来、ポリオレフィン系ポリマー同士など同族系ポリマー同士を組み合わせた分割型複合繊維は、相溶性がよいため、非相溶性のポリマーの組み合わせた分割型複合繊維に比べ、分割性に劣っている。これを解消するため、分割性を向上させようとする様々な試みがなされている。例えば、本出願人において、特公平6−63129号公報には、ロックウェル硬度が60以上からなるポリオレフィン系ポリマー同士からなるポリオレフィン系分割型複合繊維を提案し、特開平4−289222号公報には、少なくとも1成分にオルガノポリシロキサンなどからなる溶融紡糸温度では液相となる耐熱性化合物を混合したポリオレフィン系分割型複合繊維を提案している。また、特開平8−311717号公報には、少なくとも1成分に親水成分を混合したポリオレフィン系分割型複合繊維が開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記ポリオレフィン系分割型複合繊維においても分割性は十分とはいえず、特開平4−289222号公報および特開平8−311717号公報では、第三成分を混合するため、工程性に劣るだけでなく、不経済である。
したがって、高圧水流などの物理的手段によって容易に割繊が可能であり、安価に製造が可能であるポリオレフィン系分割型複合繊維が得られていないのが実情である。
【0004】
【課題を解決するための手段】
本発明者は、分割型複合フィラメントを高倍率で延伸し、得られたポリプロピレンのQ値を所望の数値以上とすることにより、高度に分割することを見いだした。すなわち、本発明の分割型複合繊維は、ポリプロピレンよりなる第一成分とポリエチレンよりなる第二成分とからなる分割型複合繊維であって、前記複合繊維中の第一成分のQ値(重量平均分子量/数平均分子量の比)が少なくとも5であり、第二成分のQ値が少なくとも4であり、複合繊維中の第一成分のQ値(Q 1 )と第二成分のQ値(Q 2 )との比(Q 1 /Q 2 )が少なくとも1.0であることを特徴とする。
【0005】
前記分割型複合繊維中の第二成分のQ値が少なくとも4.5であることが望ましい。さらに、複合繊維の単繊維伸度が20〜100%であることが望ましい。
【0006】
本発明の分割型複合繊維は、Q値が5より高いポリプロピレン系ポリマーを第一成分とし、Q値が4より高いポリエチレン系ポリマーを第二成分として分割型複合ノズルを用いて溶融紡糸し、5倍以上に多段延伸して、複合繊維中の第一成分のQ値(Q 1 )と第二成分のQ値(Q 2 )との比(Q 1 /Q 2 )を少なくとも1.0に調整することにより製造できる。さらに、前記多段延伸した後、100〜120℃の緊張雰囲気下で熱処理を施すことが望ましい。
【0007】
そして、前記分割型複合繊維を分割して得られる繊度0.5dtex以下の極細繊維を含有する極細繊維不織布は、衛生材料、フィルター、ワイパー、電池セパレータなどに好適である。
以下、本発明の内容を説明する。
【0008】
【発明の実施の形態】
本発明の分割型複合繊維は、ポリプロピレンよりなる第一成分とポリエチレンよりなる第二成分とからなり、繊維断面において構成成分のうち少なくとも1成分が2個以上に区分し、構成成分の少なくとも一部が繊維表面に露出し、その露出部分が繊維の長さ方向に連続的に形成されている構造を有する。図1〜図3に本発明の分割型複合繊維の繊維断面の一例を示す。符号1がポリプロピレンよりなる第一成分、符号2がポリエチレンよりなる第二成分である。また、繊維断面形状は、円形、楕円形、異形断面のいずれであってもよい。そして、1つの構成成分の繊維表面に露出している部分は、全繊維表面に対して5〜95%であることが好ましい。上記範囲から外れると、高圧水流などの物理的手段を用いても高度な分割性が得られないからである。また、分割数は、工程性および分割性の面から考慮すると4〜24分割が好適であり、1成分の全体に対する複合比(体積比)は、繊維の分割性および工程性の面から30〜70%が好ましく、特に40〜60%が好適である。
【0009】
そして、本発明に用いられる第一成分のポリプロピレンは、紡糸、延伸後の製品時でのQ値(重量平均分子量/数平均分子量の比)が少なくとも5となるポリマーが用いられる。より好ましいQ値は、少なくとも5.5である。ポリプロピレンのQ値は、溶融紡糸前のポリマーのQ値に比べ、製品時に若干低くなる傾向にあるので5より若干Q値の高いポリマーを選択し、調整するとよい。また、Q値が少なくとも5となるように、Q値の異なるポリマーを混合してもよい。そして、ポリプロピレンのQ値が5未満であると、第二成分であるポリエチレンに比べ延伸性に劣るので2成分間の延伸性が不均一となり、ひいては高度な分割性を有する繊維が得られないからである。
【0010】
また、ポリプロピレンのメルトフローレート(MFR:JIS−K−7210、230℃)は、10〜40g/10minであることが好ましい。MFRが10g/10min未満であると、樹脂の流動性、紡糸時の延展性が悪くなり、細繊度の繊維を紡糸し難くなり、40g/10minを超えると、紡糸が不安定となるだけでなく、得られた繊維自体もコシが弱く、カード等の工程性も悪いからである。
【0011】
本発明に用いられる第二成分のポリエチレンは、できるだけ第一成分のポリプロピレンのQ値(以下、Q1)に近いQ値(以下、Q2)を得るように調整するとよく、Q2は少なくとも4であることが好ましい。より好ましくは少なくとも4.5である。ポリエチレンのQ値も、溶融紡糸前のポリマーのQ値に比べ、製品のQ値は低くなる傾向にあるが、その減少の割合はポリプロピレンより大きいことを留意して4より高いQ値のポリマーを選択し、調整するとよい。また、Q値が少なくとも4となるように、Q値の異なるポリマーを混合してもよい。そして、第一成分のQ値(以下、Q1)と第二成分のQ値(以下、Q2)との比(Q1/Q2)が少なくとも1.0であるように調整することが好ましい。より好ましくは、1.1〜2.0である。Q1/Q2が1.0未満であると、2成分間の延伸性が不均一となり、高度な分割性を有する繊維が得られないからである。
【0012】
前記ポリマーを用い、本発明の分割型複合繊維は以下のように製造することができる。公知の溶融紡糸機に所定の繊維断面を得る分割型複合ノズルを装着し、引取速度100〜1000m/min、かつドラフト率のあまり高くない条件下で、1成分の繊維表面に露出している部分が全繊維表面に対して5〜95%となるように、2成分の溶融粘度を調整し溶融紡糸される。このとき、得られた紡糸フィラメントの繊度は、4〜12dtexであることが好ましい。紡糸フィラメントの繊度が4dtex未満であると、紡糸工程での糸切れが生じ易くなり、繊度が12dtexを超えると、分割後の繊維の繊度が大きくなり、通常の繊度を持つ繊維を用いた不織布と大差がないからである。そして、本発明においては、分割型複合繊維の分割後の繊度が0.5dtex以下になるように調整することが好ましい。より好ましい分割後の繊度は、0.1〜0.3dtexである。分割後の繊度が0.5dtexを超えると、分割型複合繊維を分割させたときに発現する異形断面を有する極細繊維独特の緻密さ、風合い、強力、機能性が損なわれるからである。
【0013】
前記紡糸フィラメントは、公知の延伸機を用いて延伸処理されるが、本発明においては特に、延伸温度80〜120℃の温水あるいは蒸気中で延伸させることが好ましい。延伸温度が80℃未満であると、延伸性が不十分であり、分割性に優れた分割型複合繊維を得ることができず、延伸温度が120℃を超えると、繊維の融着が起こり易く、不織布にしたときの地合斑となる。また、加熱空気や熱ロールなどを用いる乾式延伸は、繊維の融着が起こり易い点で好ましくない。さらに、延伸方法も一度に所定の延伸倍率まで延伸する一段延伸よりも、二段延伸以上の多段延伸にて徐々に紡糸フィラメントを延伸することが、均質に紡糸フィラメントを引き伸ばすことができ、分子配向による結晶化が促進される点で好ましい。特に、多段延伸(n回に分けて延伸した)の場合、1段目〜n段目にかけて徐々に延伸倍率を高めて延伸すると、第一成分のポリプロピレンの結晶性が向上し、分割性に優れた分割型複合繊維を得ることができる。延伸倍率においては、5倍以上の延伸することが好ましい。より好ましくは、6倍以上である。延伸倍率が5倍未満であると、第一成分の分子配向による結晶化が低く、十分な分割性が得られないからである。例えば、2段延伸であれば、1段目を1.5〜3倍延伸し、2段目を2〜6倍延伸して、全体として延伸倍率6倍以上とすることができる。
【0014】
次いで、延伸されたフィラメントは、緊張状態を保ったままの状態で、100〜120℃に加熱された熱水、蒸気、乾熱などの雰囲気下で熱処理すると、特に第一成分のポリプロピレンの結晶化が促進されて、分割性が向上する点で好ましい。ここでいう緊張状態とは、おおよそ1.1〜1.2倍でフィラメントが引き揃えられた状態のことをいう。熱処理温度が100℃未満であると、その効果は大差がなく、120℃を超えると、繊維の融着が起こり易くなり好ましくない。そして、上記熱処理は、繊維処理剤付与前あるいは後のいずれであってもよく、その後必要に応じて捲縮付与、乾燥処理され、所定の繊維長に切断されて分割型複合繊維を得る。このようにして得られた分割型複合繊維の繊度は、0.5〜4dtexであることが好ましく、より好ましくは、繊度0.8〜2dtexである。
【0015】
このようにして、複合繊維中の第一成分のQ値(重量平均分子量/数平均分子量の比)が少なくとも5とすることにより、分割性に優れ、安価に製造が可能である分割型複合繊維を得ることができる。また、繊維製造工程において、延伸倍率を高くして2成分の結晶化を高めることにより、分割性がさらに向上する。前記分割型複合繊維において複合形態で2成分の結晶化度を測定することは困難であるため、単繊維伸度、単繊維強度、単繊維ヤング率の数値で代用すると、得られた分割型複合繊維の単繊維伸度は、20〜100%であることが好ましい。より好ましくは、25〜70%であり、さらに好ましくは25〜50%である。単繊維伸度が20%未満であると、延伸工程での単糸切れによるロールへの巻き付きが発生しやすい傾向にあり、単繊維伸度が100%を超えると、第一成分の分子配向による結晶化が不十分であり、後述する高圧水流処理などによる衝撃力では、十分に分割できないからである。また、得られた分割型複合繊維の単繊維強度は、3cN/dtex以上であることが好ましい。より好ましくは、4.5cN/dtex以上である。単繊維強度が3cN/dtex以上であると、分割性が向上する点で好ましい。さらに、得られた分割型複合繊維の単繊維ヤング率は、2000N/mm2以上であることが好ましい。より好ましくは、2500N/mm2以上である。単繊維ヤング率が2000N/mm2以上であると、分割性が向上する点で好ましい。
【0016】
得られた分割性複合繊維は、主として不織布に利用され、その繊維ウェブ形態も特に限定はされず、例えば、カード法により形成されたカードウェブ、エアレイ法により形成されたエアレイウェブ、湿式抄紙法により形成された湿式抄紙ウェブ、スパンボンド法により形成されたスパンボンドウェブなどが挙げられる。繊維ウェブの目付も特に限定されないが、10〜100g/m2とすると後述する高圧水流処理により、本発明の分割型複合繊維を容易に分割させるとともに交絡させることができ、好ましい。
【0017】
本発明の分割型複合繊維を高度に分割させるには、公知の高圧水流処理法を用いることが好ましい。高圧水流処理は、孔径0.05〜0.5mmのオリフィスが0.5〜1.5mmの間隔で設けられたノズルから、水圧3〜20MPaの柱状水流を不織布の表裏にそれぞれ1回以上噴射するとよいが、本発明の分割型複合繊維であれば、水圧3〜8MPaという従来の分割型複合繊維では十分に分割し得なかった低圧下でも分割が可能である。
【0018】
【実施例】
以下、実施例にて本発明をさらに詳しく説明する。なお、各ポリマーおよび複合繊維中の各成分のQ値、メルトフローレート、単繊維強伸度、単繊維ヤング率、不織布の引張強力、破断伸度および分割率は、以下の方法で測定した。
【0019】
[Q値]
クロス分別カラムクロマトグラフィー測定法を用いる。まず、繊維4mgをo−ジクロロベンゼン1mlに溶解してサンプル溶液を調製し、サンプル溶液を140℃でTREFカラムへ0.4ml注入し、溶出する。そして、得られた140℃溶出分をゲル・パーミエーション・クロマトグラフィー(GPC)、FT−IR分析を行い、各分子量における2成分の比率を求め、GPCカーブフィッティングにより各々の成分の重量平均分子量/数平均分子量の比(Q値)を算出した。
【0020】
[メルトフローレート]
JIS−K−7210に準じ、230℃、荷加重2.169kgで測定した。
【0021】
[単繊維強力、単繊維伸度]
JIS−L−1015に準じ、引張試験機を用いて、試料のつかみ間隔を20mmとしたときの荷重値および伸びを測定し、それぞれ単繊維強力および単繊維伸度とした。
【0022】
[単繊維ヤング率]
JIS−L−1015に準じ、上記方法で試験を行い、荷重−伸長曲線から初期引張抵抗度P(cN/dtex)を求め、次式により算出した値を単繊維ヤング率とした。ただし、ρは繊維密度(g/cm3)とした。
単繊維ヤング率(N/mm2)=1000×P×ρ
【0023】
[不織布の引張強力、破断伸度]
JIS−L−1096に準じ、幅5cm、長さ15cmの試料片をつかみ間隔10cmで把持し、定速伸長型引張試験機を用いて引張速度30cm/分で伸長し、切断時の荷重値および伸び率を引張強力、破断伸度とした。
【0024】
[分割率]
不織布の断面を束ねて空間の生じないようにし、電子顕微鏡にて1000倍に拡大して任意に3箇所撮影し、撮影写真の分割している繊維の面積比率にて分割率を算出した。
【0025】
[実施例1]
第一成分を融点が168℃、Q値が6.0、MFR23のポリプロピレンポリマー(日本ポリケム(株)製:商品名SA03A)とし、第二成分を融点が138℃、Q値が6.0、MI(JIS−K−7210、190℃、荷加重2.169kg)が12のポリエチレンポリマー(日本ポリケム(株)製:商品名HE482)として、2成分の複合比(容積比)を50/50で、分割型複合ノズルを用いて、引取速度500m/minで溶融紡糸し、繊度10dtex、図1に示すような歯車型の断面を持つ8分割型複合繊維を得た。次いで、紡糸フィラメントを95℃の温水中で1段目2.0倍、2段目4.35倍の湿式二段延伸を行い、緊張状態で110℃で蒸気加熱処理を行い、繊維処理剤を繊維質量に対して0.3mass%付着させ、繊維長6mmに切断して、繊度1.5dtexの分割型複合繊維を得た。
【0026】
そして、上記で得られた分割型複合繊維を97mass%、繊度1.1dtex、繊維長3mmのビニロン繊維((株)クラレ製)をバインダーとして3mass%の割合で混合し、スラリーを調整し、湿式抄紙法により目付60g/m2の湿式抄造ウェブを作製した。次に、得られた湿式不織布の表裏面に8MPaの高圧柱状流を噴射して、分割型複合繊維を分割させるとともに繊維間を交絡させて、100℃で乾燥とともに繊維間を熱接着させ、湿式不織布となした。得られた不織布の分割率は95%であった。
【0027】
[実施例2]
緊張状態で蒸気加熱処理を行わなかった以外は、実施例1と同様にして分割型複合繊維および湿式不織布を得た。得られた不織布の分割率は85%であった。
【0028】
[実施例3]
第二成分を融点が138℃、Q値が5.0、MIが20のポリエチレンポリマー(日本ポリケム(株)製:商品名HE490)を用いた以外は、実施例2と同様にして分割型複合繊維および湿式不織布を得た。得られた不織布の分割率は85%であった。
【0029】
[実施例4]
第二成分として、実施例3のポリエチレンポリマーを40mass%、融点が138℃、Q値が6.0、MIが6のポリエチレンポリマー(日本ポリケム(株)製:商品名HJ560)を60mass%の混合ポリマーとした以外は、実施例2と同様にして分割型複合繊維および湿式不織布を得た。得られた不織布の分割率は85%であった。
【0030】
[実施例5]
実施例1の紡糸フィラメントを95℃の温水中で1段目1.9倍、2段目3.0倍の湿式二段延伸を行った以外は、実施例2と同様の方法で分割型複合繊維およびこれを用いた湿式不織布を得た。得られた不織布の分割率は70%であった。
【0031】
[比較例1]
第一成分を融点が168℃、Q値が4.4、MFRが30のポリプロピレンポリマー(日本ポリケム(株)製:商品名SA03B)とし、第二成分を実施例1のポリエチレンポリマーとして、2成分の複合比(容積比)を50/50で、分割型複合ノズルを用いて、引取速度500m/minで溶融紡糸し、繊度10dtex、図1に示すような歯車型の断面を持つ8分割型複合繊維を得た。次いで、紡糸フィラメントを95℃の温水中で延伸倍率6倍で湿式一段延伸を行い、繊維処理剤を0.3mass%付着させ、繊維長6mmに切断して、繊度2dtexの分割型複合繊維を得た。そして、得られた分割型複合繊維は実施例1と同様の方法で湿式不織布となした。得られた不織布の分割率は20%であった。
【0032】
[比較例2]
紡糸フィラメントを95℃の温水中で1段目2.0倍、2段目3.4倍で湿式二段延伸した以外は、比較例1と同様の方法で繊度1.8dtexの分割型複合繊維およびこれを用いた湿式不織布を得た。得られた不織布の分割率は40%であった。
【0033】
[比較例3]
湿式二段延伸後、緊張状態で110℃で蒸気加熱処理を行った以外は、比較例2と同様の方法で分割型複合繊維およびこれを用いた湿式不織布を得た。得られた不織布の分割率は20%であった。さらに、湿式不織布を実施例2と同様の方法で水流交絡処理を施し、交絡不織布を得た。得られた不織布の分割率は50%であった。
上記実施例1〜5、比較例1〜3の諸物性を表1に示す。
【0034】
【表1】
【0035】
実施例1〜5において、実施例5は延伸倍率を5.7倍としたため水圧8MPaの低圧下において分割率が70%であったが、実施例1〜4では、水圧8MPaの低圧下においても85%以上の高度に分割していた。前記不織布をワイパーとして用いたとき、細かい塵や手垢、指紋まできれいに拭き取ることができた。一方、比較例1〜3は、湿式二段延伸あるいは蒸気加熱処理を組み合わせることにより分割性が若干向上するものの、分割率が50%以下と低く、極細繊維独特の風合いを有しておらず、ワイパーとして用いても、汚れを十分に拭き取ることはできなかった。
【0036】
【発明の効果】
本発明の分割型複合繊維は、第一成分のポリプロピレンのQ値を少なくとも5とすることにより、高圧水流などの物理的手段によって容易に割繊が可能であり、安価に製造が可能である。また、複合繊維中の第一成分のQ値(Q1)と第二成分のポリエチレンのQ値(Q2)との比(Q1/Q2)を少なくとも1.0とすることにより、2成分間の延伸性の均一性が増し、より高度な分割性を有する繊維が得られる。
そして、本発明の分割型複合繊維を用いた極細繊維不織布は、極細繊維独特の緻密さ、風合い、嵩高性、強力、機能性に優れており、衛生材料、フィルター、ワイパー、電池セパレータなどに好適である。
【図面の簡単な説明】
【図1】本発明の分割型複合繊維の繊維断面の一例を示す。
【図2】本発明の分割型複合繊維の繊維断面の別の一例を示す。
【図3】本発明の分割型複合繊維の繊維断面の別の一例を示す。
【符号の説明】
1.第一成分
2.第二成分[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a split type composite fiber that can be easily split by physical means such as high-pressure water flow and can be manufactured at low cost, and is suitable for sanitary materials, filters, wipers, battery separators, and the like. It relates to an ultrafine fiber nonwoven fabric.
[0002]
[Prior art]
Originally, split type composite fibers in which homologous polymers such as polyolefin polymers are combined with each other have good compatibility, so that they are inferior in splittability compared to split type composite fibers in which incompatible polymers are combined. In order to solve this problem, various attempts have been made to improve the division property. For example, in the present applicant, Japanese Patent Publication No. 6-63129 has proposed a polyolefin-based split type composite fiber composed of polyolefin-based polymers having a Rockwell hardness of 60 or more, and Japanese Patent Application Laid-Open No. 4-289222. A polyolefin-based split composite fiber is proposed in which at least one component is mixed with a heat-resistant compound that becomes a liquid phase at a melt spinning temperature composed of organopolysiloxane or the like. JP-A-8-311717 discloses a polyolefin-based split conjugate fiber in which a hydrophilic component is mixed with at least one component.
[0003]
[Problems to be solved by the invention]
However, even in the above-mentioned polyolefin-based split type composite fiber, it cannot be said that the splitting property is sufficient. In JP-A-4-289222 and JP-A-8-311717, since the third component is mixed, the processability is inferior. Rather it is uneconomical.
Therefore, the fact is that polyolefin splitting composite fibers that can be easily split by physical means such as high-pressure water flow and can be manufactured at low cost have not been obtained.
[0004]
[Means for Solving the Problems]
The present inventor has found that the split type composite filament is stretched at a high magnification, and the resulting polypropylene is highly divided by setting the Q value of the polypropylene to a desired value or more. That is, the splittable conjugate fiber of the present invention is a splittable conjugate fiber comprising a second component consisting of the first component and a polyethylene made of polypropylene, Q value of the first component of the composite fibers (weight average molecular weight / ratio of the number average molecular weight) Ri is at least 5 der, Q value of the second component is at least 4, Q values of the first component in the composite fibers (Q 1) and Q value of the second component (Q 2 )) (Q 1 / Q 2 ) is at least 1.0 .
[0005]
It is desirable that the Q value of the second component in the split composite fiber is at least 4.5 . Furthermore, it is desirable that the single fiber elongation of the composite fiber is 20 to 100%.
[0006]
The split type composite fiber of the present invention is obtained by melt spinning using a split type composite nozzle with a polypropylene polymer having a Q value higher than 5 as a first component and a polyethylene polymer having a Q value higher than 4 as a second component. and multi-stage stretching more than doubled, adjusting the Q value of the first component in the composite fibers (Q 1) and Q value of the second component ratio of the (Q 2) (Q 1 / Q 2) at least 1.0 It can be produced by. Furthermore, it is desirable to perform heat treatment in a tension atmosphere of 100 to 120 ° C. after the multistage stretching.
[0007]
The ultrafine fiber nonwoven fabric containing ultrafine fibers having a fineness of 0.5 dtex or less obtained by dividing the split composite fiber is suitable for sanitary materials, filters, wipers, battery separators, and the like.
The contents of the present invention will be described below.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The split type composite fiber of the present invention comprises a first component made of polypropylene and a second component made of polyethylene, and at least one of the constituent components in the fiber cross section is divided into two or more, and at least a part of the constituent components Is exposed on the fiber surface, and the exposed portion is continuously formed in the length direction of the fiber. 1 to 3 show an example of a fiber cross section of the split composite fiber of the present invention.
[0009]
The first component polypropylene used in the present invention is a polymer having a Q value (ratio of weight average molecular weight / number average molecular weight) of at least 5 in the product after spinning and stretching. A more preferred Q value is at least 5.5. Since the Q value of polypropylene tends to be slightly lower in the product than the Q value of the polymer before melt spinning, a polymer having a Q value slightly higher than 5 may be selected and adjusted. Further, polymers having different Q values may be mixed so that the Q value is at least 5. And if the Q value of polypropylene is less than 5, the stretchability between the two components is inhomogeneous compared to polyethylene as the second component, so the stretchability between the two components becomes uneven, and as a result, fibers having a high degree of splitting cannot be obtained. It is.
[0010]
Moreover, it is preferable that the melt flow rate (MFR: JIS-K-7210, 230 degreeC) of a polypropylene is 10-40 g / 10min. If the MFR is less than 10 g / 10 min, the fluidity of the resin and the spreadability at the time of spinning deteriorate, and it becomes difficult to spin fine fibers. If it exceeds 40 g / 10 min, the spinning becomes unstable. This is because the obtained fibers themselves are weak and the processability of cards and the like is also poor.
[0011]
Polyethylene second component used in the present invention, as far as possible Q value of the polypropylene of the first component (hereinafter, Q 1) Q value close to (hereinafter, Q 2) may the be adjusted to obtain, Q 2 is at least 4 It is preferable that More preferably it is at least 4.5. The Q value of polyethylene also tends to be lower than the Q value of the polymer before melt spinning, but the rate of decrease is higher than that of polypropylene. Select and adjust. Further, polymers having different Q values may be mixed so that the Q value is at least 4. The ratio (Q 1 / Q 2 ) between the Q value of the first component (hereinafter referred to as Q 1 ) and the Q value of the second component (hereinafter referred to as Q 2 ) is adjusted to be at least 1.0. preferable. More preferably, it is 1.1-2.0. This is because if Q 1 / Q 2 is less than 1.0, the stretchability between the two components becomes non-uniform, and fibers having a high degree of splitting property cannot be obtained.
[0012]
Using the polymer, the split composite fiber of the present invention can be produced as follows. A part that is exposed on the surface of a single-component fiber under the condition that a split type composite nozzle that obtains a predetermined fiber cross section is mounted on a known melt spinning machine, and the drawing speed is 100 to 1000 m / min and the draft rate is not so high. Is melt spun by adjusting the melt viscosity of the two components so that the total fiber surface becomes 5 to 95% of the total fiber surface. At this time, the fineness of the obtained spinning filament is preferably 4 to 12 dtex. When the fineness of the spinning filament is less than 4 dtex, yarn breakage is likely to occur in the spinning process. When the fineness exceeds 12 dtex, the fineness of the fiber after division increases, and the nonwoven fabric using fibers having normal fineness This is because there is no big difference. And in this invention, it is preferable to adjust so that the fineness after the division | segmentation of a split type composite fiber may be 0.5 dtex or less. The fineness after division is more preferably 0.1 to 0.3 dtex. This is because if the fineness after splitting exceeds 0.5 dtex, the fineness, texture, strength, and functionality unique to ultrafine fibers having an irregular cross section that appears when splitting composite fibers are split are impaired.
[0013]
The spinning filament is drawn using a known drawing machine. In the present invention, the spinning filament is preferably drawn in warm water or steam at a drawing temperature of 80 to 120 ° C. If the stretching temperature is less than 80 ° C, the stretchability is insufficient, and it is not possible to obtain a split-type composite fiber having excellent splitting properties. If the stretching temperature exceeds 120 ° C, fiber fusion is likely to occur. When it is made into a non-woven fabric, it becomes a ground spot. Further, dry stretching using heated air or a hot roll is not preferable in that fiber fusion is likely to occur. Furthermore, it is possible to draw the spun filament gradually by multi-stage drawing of two or more stages, rather than the one-stage drawing that draws up to a predetermined draw ratio at a time. This is preferable in that crystallization is promoted. In particular, in the case of multi-stage stretching (stretched in n times), when the stretching ratio is gradually increased from the first stage to the n-th stage, the crystallinity of the first component polypropylene is improved and the splitting property is excellent. A split type composite fiber can be obtained. In the stretching ratio, it is preferable to stretch 5 times or more. More preferably, it is 6 times or more. This is because if the draw ratio is less than 5 times, crystallization due to molecular orientation of the first component is low, and sufficient splitting properties cannot be obtained. For example, in the case of two-stage stretching, the first stage can be stretched 1.5 to 3 times, the second stage can be stretched 2 to 6 times, and the stretch ratio can be 6 times or more as a whole.
[0014]
Next, when the drawn filament is heat-treated in an atmosphere of hot water, steam, dry heat, etc. heated to 100 to 120 ° C. while maintaining a tension state, the crystallization of the first component polypropylene in particular is performed. Is preferable in that it is promoted and the splitting property is improved. The tension state here means a state in which the filaments are aligned approximately 1.1 to 1.2 times. If the heat treatment temperature is less than 100 ° C., the effect is not greatly different, and if it exceeds 120 ° C., fiber fusion tends to occur, which is not preferable. The heat treatment may be performed either before or after the fiber treatment agent is applied, and then crimped and dried as necessary, and cut into a predetermined fiber length to obtain split composite fibers. The fineness of the split composite fiber thus obtained is preferably 0.5 to 4 dtex, and more preferably 0.8 to 2 dtex.
[0015]
Thus, by setting the Q value of the first component in the composite fiber to be at least 5 (ratio of weight average molecular weight / number average molecular weight), the split type composite fiber is excellent in splitting property and can be manufactured at low cost. Can be obtained. Further, in the fiber production process, the splitting property is further improved by increasing the draw ratio and increasing the crystallization of the two components. Since it is difficult to measure the degree of crystallinity of the two components in the composite form in the split composite fiber, when the values of single fiber elongation, single fiber strength, single fiber Young's modulus are substituted, the obtained split composite The single fiber elongation of the fiber is preferably 20 to 100%. More preferably, it is 25-70%, More preferably, it is 25-50%. When the single fiber elongation is less than 20%, winding of the roll due to single yarn breakage in the drawing process tends to occur, and when the single fiber elongation exceeds 100%, it depends on the molecular orientation of the first component. This is because the crystallization is insufficient and the impact cannot be sufficiently divided by an impact force such as a high-pressure water treatment described later. Further, the single fiber strength of the obtained split type composite fiber is preferably 3 cN / dtex or more. More preferably, it is 4.5 cN / dtex or more. When the single fiber strength is 3 cN / dtex or more, it is preferable in that the splitting property is improved. Furthermore, the single fiber Young's modulus of the obtained split composite fiber is preferably 2000 N / mm 2 or more. More preferably, it is 2500 N / mm 2 or more. When the single fiber Young's modulus is 2000 N / mm 2 or more, it is preferable in that the splitting property is improved.
[0016]
The obtained splittable conjugate fiber is mainly used for a nonwoven fabric, and the fiber web form is not particularly limited. For example, a card web formed by a card method, an air array web formed by an air array method, a wet papermaking method. Examples thereof include a wet papermaking web formed by the above, a spunbond web formed by a spunbond method, and the like. Although the basis weight of the fiber web is not particularly limited, it is preferably 10 to 100 g / m 2 because the split composite fiber of the present invention can be easily split and entangled by high-pressure water flow treatment described later.
[0017]
In order to divide the split type composite fiber of the present invention to a high degree, it is preferable to use a known high pressure water flow treatment method. In the high-pressure water flow treatment, a columnar water flow with a water pressure of 3 to 20 MPa is sprayed once or more on the front and back of the nonwoven fabric from a nozzle provided with orifices having a hole diameter of 0.05 to 0.5 mm at intervals of 0.5 to 1.5 mm. However, the split type composite fiber of the present invention can be split even under a low pressure that cannot be sufficiently split by a conventional split type composite fiber having a hydraulic pressure of 3 to 8 MPa.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The Q value, melt flow rate, single fiber strong elongation, single fiber Young's modulus, tensile strength of nonwoven fabric, elongation at break and split ratio of each component in each polymer and composite fiber were measured by the following methods.
[0019]
[Q value]
A cross-fractionation column chromatography method is used. First, 4 mg of fiber is dissolved in 1 ml of o-dichlorobenzene to prepare a sample solution. 0.4 ml of the sample solution is injected into a TREF column at 140 ° C. and eluted. The obtained 140 ° C. eluate was subjected to gel permeation chromatography (GPC) and FT-IR analysis to determine the ratio of the two components in each molecular weight, and the weight average molecular weight / The ratio (Q value) of the number average molecular weight was calculated.
[0020]
[Melt flow rate]
According to JIS-K-7210, it measured at 230 degreeC and the load weight of 2.169 kg.
[0021]
[Single fiber strength, single fiber elongation]
In accordance with JIS-L-1015, using a tensile tester, the load value and elongation when the holding distance of the sample was 20 mm were measured, and the single fiber strength and single fiber elongation were obtained, respectively.
[0022]
[Single fiber Young's modulus]
According to JIS-L-1015, the test was conducted by the above method, the initial tensile resistance P (cN / dtex) was determined from the load-elongation curve, and the value calculated by the following formula was defined as the single fiber Young's modulus. However, (rho) was made into the fiber density (g / cm < 3 >).
Single fiber Young's modulus (N / mm 2 ) = 1000 × P × ρ
[0023]
[Tensile strength and breaking elongation of nonwoven fabric]
In accordance with JIS-L-1096, a sample piece having a width of 5 cm and a length of 15 cm is grasped at a holding interval of 10 cm and stretched at a tensile speed of 30 cm / min using a constant speed extension type tensile tester. Elongation rate was defined as tensile strength and breaking elongation.
[0024]
[Split rate]
The cross sections of the nonwoven fabric were bundled so as not to generate a space, magnified 1000 times with an electron microscope, and arbitrarily photographed at three locations, and the division ratio was calculated by the area ratio of the fibers divided in the photograph.
[0025]
[Example 1]
The first component is a polypropylene polymer having a melting point of 168 ° C., a Q value of 6.0, MFR23 (manufactured by Nippon Polychem Co., Ltd .: trade name SA03A), and the second component has a melting point of 138 ° C. and a Q value of 6.0, MI (JIS-K-7210, 190 ° C., load load 2.169 kg) is 12 polyethylene polymer (trade name HE482 manufactured by Nippon Polychem Co., Ltd.), and the composite ratio (volume ratio) of the two components is 50/50. Then, using a split type composite nozzle, melt spinning was performed at a take-up speed of 500 m / min to obtain an 8 split type composite fiber having a fineness of 10 dtex and a gear type cross section as shown in FIG. Next, the spinning filament is subjected to wet two-stage drawing in warm water of 95 ° C. at the first stage 2.0 times and second stage 4.35 times, and steam heat treatment is performed at 110 ° C. in a tension state, and the fiber treatment agent is applied. 0.3 mass% was adhered to the mass of the fiber and cut to a fiber length of 6 mm to obtain a split type composite fiber having a fineness of 1.5 dtex.
[0026]
Then, the split type composite fiber obtained above was mixed at a mass ratio of 97 mass%, a fineness of 1.1 dtex, and a vinylon fiber having a fiber length of 3 mm (manufactured by Kuraray Co., Ltd.) at a ratio of 3 mass% to prepare a slurry. A wet papermaking web having a basis weight of 60 g / m 2 was prepared by a papermaking method. Next, a high pressure columnar flow of 8 MPa is sprayed on the front and back surfaces of the obtained wet nonwoven fabric to divide the split-type composite fiber and entangle the fibers, dry at 100 ° C., and thermally bond the fibers together. It became a nonwoven fabric. The division ratio of the obtained nonwoven fabric was 95%.
[0027]
[Example 2]
A split type composite fiber and a wet nonwoven fabric were obtained in the same manner as in Example 1 except that the steam heat treatment was not performed in a tension state. The division ratio of the obtained nonwoven fabric was 85%.
[0028]
[Example 3]
Split-type composite in the same manner as in Example 2, except that the second component was a polyethylene polymer having a melting point of 138 ° C., a Q value of 5.0, and an MI of 20 (manufactured by Nippon Polychem Co., Ltd .: trade name HE490). Fibers and wet nonwovens were obtained. The division ratio of the obtained nonwoven fabric was 85%.
[0029]
[Example 4]
As a second component, a mixture of 60 mass% of the polyethylene polymer of Example 3 with a polyethylene polymer of 40 mass%, a melting point of 138 ° C., a Q value of 6.0, and an MI of 6 (manufactured by Nippon Polychem Co., Ltd .: trade name HJ560). A split type composite fiber and a wet nonwoven fabric were obtained in the same manner as in Example 2 except that the polymer was used. The division ratio of the obtained nonwoven fabric was 85%.
[0030]
[Example 5]
The split-type composite was prepared in the same manner as in Example 2 except that the spinning filament of Example 1 was subjected to wet two-stage drawing of 1.9 times in the first stage and 3.0 times in the second stage in warm water at 95 ° C. A fiber and a wet nonwoven fabric using the fiber were obtained. The division ratio of the obtained nonwoven fabric was 70%.
[0031]
[Comparative Example 1]
The first component is a polypropylene polymer having a melting point of 168 ° C., a Q value of 4.4, and an MFR of 30 (manufactured by Nippon Polychem Co., Ltd .: trade name SA03B), and the second component is a polyethylene polymer of Example 1, and two components The composite ratio (volume ratio) of 50/50 is melt-spun using a split-type composite nozzle at a take-up speed of 500 m / min, the fineness is 10 dtex, and the 8-split composite has a gear-shaped cross section as shown in FIG. Fiber was obtained. Next, the spinning filament is subjected to wet one-stage drawing in warm water of 95 ° C. at a draw ratio of 6 times, a fiber treatment agent is attached to 0.3 mass%, and the fiber length is cut to 6 mm to obtain a split type composite fiber having a fineness of 2 dtex. It was. The obtained split conjugate fiber was made into a wet nonwoven fabric in the same manner as in Example 1. The division ratio of the obtained nonwoven fabric was 20%.
[0032]
[Comparative Example 2]
A split type composite fiber having a fineness of 1.8 dtex in the same manner as in Comparative Example 1 except that the spun filament was wet-drawn at 95 ° C. in warm water at the first stage 2.0 times and the second stage 3.4 times. And the wet nonwoven fabric using this was obtained. The division ratio of the obtained nonwoven fabric was 40%.
[0033]
[Comparative Example 3]
A split-type conjugate fiber and a wet nonwoven fabric using the same were obtained in the same manner as in Comparative Example 2 except that steam heat treatment was performed at 110 ° C. in a tensioned state after wet two-stage stretching. The division ratio of the obtained nonwoven fabric was 20%. Furthermore, the hydroentanglement process was given to the wet nonwoven fabric by the method similar to Example 2, and the entangled nonwoven fabric was obtained. The division ratio of the obtained nonwoven fabric was 50%.
Various physical properties of Examples 1 to 5 and Comparative Examples 1 to 3 are shown in Table 1.
[0034]
[Table 1]
[0035]
In Examples 1 to 5, Example 5 had a split ratio of 70% under a low water pressure of 8 MPa because the draw ratio was 5.7 times. However, in Examples 1 to 4, even under a low water pressure of 8 MPa, It was divided into altitudes of 85% or more. When the nonwoven fabric was used as a wiper, fine dust, hand dust and fingerprints could be wiped cleanly. On the other hand, in Comparative Examples 1 to 3, although the splitting property is slightly improved by combining wet two-stage stretching or steam heat treatment, the split rate is as low as 50% or less, and does not have a unique texture of ultrafine fibers, Even when used as a wiper, the dirt could not be sufficiently wiped off.
[0036]
【The invention's effect】
By setting the Q value of the first component polypropylene to at least 5, the split type composite fiber of the present invention can be easily split by physical means such as high-pressure water flow, and can be manufactured at low cost. Further, by setting the ratio (Q 1 / Q 2 ) between the Q value (Q 1 ) of the first component in the composite fiber and the Q value (Q 2 ) of the second component polyethylene to at least 1.0, 2 The uniformity of stretchability between components is increased, and a fiber having a higher degree of splitting property is obtained.
And the ultrafine fiber nonwoven fabric using the split type composite fiber of the present invention is excellent in the fineness, texture, bulkiness, strength and functionality unique to the ultrafine fiber, and is suitable for sanitary materials, filters, wipers, battery separators, etc. It is.
[Brief description of the drawings]
FIG. 1 shows an example of a fiber cross section of a split composite fiber of the present invention.
FIG. 2 shows another example of the fiber cross section of the split composite fiber of the present invention.
FIG. 3 shows another example of the fiber cross section of the split composite fiber of the present invention.
[Explanation of symbols]
1.
Claims (6)
前記複合繊維中の第一成分のQ値(重量平均分子量/数平均分子量の比)が少なくとも5であり、第二成分のQ値が少なくとも4であり、
複合繊維中の第一成分のQ値(Q 1 )と第二成分のQ値(Q 2 )との比(Q 1 /Q 2 )が少なくとも1.0であることを特徴とする分割型複合繊維。A split type composite fiber comprising a first component made of polypropylene and a second component made of polyethylene,
Wherein Ri composite first component of the Q value in the fiber (the ratio of weight average molecular weight / number average molecular weight) of at least 5 der, Q value of the second component is at least 4,
Splittable conjugate, wherein the ratio of the Q value of the first component in the composite fibers (Q 1) and Q value of the second component (Q 2) (Q 1 / Q 2) is at least 1.0 fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000335150A JP3774114B2 (en) | 1999-11-02 | 2000-11-01 | Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-312083 | 1999-11-02 | ||
JP31208399 | 1999-11-02 | ||
JP2000335150A JP3774114B2 (en) | 1999-11-02 | 2000-11-01 | Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001192936A JP2001192936A (en) | 2001-07-17 |
JP3774114B2 true JP3774114B2 (en) | 2006-05-10 |
Family
ID=26567026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000335150A Expired - Lifetime JP3774114B2 (en) | 1999-11-02 | 2000-11-01 | Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3774114B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102822399A (en) * | 2010-03-30 | 2012-12-12 | 大和纺控股株式会社 | Polyolefin-based split-type conjugate fibre, fibrous mass and cell separator using same, and production method for same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4659187B2 (en) * | 1999-09-14 | 2011-03-30 | 日本バイリーン株式会社 | Battery separator |
FR2851534B1 (en) * | 2003-02-24 | 2006-04-28 | Rhodia Performance Fibres | WIPER BLADE / CLEANING A VEHICLE WIPER BLADE |
DE102007023806A1 (en) | 2007-05-21 | 2008-11-27 | Carl Freudenberg Kg | Layer composite for use in an air filter |
JP5647010B2 (en) * | 2011-01-05 | 2014-12-24 | ダイワボウホールディングス株式会社 | Battery separator and battery using the same |
JP5812607B2 (en) * | 2011-01-05 | 2015-11-17 | ダイワボウホールディングス株式会社 | Split type composite fiber and fiber assembly using the same |
JP6101012B2 (en) * | 2011-08-01 | 2017-03-22 | 宇部エクシモ株式会社 | Divisible uneven composite fiber and non-woven fabric using the same |
WO2015046301A1 (en) * | 2013-09-27 | 2015-04-02 | クラレクラフレックス株式会社 | Liquid-retaining sheet and face mask |
JP7395101B2 (en) * | 2018-10-03 | 2023-12-11 | 大和紡績株式会社 | Splitable composite fiber, short fiber nonwoven fabric using the same, and method for producing the same |
-
2000
- 2000-11-01 JP JP2000335150A patent/JP3774114B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102822399A (en) * | 2010-03-30 | 2012-12-12 | 大和纺控股株式会社 | Polyolefin-based split-type conjugate fibre, fibrous mass and cell separator using same, and production method for same |
CN102822399B (en) * | 2010-03-30 | 2015-04-29 | 大和纺控股株式会社 | Polyolefin-based split-type conjugate fibre, fibrous mass and cell separator using same, and production method for same |
Also Published As
Publication number | Publication date |
---|---|
JP2001192936A (en) | 2001-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040161994A1 (en) | Extensible fibers and nonwovens made from large denier splittable fibers | |
TW200809022A (en) | Spontaneously elongative and thermo conjugate fiber and method for producing the same | |
JP3774114B2 (en) | Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same | |
JP3240819B2 (en) | Non-woven fabric and its manufacturing method | |
JP4028965B2 (en) | Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same | |
JP2925441B2 (en) | Core-sheath type composite short fiber and method for producing the same | |
JP6652855B2 (en) | Continuous fiber nonwoven fabric and method for producing the same | |
JP2872542B2 (en) | Thermally bonded nonwoven fabric and method for producing the same | |
JP2872543B2 (en) | Thermally bonded nonwoven fabric and method for producing the same | |
JP5812607B2 (en) | Split type composite fiber and fiber assembly using the same | |
JP3150218B2 (en) | Biodegradable short fiber non-woven fabric | |
JPH01111016A (en) | Polyethylene composite fiber and production thereof | |
JP2001159026A (en) | Polypropylene-containing fiber and fiber sheet | |
JP2002088630A (en) | Weather-resistant filament nonwoven fabric | |
JPS6139409B2 (en) | ||
JPH0434058A (en) | Production of nonwoven fabric of ultrafine short fiber | |
JP2866131B2 (en) | Method for producing ultrafine long-fiber nonwoven fabric | |
JP2533289B2 (en) | Fiber made of a blended structure of polyethylene and polypropylene | |
JP7458228B2 (en) | Polyolefin splittable conjugate fiber, method for producing the same, fiber aggregate and battery separator using the same | |
JP3037791B2 (en) | Polyolefin-based split fiber | |
JPH0261156A (en) | Nonwoven fabric comprising hot adhesive filaments | |
JP2788140B2 (en) | Method for producing polypropylene-based composite short fiber and nonwoven fabric | |
JP5506370B2 (en) | Reticulated nonwoven sheet and method for producing the same | |
JP3165758B2 (en) | Polypropylene long fiber non-woven fabric | |
JPH0913256A (en) | Biodegradable staple fiber nonwoven fabric and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040811 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060216 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3774114 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090224 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100224 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110224 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110224 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110224 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110224 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120224 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120224 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130224 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |