Nothing Special   »   [go: up one dir, main page]

JP3771491B2 - Machining method of diameter expansion receptacle for inner and outer surface smooth waved tube - Google Patents

Machining method of diameter expansion receptacle for inner and outer surface smooth waved tube Download PDF

Info

Publication number
JP3771491B2
JP3771491B2 JP2001393874A JP2001393874A JP3771491B2 JP 3771491 B2 JP3771491 B2 JP 3771491B2 JP 2001393874 A JP2001393874 A JP 2001393874A JP 2001393874 A JP2001393874 A JP 2001393874A JP 3771491 B2 JP3771491 B2 JP 3771491B2
Authority
JP
Japan
Prior art keywords
tube
rubber ring
diameter
receiving port
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001393874A
Other languages
Japanese (ja)
Other versions
JP2003191326A (en
Inventor
憲三 西谷
経司 村上
良重 明星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIKA POLYMERS CO., LTD.
Kubota CI Co Ltd
Original Assignee
DAIKA POLYMERS CO., LTD.
Kubota CI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIKA POLYMERS CO., LTD., Kubota CI Co Ltd filed Critical DAIKA POLYMERS CO., LTD.
Priority to JP2001393874A priority Critical patent/JP3771491B2/en
Publication of JP2003191326A publication Critical patent/JP2003191326A/en
Application granted granted Critical
Publication of JP3771491B2 publication Critical patent/JP3771491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Joints That Cut Off Fluids, And Hose Joints (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、内外面平滑波付管の拡径受口の加工方法に関し、特にたとえば高速道路の用排水管、または宅地もしくは公園等に敷設される排水管等に使用される、内外面平滑波付管の拡径受口の加工方法に関する。
【0002】
【従来技術】
従来の内外面平滑波付管の拡径受口の加工方法は、存在していなかったが、図15〜図17に示す加工方法が考えられる。この加工方法は、図15(A)に示すように、まず、内外面平滑波付管4を準備する。この管4は、内層1と外層2との間に波付層3を形成した合成樹脂製の管である。そして、管端4aを軟化点以上であって融点未満の温度に加熱する。次に、図15(B)に示すように、拡縮金型5を縮径状態にして管端4aの内側に挿入する。そして、図16(A)に示すように、縮径状態の拡縮金型5を拡径状態にして管端4aを内側から押し広げてゴム輪受口6を形成する。そして、ゴム輪受口6を冷却した後に、図16(B)に示すように拡縮金型5を縮径状態にしてゴム輪受口6から取り出す。このようにして、図17に示すゴム輪受口6の加工が終了して、内外面平滑波付管7が完成する。
【0003】
【発明が解決しようとする課題】
しかし、図15等に示す内外面平滑波付管の拡径受口の加工方法では、図16(A)に示すように、拡縮金型5を拡径状態にしたときに、拡縮金型5の外周面5aによって外層2の内周面を直接的に押し広げておらず、波付層3を介して押し広げている。つまり、拡縮金型5が拡径方向に移動するときに、ゴム輪受口6に形成されている波付層3のそれぞれの台形断面のリブ8が、外層2の弾性力によって、管本体4bの側に向って押しつぶされて傾斜する状態となる。この状態では、それぞれのリブ8の傾斜する側の側壁8aが折れ曲がっている。そして、拡縮金型5を縮径してゴム輪受口6から取り出すと、図17に示すように、各リブ8の折れ曲がった側壁8aの伸張しようとする力によって、ゴム輪受容部6aを含むゴム輪受口6の内周面に多数の環状の凸部1aが形成される。その結果、ゴム輪受口6の内周面には、環状の凹凸が交互に形成される。
【0004】
このように、ゴム輪受口6のリブ8が押しつぶされると、ゴム輪受口6の剛性、特に偏平剛性が低下するという問題がある。そして、ゴム輪受口6の内周面に凹凸が形成されると、このゴム輪受口6の内径のばらつきが大きくなるので、別に用意した内外面平滑波付管7の差口7aをこのゴム輪受口6に接合できない場合がある。そして、ゴム輪受容部6aに凹凸が形成されると、ゴム輪9をぴったりと収容することができないので、ゴム輪9による水密性が保持できない場合がある。
【0005】
それゆえに、この発明の主たる目的は、内外面平滑波付管の管端の波付層が押しつぶされることなく、内周面が平滑な拡径受口を形成することができる、内外面平滑波付管の拡径受口の加工方法を提供することである。
【0006】
【課題を解決するための手段】
この発明は、内層と外層との間に波付層を形成した内外面平滑波付管の管端に拡径受口を形成する加工方法であって、(a) 波付層が螺旋状のリブよって形成された内外面平滑波付管を準備し、(b) 管端を加熱して軟化させ、そして(c) 管端の内層と外層との間の空間を加圧した状態で管端を拡径させる、内外面平滑波付管の拡径受口の加工方法である。
【0007】
【作用】
波付層が螺旋状のリブよって形成された内外面平滑波付管を準備する。そして、その管端を加熱して軟化させる。次に、この軟化した管端の内層と外層との間の空間を加圧した状態で管端を拡径させることによって拡径受口を形成することができる。このように管端を軟化させて、管端の内層と外層との間の空間を加圧した状態で管端を拡径させているので、拡径の際に管端の波付層が外層の弾性力によって押しつぶされることがない。そして、波付層が押しつぶされないので、拡径受口の内周面は、環状の凹凸が形成されることがなく、平滑に形成される。
【0008】
【発明の効果】
この発明によると、拡径の際に、管端に形成されている波付層が押しつぶされることがないので、拡径受口の剛性、特に偏平剛性の低下を防止できる。そして、拡径受口の内層の内周面を平滑に形成することができるので、拡径受口の内径のばらつきを小さくすることができる。よって、別に用意した内外面平滑波付管の差口をこの拡径受口に、予め定められているようにぴったりと確実に接合することができる。そして、拡径受口にゴム輪を装着する場合は、内面が平滑であるので、ゴム輪をぴったりと装着することができ、ゴム輪によって水密性が確実に保持される。
【0009】
この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。
【0010】
【実施例】
この発明の第1実施例の内外面平滑波付管の拡径受口の加工方法、およびその方法によって形成された内外面平滑波付管(以下、単に「管」と言うこともある。)10を、図1〜図12を参照して説明する。この管10は、図9に示すような断面形状を有する片受け管であって、材質がたとえばポリエチレン等の合成樹脂である。そして、たとえば高速道路の用排水管、または宅地もしくは公園等に敷設される無圧の排水管として使用できるものであり、管本体12を含む。この管本体12の一方の端部には、内外面平滑波付管用ゴム輪受口(以下、単に「ゴム輪受口」と言うこともある。)14が形成されている。
【0011】
ゴム輪受口(拡径受口)14は、管軸に対して垂直な断面形状が円形の所定の厚みに形成された筒状体である。そして、ゴム輪受口14は、図9に示すように、それぞれが略円筒形の外層16および内層18、ならびに外層16と内層18との間に形成された波付層20を含み、これらが互いに結合して一体となっている。このゴム輪受口14の一方の開口部は、別の同等の管10の差口12aが挿入される挿入口として形成されており、この挿入口の内層18および外層16の環状の先端周縁18aおよび18bは全周にわたって互いに密着結合している。また、ゴム輪受口14の他方の開口縁は、管本体12の端部に結合している。さらに、ゴム輪受口14の内周面14aには、ゴム輪受容部22が形成されている。
【0012】
ゴム輪受容部22は、内層18の内周面に沿って形成された環状の溝であり、ゴム輪24および押さえ部材24が装着されている。ゴム輪24は、図10に示すように、ゴム輪受口14に別の管10の差口12aが接合された状態で、この接合部の水密性を保持するためのものである。押さえ部材26は、ゴム輪受容部22に融着された状態で、ゴム輪24のハンガー部をゴム輪受容部22の内周面に押し付けている。これによって、管10の差口12aをゴム輪受口14に挿入する際に、挿入される差口12aに伴ってゴム輪24がその挿入方向に転ばないようにすることができる。この押さえ部材26は、たとえばポリエチレン等の合成樹脂によって形成されたリングである。
【0013】
波付層20は、リブ28によって形成されている。このリブ28は、図9に示すように、ゴム輪受口14の内層18の外周面に沿って螺旋状に形成された突起であり、内層18の外側に向って突出している。そして、周方向に対して直交する断面形状が略台形であり、内部が空洞である。このリブ28は、ゴム輪受口14の断面図にたとえば5つの断面が現れるピッチで形成されている。このように、ゴム輪受口14にリブ28が形成されているので、ゴム輪受口14の剛性、特に偏平剛性を高めることができる。そして、ゴム輪受口14の外周面に外層16が形成されているので、これによってゴム輪受口14の曲げ強度が高められている。
【0014】
また、図10に示すように、ゴム輪受口14に管10が接合された状態で、図の左側の管10の管本体12の内面12b,および図の中央の管10の管本体12の内面12bが段差なく平滑に連なるように、ゴム輪受口14の内径が定められている。これによって、管本体12と12との突合せ部に排水が溜まったり、ごみが引っかかり難いようになっている。なお、ゴム輪受口14と管本体12の端部との結合部も、内層18,外層16および波付層20によって形成されている。
【0015】
管本体12は、図11に示すように、それぞれが円筒形に形成された外層16および内層18、ならびに外層16と内層18との間に形成された波付層20を含み、これらが互いに結合して一体となっている。そして、この管本体12およびゴム輪受口14のそれぞれの内層18,外層16および波付層20は、対応するものどうしが互いに連続して接続しており、その両方の波付層20および20は、1本の連続する螺旋状のリブ28によって形成されている。
【0016】
内層18は、図11に示すように、第1の帯状体30を螺旋状にピッチBで巻回することによって形成された所定の厚みの円筒状体であり、その内面12bが平滑となっている。そして、互いに隣合う第1の帯状体30の側縁30aが、第2の帯状体32を介して結合している。波付層20は、第1の帯状体30の長手方向に沿って設けられた中空のリブ28によって形成されている。このリブ28の断面形状が台形であるので、波付層20の断面形状が波状に現れている。なお、このリブ28の壁部の厚み、特に上壁34の厚みを増すことによってこの管本体12の偏平剛性を高めることができる。そして、リブ28を中空とすることによって、軽量で剛性の高い管本体12を提供することができる。外層16は、第3の帯状体36を螺旋状に巻回することによって形成された所定の厚みの円筒状体であり、その外面12cが平滑となっている。
【0017】
次に、図1〜図9を参照して、図9に示す内外面平滑波付管10のゴム輪受口(拡径受口)14の加工方法を説明する。まず、図1に示すように、管本体12と同等の構成の内外面平滑波付管38を準備する。この内外面平滑波付管38の波付層20は、上述したように螺旋状の中空のリブ28によって形成されており、リブ28とリブ28との間には、空間40が形成されている。そして、図2に示すようにして、管端12dに形成されるゴム輪受口14に対応する部分を、軟化点T1以上であって融点T2未満の温度に加熱して軟化させる。
【0018】
管端12dを加熱する方法として、たとえば図2に示す内外面平滑波付管38の左側の管端12dから複数のノズル42を挿入する。つまり、所定のノズル42の先端を螺旋状に形成されているリブ28の中空部28aの開口部28bに挿入するとともに、他の所定のノズル42を螺旋状に形成されている空間40の開口部40aに挿入する。そして、それぞれのノズル42の先端から熱風(たとえば加熱蒸気)を吐出させて、その熱風をリブ28の中空部28aおよび空間40内に供給する。これによって、管端12dを所定の温度に加熱することができる。もちろん、熱風によって管端12dを加熱する前に、電気ヒータ等を使用してこの管端12dを予め所定の温度に加熱しておいてもよいし、他の方法によって管端12dを軟化点T1以上であって融点T2未満の温度に加熱してもよい。
【0019】
ただし、内外面平滑波付管38のうちゴム輪受口14に対応する管端12d以外の部分が軟化点T1以上の温度に加熱されないように、図2に示すように、内外面平滑波付管38の右側の管端(差口)12aに形成されているリブ28の中空部28aの開口部28c、および空間40の開口部40bからそれぞれの内側に冷風を供給している。そして、差口12aのそれぞれの開口部28c,40bから冷風が漏れないようにするために、差口12aに環状のカバー44を取り付けてある。このカバー44に設けられている供給口44aから冷風を供給している。
【0020】
次に、図3に示すように、ノズル42が挿入されている左側の管端12dの周縁を押しつぶして、ノズル42が挿入されている部分以外の内層18および外層16のそれぞれの先端周縁18aおよび16aを互いに密着結合させる。内層18および外層16のそれぞれの先端周縁18aおよび16aを互いに密着結合させる方法として、たとえば図3(A)および図3(B)に示すように、それぞれの先端周縁18aおよび16aを第1の拡縮金型(第1の内型)46と第1の外型48との間に挟み込んで両者を密着結合させる方法がある。
【0021】
第1の拡縮金型46は、たとえば8つの拡縮部材からなっており、図3に示す拡径状態で外周面46aが円筒形状となり、外径が内層18の内径に対応する寸法となる。第1の外型48は複数の外型からなっており、各第1の外型48の内面48aが円弧状に形成されている。これら第1の外型48の円弧状の各内面48aは、図3(B)に示すように、拡径した状態の第1の拡縮金型46の外周面46aと、縮径した状態の第1の外型48との間に内層18および外層16の円環状の先端周縁18aおよび16aを挟み込んだ状態で、この両方の先端周縁18aおよび16aを互いに密着させて結合させることができる曲率半径に形成されている。そして、第1の外型48が縮径した状態で、これら複数の第1の外型48の内面48aが円筒形状となる。
【0022】
ただし、第1の外型48の内面48aには、図3(B)に示すように、ノズル42の形状と対応する形状の凹部50が形成されており、第1の拡縮金型46と第1の外型48との間に内層18および外層16の先端周縁18aおよび16aを挟み込んだ状態で、複数の各ノズル42を押しつぶさないようになっている。
【0023】
この第1の拡縮金型46および第1の外型48を使用して内層18および外層16の先端周縁18aおよび16aを密着結合させるときは、第1の拡縮金型46を縮径した状態で内層18の先端周縁18aの内側に挿入して拡径させる。そして、この状態で第1の外型48を第1の拡縮金型46に接近する方向に移動させて、第1の拡縮金型46と第1の外型48との間に内層18および外層16の先端周縁18aおよび16aを所定の力で挟み込めばよい。
【0024】
次に、図4に示すように、内外面平滑波付管38の差口12aにカバー44を取り付ける。この状態で、左側の管端12dに取り付けられている各ノズル42から圧力熱風を吐出させるとともに、カバー44に形成されている供給口44aから圧力冷風を流入させる。これによって、内外面平滑波付管38の内層18と外層16との間の空間28a,40が加圧された状態となる。つまり、螺旋状のリブ28の中空部28a、および螺旋状の空間40内に圧力熱風および圧力冷風が供給され、管端12dに形成されるゴム輪受口14に対応する部分が、軟化点T1以上であって融点T2未満の温度に加熱されて軟化しており、圧力熱風等によって少し膨らんだ状態となっている。ただし、内外面平滑波付管38のゴム輪受口14が形成される管端12d以外の部分は、中空部28aおよび空間40が加圧された状態となっているが、軟化していないので管端12dほど膨らんだ状態となっていない。また、カバー44は、図2に示す状態と同様に取り付けられており、カバー44と差口12aとの接合部から圧力冷風が漏れないように、ゴム輪52,52によって密封されている。そして、第1の拡縮金型46および第1の外型48は、管端12dから取り外されている。
【0025】
次に、図5に示すように、図4に示す状態で管端12dの開口部内に第2の内型54を縮径した状態で挿入するとともに、管端12dの先端周縁18aおよび16aの外周面と間隔を隔てて第2の外型56を配置する。この第2の内型54は、第2の拡縮金型58およびこの第2の拡縮金型58の先端に設けられている第3の拡縮金型60を備えている。
【0026】
次に、図6(A)に示すように、まず、第2の拡縮金型58を拡径状態にして第2の拡縮金型58の外周面を管端12dの先端周縁18aの内周面に当接させる。そして、先端周縁16aの外周面に第2の外型56を所定の力で押し付ける。この図6(A)に示す状態では、管端12dの先端周縁18a,16aが第2の拡縮金型58と第2の外型56との間に挟み込まれて固定されていて、図4を参照して説明したように、ゴム輪受口14が形成される管端12d部分が軟化している。さらに、リブ28の中空部28aおよび空間40内には、圧力熱風および圧力冷風が供給されて加圧されていて、軟化している管端12dが少し膨らんだた状態となっている。
【0027】
次に、図6(A)に示すように、第2の拡縮金型58と第2の外型56との間に内層18および外層16の互いに結合する先端周縁18aおよび16aを挟み込んだ状態で、縮径状態の第3の拡縮金型60を拡径状態にして管端12dを内側から押し広げてゴム輪受口14を形成する。そして、各ノズル42からの圧力熱風の供給を停止させるとともに、カバー44の供給口44aからの圧力冷風の供給を停止させて、ゴム輪受口14を冷却する。そして、図7に示すように、第2の外型56を拡径状態にして管端12dの先端周縁18a,16aから引き離し、第2および第3の拡縮金型58および60を縮径状態にする。そして、図8に示すように、ノズル42,第2の外型56,ならびに第2のおよび第3の拡縮金型58および60をゴム輪受口14から取り外す。また、カバー44も差口12aから取り外す。
【0028】
次に、図8に示すように、カッター62を使用してゴム輪受口14が形成された管端12dの内層18および外層16の互いに結合する先端周縁18aおよび16aを切断して除去する。これで、図9に示すゴム輪受口14が形成される。このように先端周縁18aおよび16aが切除された図9に示すゴム輪受口14は、挿入口の内周面14aが円筒形となる。そして、ゴム輪受口14の外層16の先端周縁16aと内層18の先端周縁18aとが全周にわたって互いに密着して結合した状態となる。つまり、リブ28の中空部28aおよび空間40のそれぞれのゴム輪受口14側の開口部28b、40aを水密封止した状態となる。このようにして、内外面平滑波付管10のゴム輪受口14の加工が終了する。しかる後に、図9に示すように、ゴム輪受容部22にゴム輪24を装着して、押さえ部材26を融着する。これでゴム輪24が装着された内外面平滑波付管10が完成する。
【0029】
次に、図5に示す第2の内型54および第2の外型56を説明する。この第2の内型54を構成する第3の拡縮金型60は、図5および図6(A)のそれぞれの正面図、ならびに図12の断面図に示すように、たとえば8つの金型部材60aからなっており、図5に示す縮径状態と、図6(A)に示す拡径状態とに拡縮自在な構成となっている。この第3の拡縮金型60は、拡径状態で外形が略円筒形であり、略中央に外周に沿って環状の突条60bが形成されている。この突条60bは、ゴム輪受容部22を形成するためのものである。そして、第3の拡縮金型60の突条60b以外の外周面60cは、ゴム輪受口14のゴム輪受容部22以外の内周面を形成するためのものである。第3の拡縮金型60は、8つの金型部材60aが半径方向に案内されて外側または内側に移動することによって拡縮し、拡径状態の直径は、縮径状態の直径の約1.4倍となる。
【0030】
図12に示す拡径状態の第3の拡縮金型60を縮径状態にするときは、まず、内側に向って広がる形状の4つの金型部材60aを実線の矢印で示す方向に移動させて内側位置に停止させる。次に、内側に向って狭まる形状の4つの金型部材60aを破線の矢印で示す方向に移動させて内側位置に停止させればよい。そして、縮径状態の第3の拡縮金型60を拡径状態にするときは、上記の手順と逆の手順を行えばよい。すなわち、まず、内側に向って狭まる形状の4つの金型部材60aを図12に示す外側位置に移動させる。次に、内側に向って広がる形状の4つの金型部材60aを図12に示す外側位置に移動させればよい。
【0031】
第2の拡縮金型58は、第1の拡縮金型46と同等のものであり、たとえば8つの金型部材60aからなっており、図5に示す縮径状態と、図6(A)に示す拡径状態とに拡縮自在な構成となっている。そして、図6に示す拡径状態で外周面が円筒形状となり、外径が内層18の内径に対応する寸法となる。これら第1および第2の拡縮金型46および58は、第3の拡縮金型60と同等の機構で拡縮することができ、第3の拡縮金型60と同様の手順で8つの各金型部材が半径方向の外側または内側に移動することによって拡縮する。
【0032】
第2の外型56は、第1の外型48と同様に複数の外型からなっており、図6(B)に示すように、各第2の外型56の内面56aが円弧状に形成されている。これら第2の外型56の円弧状の各内面56aは、拡径状態の第2の拡縮金型58の外周面58aと、縮径状態の第2の外型56の内面56aとの間に内層18および外層16の互いに密着結合した円環状の先端周縁18aおよび16aを所定の力で挟み込んだ状態で、外層16の外周面に密着する曲率半径に形成されている。そして、第2の外型56が縮径した状態で、これら複数の第2の外型56の内面56aが円筒形状となる。
【0033】
ただし、第2の外型56の内面56aには、図6(B)に示すように、第1の外型48の内面48aと同様に、ノズル42の形状と対応する形状の凹部50が形成されており、第2の拡縮金型58と第2の外型56との間に内層18および外層16の互いに結合する先端周縁18aおよび16aを挟み込んだ状態で、複数の各ノズル42を押しつぶさないようになっている。また、図6(A)に示すように、各第2の外型56の先端部の側面には、傾斜面56bおよび円筒面56cが形成されている。これら傾斜面56bおよび円筒面56cは、図6(A)に示すように第3の拡縮金型60が拡径状態になったときに、管端12dの外周面に当接してこの外周面を、ゴム輪受口14の開口端部として形成する形状となっている。
【0034】
この内外面平滑波付管のゴム輪受口の加工方法によると、図6(A)に示すように、ゴム輪受口14が形成される管端12dを軟化させて、管端12dの内層18と外層16との間のリブ28の中空部28aおよび空間40内に圧力熱風を供給して、加圧した状態で管端12dを第3の拡縮金型60によって拡径させている。したがって、拡径の際に管端12dのリブ28(波付層20)が外層16の弾性力によって押しつぶされることなくゴム輪受口14を形成することができる。なぜなら、第3の拡縮金型60が拡径方向に広がるときに、ゴム輪受口14が形成される管端12dの波付層20が、圧力熱風によって加圧されて膨らんだ状態となっており、外層16が圧力熱風によって内側から保持されているからである。このように、リブ28が押しつぶされないので、ゴム輪受口14の内周面14aは、図17に示す従来のゴム輪受口6のように環状の凹凸が形成されることがなく、平滑に形成される。
【0035】
そして、拡径の際に、ゴム輪受口14に形成されているリブ28が押しつぶされることがないので、ゴム輪受口14の剛性、特に偏平剛性の低下を防止できる。そして、ゴム輪受口14の内層18の内周面14aを平滑に形成することができるので、ゴム輪受口14の内径のばらつきを小さくすることができる。よって、図10に示すように、別に用意した内外面平滑波付管10の差口12aをこのゴム輪受口14に、予め定められているようにぴったりと確実に接合することができる。そして、ゴム輪受容部22の内面も平滑であるので、ゴム輪24をぴったりと収容することができ、ゴム輪24によって水密性が確実に保持される。
【0036】
また、この管本体12によると、図11に示すように、第1の帯状体30の帯状部30bによって内面12bが平滑に形成されているので、管本体12内の流量抵抗が小さく、したがって流下する排水やごみが滞留することがない。そして、波付層20は、第1の帯状体30の中空のリブ28によって形成されており、さらに螺旋状に巻回されたリブ28とリブ28との間に空間40が形成されているので、管本体12の重量が軽量な上に、剛性、特に偏平剛性が高い。また、第3の帯状体36によって外面12cが平滑に形成されているので、これによっても管本体12の偏平剛性を高めることができるとともに、管本体12およびゴム輪受口14の曲げ強度も高めることができる。
【0037】
図9に示す内外面平滑波付管10を使用して、下水、排水管路を形成するときは、図10に示すように、一方の管10の差口12aを他方の管10のゴム輪受口14に挿入して管10を順次接合していけばよい。もちろん、補修等の必要に応じて、互いに接合する一方の管10の差口12aを他方の管10のゴム輪受口14から抜き取って、両者を切り離すことができる。
【0038】
このように、この管10は、ゴム輪受口14を備えているので、別個の継手を使用せずに順次接合していくことができ、配管作業を簡単に行うことができる。そして、一方の管10の差口12aを他方の管10のゴム輪受口14に差し込むことによって両者を接合することができるので、内外面平滑波付管10の接合作業を初心者であっても極めて簡単で短時間に行うことができるし、接合部の水密性をゴム輪24によって確実に保持することができる。
【0039】
また、ゴム輪受口14にリブ28が形成されていて、このゴム輪受口14の剛性、特に偏平剛性が高められているので、ゴム輪受容部22およびゴム輪24の変形を少なくすることができ、水密性を確実に保持できる。
【0040】
さらに、図10に示すように、ゴム輪受口14の外層16の先端周縁16aと内層18の先端周縁18aとが互いに密着結合していて、リブ28の中空部28aおよび空間40のそれぞれのゴム輪受口14側の開口部28bおよび40aが水密封止されている。したがって、管10が互いに接合された状態で、リブ28の中空部28aおよび空間40のそれぞれの管10の差口12a側の開口部28cおよび40bから排水が流入することがあっても、この排水がリブ28の中空部28aおよび空間40を通って地中に流出することがない。そして、地下水が管10内に流入することもない。
【0041】
なお、この内外面平滑波付管10のゴム輪受口14の寸法は、呼び600の場合、外径が約815mm,管本体12の外径が約700mm,内径が約600mm,管本体12の管壁の厚みが約50mm,波付層20のリブ28のピッチが約73mmである。
【0042】
次に、図13および図14等を参照してこの発明の第2実施例の内外面平滑波付管の拡径受口の加工方法、およびその加工方法によって形成された内外面平滑波付管(以下、単に「管」と言うこともある。)64を説明する。第1実施例および第2実施例のそれぞれの加工方法によって形成された管10と64とが相違するところは、第1実施例の管10では、図9に示すように、ゴム輪受口14にゴム輪受容部22が形成されており、このゴム輪受容部22にゴム輪24および押さえ部材26が設けられているのに対して、第2実施例の管64では、図13に示すように、受口66にゴム輪受容部22が形成されておらず、ゴム輪68が受口66の先端縁(開口縁)に装着されているところである。
【0043】
この第2実施例の加工方法によって形成された内外面平滑波付管64は、図13に示すように、受口66が円筒形に形成されていて、その受口66の挿入口を形成する先端縁にゴム輪68が装着されている。このゴム輪68は、一方の側縁に外側に広がるフランジ部68aが形成されており、内周面に3つの環状のリップ68bが形成されている。このゴム輪68は、受口66の先端縁に装着された状態で、その外周面が受口66の内周面66aに密着しており、フランジ部68aが受口66の先端縁に係合している。
【0044】
この図13に示す内外面平滑波付管64を使用して、下水、排水管路を形成するときは、第1実施例と同様に図14に示すように、一方の管64の差口12aを他方の管64の受口66に挿入して管64を順次接合していけばよい。ただし、受口66の内周面66aと差口12aの外周面との間にゴム輪68が介在することができるように、受口66の内周面66aの直径を差口12aの外周面の直径よりも少し大きくしてある。これ以外は、第1実施例の管10と同等であり、同等部分を同一の図面符号で示し、それらの詳細な説明を省略する。
【0045】
また、第1実施例の加工方法と第2実施例の加工方法とが相違するところは、第1実施例の加工方法では、図6(A)に示すように、突条60bを有する第3の拡縮金型60を使用してゴム輪受口14を形成するのに対して、第2実施例の加工方法では、図には示さないが、第3の拡縮金型60において突条60bを除去した第4の拡縮金型を使用して図13に示す受口66を形成するところ、および第1実施例の加工方法では、図9に示すように、ゴム輪受容部22にゴム輪24および押さえ部材26を取り付けるのに対して、第2実施例の加工方法では、図13に示すように、ゴム輪68を受口66の先端縁に装着するところである。これ以外は、第1実施例の加工方法と同等であるので、それらの詳細な説明を省略する。
【0046】
この第2実施例の第4の拡縮金型は、第1実施例の第3の拡縮金型60において突条60bを除去したものであって、図6および図12等に示す第1実施例の第3の拡縮金型60と同様に、8つの金型部材からなっている。そして、この第4の拡縮金型は、第3の拡縮金型60と同様に、縮径状態と拡径状態とに拡縮自在な構成となっており、拡径状態で外形が円筒形であり、拡径することによってその外周面によって受口66を形成することができる。そして、内外面平滑波付管64の受口66の加工が終了すると、図13に示すように、受口66の先端縁にゴム輪68を装着する。これでゴム輪68が装着された内外面平滑波付管64が完成する。
【0047】
この内外面平滑波付管の受口の加工方法によると、第1実施例と同様に、拡径の際に管端12dのリブ(波付層20)28が外層16の弾性力によって押しつぶされることがなく、しかも受口66の内周面66aを平滑に形成することができる。したがって、受口66の剛性、特に偏平剛性の低下を防止できる。そして、図14に示すように、別に用意した内外面平滑波付管64の差口12aをこの受口66に、予め定められているようにぴったりと確実に接合することができる。そして、受口66の先端縁(開口縁)の内周面66aも平滑であるので、ゴム輪68をぴったりと装着することができ、ゴム輪68によって水密性が確実に保持される。
【0048】
そして、第1実施例の管10と同様に、図14に示すように、受口66の外層16の先端周縁16aと内層18の先端周縁18aとが互いに密着結合していて、リブ28の中空部28aおよび空間40のそれぞれの受口66側の開口部28bおよび40aが水密封止されている。したがって、管10が互いに接合された状態で、リブ28の中空部28aおよび空間40のそれぞれの管10の差口12a側の開口部28cおよび40bから排水が流入することがあっても、この排水がリブ28の中空部28aおよび空間40を通って地中に流出することがないし、地下水が管10内に流入することもない。
【0049】
ただし、第1および第2実施例の加工方法では、図1に示すように、比較的長さの長い(約5m)内外面平滑波付管38を加工して受口14,66を備える内外面平滑波付管10,64を形成したが、これに代えて、比較的長さの短い内外面平滑波付管を加工して受口14,66を備えるマンホール継手を形成することができる。このマンホール継手をマンホールの壁部に取り付けるときは、その壁部に形成した取付孔に管本体の端部を挿入して固着すればよい。
【0050】
そして、第1および第2実施例では、図3および図5等に示す第1ないし第3の拡縮金型46,58,60を使用したが、これ以外の拡縮金型を使用してもよい。要は、縮径した状態で、たとえば図5に示す内外面平滑波付管38の管端12dに挿入することができ、拡径させることによって管端12dを押し広げてゴム輪受口14または受口66を形成したり、管端12dの先端周縁18aおよび16aを挟み込んで保持できるものであればよい。
【0051】
また、第1および第2実施例では、図2に示すように、それぞれのノズル42の先端をリブ28の中空部28aおよび空間40のそれぞれの開口部28bおよび40aに挿入して、それぞれのノズル42の先端から熱風を吐出させて、その熱風によって管端12dを加熱したが、これ以外の方法によって管端12dを加熱してもよい。たとえば、リブ28の中空部28aおよび空間40の環状の開口部28bおよび40aが形成されている管端面に円板状体(図示せず)または円環状の板状体(図示せず)を押し当てて、この円板状体または円環状の板状体に形成した貫通孔を介して熱風を中空部28aおよび空間40内に供給して、その熱風によって管端12dを加熱してもよい。
【0052】
さらに、第1および第2実施例では、図3に示すように、ノズル42が挿入されている左側の管端12dの周縁16a,18aの一部を押しつぶす際に、ノズル42から熱風を吐出していないし、右側の差口12aの中空部28aおよび空間40のそれぞれの開口部28cおよび40bから冷風を供給していないが、図2を参照して説明した方法と同様にして、それぞれの対応する開口部(28b,40a)および(28c,40b)から熱風および冷風を供給してもよい。なお、差口12aのそれぞれの開口部28c,40bには、図2に示す環状のカバー44を取り付けて、このカバー44に設けられている供給口44aから冷風を供給するとよい。
【0053】
そして、第1および第2実施例では、図2に示すように、管端12dをノズル42から吐出される熱風によって加熱したが、これに代えて、管端12dを電気ヒータ等の発熱体(図示せず)を使用して加熱してもよい。この場合は、発熱体を管端12dの外側および内側(開口部内)に配置してこの管端12dを加熱するのであるが、内部の波付層20を形成するリブ28が所定の温度(軟化点T1以上であって融点T2未満の温度)に加熱される前に、発熱体に向かい合っている管端12dの内層18および外層16が融点T2以上の温度に加熱されないようにする必要がある。そこで、管端12dを発熱体によって加熱するとともに、この管端12dの内層18および外層16の外側表面(管端12dの外面12cおよび内面12b)に冷風を吹き付けることによって供給して、この内層18および外層16の温度が融点T2以上の温度に加熱されないようにする。このようにすることによって、管端12dの外層16,内層18およびリブ28を軟化点T1以上であって融点T2未満の温度に加熱することができる。
【図面の簡単な説明】
【図1】この発明の第1実施例の内外面平滑波付管の拡径受口の加工方法に使用する内外面平滑波付管を示す断面図である。
【図2】第1実施例の加工方法を示す図1の内外面平滑波付管の管端を加熱する状態を示す内外面平滑波付管の断面図である。
【図3】(A)は第1実施例の加工方法を示す図2の内外面平滑波付管の管端の先端周縁を押しつぶして密封する状態を示す内外面平滑波付管の断面図、(B)は図3(A)の密封された管端の先端周縁を管軸に対して垂直方向に切断した状態を示す断面図である。
【図4】第1実施例の加工方法を示す図3(A)の内外面平滑波付管の管端を加熱するとともに内層を加圧した状態を示す内外面平滑波付管の断面図である。
【図5】第1実施例の加工方法を示す図4の内外面平滑波付管の管端に第2の内型を挿入した状態を示す内外面平滑波付管の断面図である。
【図6】(A)は第1実施例の加工方法を示す図5の内外面平滑波付管の管端に挿入された第2の内型を拡径させた状態を示す断面図、(B)は図6(A)の密封された管端の先端縁を管軸に対して垂直方向に切断した状態を示す断面図である。
【図7】第1実施例の加工方法を示す図6(A)の内外面平滑波付管の管端に挿入された第2の内型を縮径させた状態を示す断面図である。
【図8】第1実施例の加工方法を示す図7の内外面平滑波付管の管端から第2の内型を取り出した状態を示す内外面平滑波付管の断面図である。
【図9】第1実施例の加工方法を示す図8の内外面平滑波付管の管端の先端周縁を切断して管端に形成されたゴム輪受容部にゴム輪および押さえ部材を取り付けた状態を示す内外面平滑波付管の断面図である。
【図10】図9の第1実施例の加工方法によって形成されたゴム輪受口に内外面平滑波付管の差口を接合した状態を示す断面図である。
【図11】図1に示す第1実施例の加工方法に使用される内外面平滑波付管の部分拡大断面図である。
【図12】図5に示す第1実施例で使用される第3の拡縮金型の縮径状態を示す側面図である。
【図13】この発明の第2実施例の加工方法によって形成された受口の開口縁にゴム輪を取り付けた状態を示す内外面平滑波付管の断面図である。
【図14】図13の第2実施例の加工方法によって形成された受口に内外面平滑波付管の差口を接合した状態を示す断面図である。
【図15】(A)は従来の内外面平滑波付管の拡径受口の加工方法に使用する内外面平滑波付管を示す部分断面図、(B)は図15(A)の内外面平滑波付管の管端に拡縮金型を挿入した状態を示す部分断面図である。
【図16】(A)は従来の加工方法を示す図15(B)の拡縮金型を拡径させた状態を示す内外面平滑波付管の部分断面図、(B)は図16(A)の拡径状態の拡縮金型を縮径させた状態を示す内外面平滑波付管の部分断面図である。
【図17】従来の加工方法によって形成された内外面平滑波付管およびそのゴム輪受口に接合される他の内外面平滑波付管を示す部分断面図である。
【符号の説明】
10,64 …内外面平滑波付管
12 …管本体
12a …差口
12b …管本体の内面
12c …管本体の外面
12d …管端
14 …ゴム輪受口
14a …ゴム輪受口の内周面
16 …外層
16a …外層の先端周縁
18 …内層
18a …内層の先端周縁
20 …波付層
22 …ゴム輪受容部
24,68 …ゴム輪
28 …リブ
28a …リブの中空部
28b,28c …開口部
38 …内外面平滑波付管
40 …空間
40a,40b …開口部
42 …ノズル
46 …第1の拡縮金型
48 …第1の外型
54 …第2の内型
56 …第2の外型
58 …第2の拡縮金型
60 …第3の拡縮金型
66 …受口
[0001]
[Industrial application fields]
TECHNICAL FIELD The present invention relates to a method for processing an enlarged diameter receiving port of a tube with inner and outer surface smooth waves, and particularly, inner and outer surface smooth waves used for, for example, drainage pipes for expressways or drainage pipes laid on residential land or parks. The present invention relates to a method for processing a diameter expansion receptacle of a tube.
[0002]
[Prior art]
Although there is no conventional method for processing the diameter-enlarged receiving port of the inner and outer surface smooth wave tube, the processing methods shown in FIGS. 15 to 17 are conceivable. In this processing method, as shown in FIG. 15 (A), first, an inner / outer surface smooth wave-equipped tube 4 is prepared. The tube 4 is a synthetic resin tube in which a corrugated layer 3 is formed between the inner layer 1 and the outer layer 2. Then, the tube end 4a is heated to a temperature not lower than the softening point and lower than the melting point. Next, as shown in FIG. 15B, the expansion / contraction mold 5 is reduced in diameter and inserted into the tube end 4a. Then, as shown in FIG. 16 (A), the expansion / contraction mold 5 in the reduced diameter state is expanded to push the pipe end 4a from the inside to form the rubber ring receiving port 6. Then, after the rubber ring receiving port 6 is cooled, the expansion / contraction mold 5 is reduced in diameter as shown in FIG. In this way, the processing of the rubber ring receiving port 6 shown in FIG. 17 is completed, and the inner and outer surface smooth wave-equipped tube 7 is completed.
[0003]
[Problems to be solved by the invention]
However, in the processing method of the diameter expansion receptacle of the inner and outer surface smooth wave attached tube shown in FIG. 15 and the like, as shown in FIG. 16 (A), when the expansion / contraction mold 5 is in the diameter expanded state, the expansion / contraction mold 5 The inner peripheral surface of the outer layer 2 is not directly expanded by the outer peripheral surface 5 a, but is expanded through the corrugated layer 3. In other words, when the expansion / contraction mold 5 moves in the diameter increasing direction, the ribs 8 of the trapezoidal cross section of the corrugated layer 3 formed in the rubber ring receiving port 6 are caused by the elastic force of the outer layer 2 to form the tube body 4b. It will be crushed toward the side and will be inclined. In this state, the side wall 8a on the inclined side of each rib 8 is bent. Then, when the expansion / contraction mold 5 is reduced in diameter and taken out from the rubber ring receiving opening 6, as shown in FIG. 17, the rubber ring receiving portion 6a is included due to the force of the bent side walls 8a of each rib 8 being expanded. A large number of annular protrusions 1 a are formed on the inner peripheral surface of the rubber ring receiving port 6. As a result, annular irregularities are alternately formed on the inner peripheral surface of the rubber ring receiving port 6.
[0004]
Thus, when the rib 8 of the rubber ring receiving opening 6 is crushed, there is a problem that the rigidity of the rubber ring receiving opening 6, particularly the flat rigidity, is lowered. If irregularities are formed on the inner peripheral surface of the rubber ring receiving port 6, the variation in the inner diameter of the rubber ring receiving port 6 becomes large. In some cases, the rubber ring receiving port 6 cannot be joined. If the rubber ring receiving portion 6a is uneven, the rubber ring 9 cannot be accommodated tightly, and the watertightness of the rubber ring 9 may not be maintained.
[0005]
Therefore, a main object of the present invention is to provide an inner and outer surface smooth wave that can form a diameter-enlarged receiving port having a smooth inner peripheral surface without crushing the corrugated layer at the tube end of the inner and outer surface smooth wave tube. It is providing the processing method of the diameter expansion receptacle of a pipe.
[0006]
[Means for Solving the Problems]
The present invention is a processing method for forming an enlarged diameter receiving port at the pipe end of an inner and outer surface smooth waved tube in which a corrugated layer is formed between an inner layer and an outer layer, and (a) the corrugated layer has a spiral shape. Prepare a tube with inner and outer smooth waves formed by ribs, (b) heat and soften the tube end, and (c) pressurize the space between the inner and outer layers of the tube end. This is a method for processing the diameter-enlargement receiving port of the inner and outer surface smooth wave-equipped tube.
[0007]
[Action]
An inner and outer surface smooth corrugated tube having a corrugated layer formed by spiral ribs is prepared. Then, the tube end is heated and softened. Next, an enlarged diameter receiving port can be formed by expanding the diameter of the tube end in a state where the space between the inner layer and the outer layer of the softened tube end is pressurized. Since the tube end is softened and the tube end is expanded in a state where the space between the inner layer and the outer layer at the tube end is pressurized, the corrugated layer at the tube end is formed in the outer layer when expanding the diameter. It is not crushed by the elastic force. And since a corrugated layer is not crushed, the internal peripheral surface of a diameter expansion receptacle is formed smoothly without an annular unevenness | corrugation being formed.
[0008]
【The invention's effect】
According to the present invention, the corrugated layer formed at the pipe end is not crushed during the diameter expansion, so that it is possible to prevent the rigidity of the diameter expansion receiving port, particularly the flat rigidity, from being lowered. And since the internal peripheral surface of the inner layer of a diameter expansion receptacle can be formed smoothly, the dispersion | variation in the internal diameter of a diameter expansion receptacle can be made small. Therefore, it is possible to exactly and surely join the separately prepared inner / outer surface smoothed tube with the diameter-enlarged receiving port as determined in advance. When a rubber ring is attached to the diameter-enlarged receiving port, the inner surface is smooth, so that the rubber ring can be attached exactly, and the water tightness is reliably maintained by the rubber ring.
[0009]
The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
[0010]
【Example】
The method for processing the diameter-enlarged receiving port of the inner and outer surface smooth wave-added tube according to the first embodiment of the present invention, and the inner and outer surface smooth wave-added tube formed by the method (hereinafter also simply referred to as “tube”). 10 will be described with reference to FIGS. The pipe 10 is a single-piece receiving pipe having a cross-sectional shape as shown in FIG. 9 and is made of a synthetic resin such as polyethylene. For example, it can be used as a drainage pipe for an expressway or a non-pressure drainage pipe laid on a residential land or a park, and includes a pipe body 12. At one end of the tube main body 12, a rubber ring receiving port (hereinafter also simply referred to as “rubber ring receiving port”) 14 for inner and outer surface smooth wave-attached tubes is formed.
[0011]
The rubber ring receiving port (expanded diameter receiving port) 14 is a tubular body having a circular cross section perpendicular to the tube axis and having a predetermined thickness. As shown in FIG. 9, the rubber ring receiving port 14 includes a substantially cylindrical outer layer 16 and an inner layer 18, and a corrugated layer 20 formed between the outer layer 16 and the inner layer 18. They are united together. One opening portion of the rubber ring receiving port 14 is formed as an insertion port into which a differential port 12a of another equivalent tube 10 is inserted, and the annular tip peripheral edge 18a of the inner layer 18 and the outer layer 16 of the insertion port. And 18b are tightly coupled to each other over the entire circumference. Further, the other opening edge of the rubber ring receiving port 14 is coupled to the end of the tube main body 12. Further, a rubber ring receiving portion 22 is formed on the inner peripheral surface 14 a of the rubber ring receiving port 14.
[0012]
The rubber ring receiving part 22 is an annular groove formed along the inner peripheral surface of the inner layer 18, and the rubber ring 24 and the pressing member 24 are mounted on the rubber ring receiving part 22. As shown in FIG. 10, the rubber ring 24 is for maintaining the watertightness of the joint portion in a state where the differential port 12 a of another pipe 10 is joined to the rubber ring receiving port 14. The pressing member 26 presses the hanger part of the rubber ring 24 against the inner peripheral surface of the rubber ring receiving part 22 while being fused to the rubber ring receiving part 22. Thus, when the insertion port 12a of the tube 10 is inserted into the rubber ring receiving port 14, the rubber ring 24 can be prevented from falling in the insertion direction along with the inserted insertion port 12a. The pressing member 26 is a ring formed of a synthetic resin such as polyethylene.
[0013]
The corrugated layer 20 is formed by ribs 28. As shown in FIG. 9, the rib 28 is a protrusion formed in a spiral shape along the outer peripheral surface of the inner layer 18 of the rubber ring receiving port 14, and protrudes toward the outside of the inner layer 18. And the cross-sectional shape orthogonal to the circumferential direction is a substantially trapezoid, and the inside is a cavity. The ribs 28 are formed at a pitch at which, for example, five cross sections appear in the cross sectional view of the rubber ring receiving port 14. Thus, since the rib 28 is formed in the rubber ring receiving opening 14, the rigidity of the rubber ring receiving opening 14, in particular, the flat rigidity can be increased. And since the outer layer 16 is formed in the outer peripheral surface of the rubber ring receptacle 14, the bending strength of the rubber ring receptacle 14 is raised by this.
[0014]
Further, as shown in FIG. 10, in the state where the tube 10 is joined to the rubber ring receiving port 14, the inner surface 12b of the tube body 12 of the tube 10 on the left side of the drawing and the tube body 12 of the tube 10 on the center of the drawing. The inner diameter of the rubber ring receiving port 14 is determined so that the inner surface 12b is smoothly connected without a step. As a result, drainage is collected at the abutting portion between the pipe main bodies 12 and 12, and dust is hardly caught. Note that the coupling portion between the rubber ring receiving port 14 and the end of the tube body 12 is also formed by the inner layer 18, the outer layer 16, and the corrugated layer 20.
[0015]
As shown in FIG. 11, the tube body 12 includes an outer layer 16 and an inner layer 18 each formed in a cylindrical shape, and a corrugated layer 20 formed between the outer layer 16 and the inner layer 18, which are coupled to each other. And united. The inner layer 18, the outer layer 16 and the corrugated layer 20 of the pipe body 12 and the rubber ring receiving port 14 are connected to each other in succession, and both the corrugated layers 20 and 20 are connected to each other. Is formed by a single continuous spiral rib 28.
[0016]
As shown in FIG. 11, the inner layer 18 is a cylindrical body having a predetermined thickness formed by spirally winding the first strip 30 at a pitch B, and its inner surface 12b becomes smooth. Yes. The side edges 30 a of the first strips 30 that are adjacent to each other are coupled via the second strip 32. The corrugated layer 20 is formed by hollow ribs 28 provided along the longitudinal direction of the first strip 30. Since the rib 28 has a trapezoidal cross section, the corrugated layer 20 has a wavy cross section. The flat rigidity of the pipe body 12 can be increased by increasing the thickness of the wall portion of the rib 28, particularly the thickness of the upper wall 34. And by making the rib 28 hollow, the tube body 12 which is lightweight and has high rigidity can be provided. The outer layer 16 is a cylindrical body having a predetermined thickness formed by spirally winding the third belt-like body 36, and its outer surface 12c is smooth.
[0017]
Next, with reference to FIGS. 1-9, the processing method of the rubber ring receiving opening (diameter receiving opening) 14 of the pipe 10 with the inner and outer surface smooth waves shown in FIG. 9 is demonstrated. First, as shown in FIG. 1, a tube 38 with inner and outer surface smooth waves having the same configuration as the tube body 12 is prepared. The corrugated layer 20 of the inner and outer surface smooth waved tube 38 is formed by the spiral hollow rib 28 as described above, and a space 40 is formed between the rib 28 and the rib 28. . Then, as shown in FIG. 2, the portion corresponding to the rubber ring receiving port 14 formed at the tube end 12d is heated and softened to a temperature not lower than the softening point T1 and lower than the melting point T2.
[0018]
As a method for heating the tube end 12d, for example, a plurality of nozzles 42 are inserted from the tube end 12d on the left side of the tube with inner and outer surface smooth waves shown in FIG. That is, the tip of the predetermined nozzle 42 is inserted into the opening 28b of the hollow portion 28a of the rib 28 formed in a spiral shape, and the opening portion of the space 40 in which the other predetermined nozzle 42 is formed in a spiral shape. Insert into 40a. Then, hot air (for example, heated steam) is discharged from the tip of each nozzle 42, and the hot air is supplied into the hollow portion 28 a and the space 40 of the rib 28. Thereby, the tube end 12d can be heated to a predetermined temperature. Of course, before the tube end 12d is heated by hot air, the tube end 12d may be preheated to a predetermined temperature using an electric heater or the like, or the tube end 12d may be softened by a different method. It is above and you may heat to temperature below melting | fusing point T2.
[0019]
However, as shown in FIG. 2, the inner and outer surface smooth wave-attached tubes 38 are provided with the inner and outer surface smooth waves so that the portions other than the tube end 12 d corresponding to the rubber ring receiving port 14 are not heated to a temperature equal to or higher than the softening point T1. Cold air is supplied to the inside from the opening portion 28c of the hollow portion 28a of the rib 28 and the opening portion 40b of the space 40 formed at the tube end (differential port) 12a on the right side of the tube 38. An annular cover 44 is attached to the opening 12a in order to prevent cold air from leaking from the openings 28c and 40b of the opening 12a. Cold air is supplied from a supply port 44 a provided in the cover 44.
[0020]
Next, as shown in FIG. 3, the peripheral edge of the left pipe end 12d in which the nozzle 42 is inserted is crushed, and the distal peripheral edges 18a of the inner layer 18 and the outer layer 16 other than the part in which the nozzle 42 is inserted, 16a is tightly coupled to each other. For example, as shown in FIGS. 3A and 3B, the first peripheral edges 18a and 16a of the inner layer 18 and the outer layer 16 are firstly expanded and contracted as shown in FIGS. There is a method in which a mold (first inner mold) 46 and a first outer mold 48 are sandwiched between and tightly coupled to each other.
[0021]
The first expansion / contraction mold 46 is composed of, for example, eight expansion / contraction members, and the outer peripheral surface 46a has a cylindrical shape in the expanded diameter state shown in FIG. 3, and the outer diameter corresponds to the inner diameter of the inner layer 18. The first outer mold 48 includes a plurality of outer molds, and an inner surface 48a of each first outer mold 48 is formed in an arc shape. As shown in FIG. 3B, the arc-shaped inner surfaces 48a of the first outer mold 48 and the outer peripheral surface 46a of the first expansion / contraction mold 46 in the expanded state and the first outer mold 48 in the contracted state. In a state in which the annular peripheral edges 18a and 16a of the inner layer 18 and the outer layer 16 are sandwiched between the outer mold 48 and the outer mold 48, the radius of curvature is such that both the peripheral edges 18a and 16a can be brought into close contact with each other. Is formed. Then, in a state where the diameter of the first outer mold 48 is reduced, the inner surfaces 48a of the plurality of first outer molds 48 have a cylindrical shape.
[0022]
However, as shown in FIG. 3B, a recess 50 having a shape corresponding to the shape of the nozzle 42 is formed on the inner surface 48a of the first outer mold 48, and the first expansion / contraction mold 46 and the first The plurality of nozzles 42 are not crushed in a state where the inner peripheral edge 18 and the outer peripheral edges 18 a and 16 a of the outer layer 16 are sandwiched between the outer mold 48 and the outer die 48.
[0023]
When the first enlargement / reduction mold 46 and the first outer mold 48 are used to tightly bond the leading edges 18a and 16a of the inner layer 18 and the outer layer 16, the diameter of the first enlargement / reduction mold 46 is reduced. The diameter of the inner layer 18 is increased by inserting it into the inner periphery of the front edge 18a. In this state, the first outer mold 48 is moved in a direction approaching the first expansion / contraction mold 46, and the inner layer 18 and the outer layer are interposed between the first expansion / contraction mold 46 and the first outer mold 48. What is necessary is just to insert | pinch the 16 front-end | tip periphery 18a and 16a with predetermined force.
[0024]
Next, as shown in FIG. 4, a cover 44 is attached to the outlet 12 a of the inner and outer surface smooth wave-equipped tube 38. In this state, pressure hot air is discharged from each nozzle 42 attached to the left pipe end 12 d and pressure cold air is introduced from a supply port 44 a formed in the cover 44. As a result, the spaces 28a, 40 between the inner layer 18 and the outer layer 16 of the inner / outer surface smooth wave-equipped tube 38 are pressurized. That is, the hot air and the cold air are supplied into the hollow portion 28a of the spiral rib 28 and the spiral space 40, and the portion corresponding to the rubber ring receiving port 14 formed at the tube end 12d is the softening point T1. As described above, the film is softened by being heated to a temperature lower than the melting point T2, and is slightly swollen by hot hot air or the like. However, the portion other than the tube end 12d where the rubber ring receiving port 14 of the inner and outer surface smooth wave-equipped tube 38 is formed is in a state where the hollow portion 28a and the space 40 are pressurized, but is not softened. The tube end 12d is not swelled. Further, the cover 44 is attached in the same manner as in the state shown in FIG. 2 and is sealed by rubber rings 52 and 52 so that the pressure cold air does not leak from the joint portion between the cover 44 and the opening 12a. The first expansion / contraction mold 46 and the first outer mold 48 are removed from the tube end 12d.
[0025]
Next, as shown in FIG. 5, the second inner mold 54 is inserted into the opening of the tube end 12d in a reduced diameter state in the state shown in FIG. 4, and the outer periphery of the tip peripheral edges 18a and 16a of the tube end 12d. The second outer mold 56 is disposed at a distance from the surface. The second inner mold 54 includes a second expansion / contraction mold 58 and a third expansion / contraction mold 60 provided at the tip of the second expansion / contraction mold 58.
[0026]
Next, as shown in FIG. 6A, first, the second expansion / contraction mold 58 is in an expanded state, and the outer peripheral surface of the second expansion / contraction mold 58 is used as the inner peripheral surface of the distal end peripheral edge 18a of the tube end 12d. Abut. Then, the second outer mold 56 is pressed against the outer peripheral surface of the tip peripheral edge 16a with a predetermined force. In the state shown in FIG. 6A, the tip peripheral edges 18a, 16a of the tube end 12d are sandwiched and fixed between the second expansion / contraction mold 58 and the second outer mold 56, and FIG. As described with reference, the tube end 12d portion where the rubber ring receiving port 14 is formed is softened. Furthermore, in the hollow portion 28a and the space 40 of the rib 28, pressurized hot air and pressurized cold air are supplied and pressurized, and the softened tube end 12d is slightly inflated.
[0027]
Next, as shown in FIG. 6 (A), with the peripheral edges 18a and 16a of the inner layer 18 and the outer layer 16 coupled to each other between the second expansion / contraction mold 58 and the second outer mold 56, Then, the third expansion / contraction mold 60 in the reduced diameter state is expanded, and the tube end 12d is pushed and expanded from the inside to form the rubber ring receiving port 14. Then, the supply of the pressure hot air from each nozzle 42 is stopped, and the supply of the pressure cold air from the supply port 44 a of the cover 44 is stopped to cool the rubber ring receiving port 14. Then, as shown in FIG. 7, the second outer mold 56 is in a diameter-expanded state and is separated from the tip peripheral edges 18a and 16a of the tube end 12d, and the second and third expansion / contraction molds 58 and 60 are in a diameter-reduced state. To do. Then, as shown in FIG. 8, the nozzle 42, the second outer mold 56, and the second and third expansion / contraction molds 58 and 60 are removed from the rubber ring receiving port 14. Also, the cover 44 is removed from the opening 12a.
[0028]
Next, as shown in FIG. 8, the cutter 62 is used to cut and remove the tip peripheral edges 18a and 16a of the inner end 18 and the outer layer 16 of the pipe end 12d where the rubber ring receiving port 14 is formed, which are joined to each other. Thus, the rubber ring receiving port 14 shown in FIG. 9 is formed. In the rubber ring receiving port 14 shown in FIG. 9 in which the tip peripheral edges 18a and 16a are cut in this way, the inner peripheral surface 14a of the insertion port has a cylindrical shape. And the front-end | tip periphery 16a of the outer layer 16 of the rubber ring receiving opening 14 and the front-end | tip periphery 18a of the inner layer 18 will be in the state which mutually contact | adhered and couple | bonded over the perimeter. In other words, the hollow portions 28a of the ribs 28 and the openings 28b and 40a on the rubber ring receiving port 14 side of the spaces 40 are watertightly sealed. In this way, the processing of the rubber ring receiving port 14 of the inner and outer surface smooth wave-equipped tube 10 is completed. Thereafter, as shown in FIG. 9, the rubber ring 24 is attached to the rubber ring receiving portion 22 and the pressing member 26 is fused. Thus, the inner and outer surface smooth wave-equipped tube 10 to which the rubber ring 24 is attached is completed.
[0029]
Next, the second inner mold 54 and the second outer mold 56 shown in FIG. 5 will be described. The third expansion / contraction mold 60 constituting the second inner mold 54 includes, for example, eight mold members as shown in the front views of FIGS. 5 and 6A and the cross-sectional view of FIG. 60a, and can be expanded and contracted into a reduced diameter state shown in FIG. 5 and an expanded diameter state shown in FIG. 6 (A). The third expansion / contraction mold 60 has a substantially cylindrical outer shape in a diameter-enlarged state, and an annular protrusion 60b is formed at the substantially center along the outer periphery. The protrusion 60b is for forming the rubber ring receiving portion 22. The outer peripheral surface 60 c of the third expansion / contraction mold 60 other than the protrusions 60 b is for forming an inner peripheral surface other than the rubber ring receiving portion 22 of the rubber ring receiving port 14. The third expansion / contraction mold 60 expands / contracts when the eight mold members 60a are guided in the radial direction and moved outward or inward, and the diameter of the expanded state is about 1.4 of the diameter of the contracted state. Doubled.
[0030]
When the third enlarged / reduced mold 60 in the expanded state shown in FIG. 12 is to be reduced in diameter, first, the four mold members 60a having a shape expanding toward the inside are moved in the direction indicated by the solid arrows. Stop at the inner position. Next, the four mold members 60a that narrow toward the inside may be moved in the direction indicated by the dashed arrows and stopped at the inside position. And when making the 3rd expansion / contraction metal mold | die 60 of a diameter reduction state into a diameter expansion state, the procedure contrary to said procedure should just be performed. That is, first, the four mold members 60a having a shape that narrows inward are moved to the outer position shown in FIG. Next, the four mold members 60a having a shape that spreads inward may be moved to the outer position shown in FIG.
[0031]
The second expansion / contraction mold 58 is equivalent to the first expansion / contraction mold 46, and is composed of, for example, eight mold members 60a, and the reduced diameter state shown in FIG. 5 and FIG. It has a configuration that can be expanded and contracted to the expanded state shown. In the expanded state shown in FIG. 6, the outer peripheral surface has a cylindrical shape, and the outer diameter corresponds to the inner diameter of the inner layer 18. The first and second expansion / contraction molds 46 and 58 can be expanded / contracted by a mechanism equivalent to that of the third expansion / contraction mold 60, and each of the eight molds is performed in the same procedure as the third expansion / contraction mold 60. The member expands or contracts by moving radially outward or inward.
[0032]
Similarly to the first outer mold 48, the second outer mold 56 includes a plurality of outer molds. As shown in FIG. 6B, the inner surface 56a of each second outer mold 56 has an arc shape. Is formed. Each arc-shaped inner surface 56a of the second outer mold 56 is located between the outer peripheral surface 58a of the second expanded / reduced mold 58 in the expanded state and the inner surface 56a of the second outer mold 56 in the contracted state. The inner layer 18 and the outer layer 16 are formed to have a radius of curvature that is in close contact with the outer peripheral surface of the outer layer 16 in a state in which the annular peripheral edges 18a and 16a of the inner layer 18 and the outer layer 16 are tightly coupled to each other with a predetermined force. Then, in a state where the diameter of the second outer mold 56 is reduced, the inner surfaces 56a of the plurality of second outer molds 56 have a cylindrical shape.
[0033]
However, as shown in FIG. 6B, the inner surface 56a of the second outer mold 56 is formed with a recess 50 having a shape corresponding to the shape of the nozzle 42, as with the inner surface 48a of the first outer mold 48. The plurality of nozzles 42 are not squeezed with the inner peripheral edge 18 and the outer peripheral edge 16 being joined to each other between the second expansion / contraction mold 58 and the second outer mold 56. It is like that. Further, as shown in FIG. 6A, an inclined surface 56b and a cylindrical surface 56c are formed on the side surface of the tip of each second outer mold 56. The inclined surface 56b and the cylindrical surface 56c come into contact with the outer peripheral surface of the pipe end 12d when the third expansion / contraction mold 60 is in a diameter-expanded state as shown in FIG. The shape is formed as an open end of the rubber ring receiving port 14.
[0034]
According to the processing method of the rubber ring receiving port of the inner and outer surface smooth wave tube, as shown in FIG. 6A, the tube end 12d on which the rubber ring receiving port 14 is formed is softened, and the inner layer of the tube end 12d is formed. Pressure hot air is supplied into the hollow portion 28 a of the rib 28 between the outer layer 16 and the space 40 and the space 40, and the diameter of the tube end 12 d is expanded by the third expansion / contraction mold 60 in a pressurized state. Therefore, the rubber ring receiving opening 14 can be formed without the rib 28 (the corrugated layer 20) of the pipe end 12d being crushed by the elastic force of the outer layer 16 when the diameter is expanded. This is because when the third expansion / contraction mold 60 expands in the diameter increasing direction, the corrugated layer 20 at the tube end 12d where the rubber ring receiving port 14 is formed is pressurized and swelled by hot hot air. This is because the outer layer 16 is held from inside by the hot pressure air. As described above, since the ribs 28 are not crushed, the inner peripheral surface 14a of the rubber ring receiving port 14 is not formed with an annular unevenness unlike the conventional rubber ring receiving port 6 shown in FIG. Formed.
[0035]
Since the ribs 28 formed in the rubber ring receiving port 14 are not crushed during diameter expansion, it is possible to prevent a decrease in the rigidity of the rubber ring receiving port 14, particularly the flat rigidity. And since the internal peripheral surface 14a of the inner layer 18 of the rubber ring receptacle 14 can be formed smoothly, the dispersion | variation in the internal diameter of the rubber ring receptacle 14 can be made small. Therefore, as shown in FIG. 10, the separately provided differential port 12 a of the inner and outer surface smooth wave-equipped tube 10 can be securely and reliably joined to the rubber ring receiving port 14 in a predetermined manner. Further, since the inner surface of the rubber ring receiving portion 22 is also smooth, the rubber ring 24 can be accommodated tightly, and the water tightness is reliably maintained by the rubber ring 24.
[0036]
Moreover, according to this pipe body 12, as shown in FIG. 11, since the inner surface 12b is formed smoothly by the belt-like portion 30b of the first belt-like body 30, the flow resistance in the pipe body 12 is small, and therefore the flow down Waste water and garbage will not stay. The corrugated layer 20 is formed by the hollow ribs 28 of the first belt-shaped body 30, and the space 40 is formed between the ribs 28 wound spirally. The tube body 12 is light in weight and has high rigidity, particularly flat rigidity. Further, since the outer surface 12c is formed smoothly by the third belt-like body 36, the flat rigidity of the tube body 12 can be increased by this, and the bending strength of the tube body 12 and the rubber ring receiving port 14 is also increased. be able to.
[0037]
When forming the sewage and drainage pipes using the inner and outer surface smooth wave pipe 10 shown in FIG. 9, as shown in FIG. 10, the gap 12 a of one pipe 10 is connected to the rubber ring of the other pipe 10. What is necessary is just to join the pipe | tube 10 by inserting in the receptacle 14 sequentially. Of course, if necessary for repair or the like, the outlet 12a of one pipe 10 to be joined to each other can be extracted from the rubber ring receiving port 14 of the other pipe 10 and separated from each other.
[0038]
Thus, since this pipe | tube 10 is equipped with the rubber ring receptacle 14, it can join sequentially, without using a separate coupling, and can perform piping work easily. And since both can be joined by inserting the difference port 12a of one pipe | tube 10 in the rubber ring receptacle 14 of the other pipe | tube 10, even if it is a beginner's joining operation | work of the pipe | tube 10 with an inner and outer surface smooth wave It is extremely simple and can be performed in a short time, and the water tightness of the joint can be reliably maintained by the rubber ring 24.
[0039]
Further, since the rib 28 is formed in the rubber ring receiving port 14 and the rigidity, particularly the flat rigidity, of the rubber ring receiving port 14 is enhanced, deformation of the rubber ring receiving portion 22 and the rubber ring 24 is reduced. And water-tightness can be reliably maintained.
[0040]
Further, as shown in FIG. 10, the tip peripheral edge 16 a of the outer layer 16 and the tip peripheral edge 18 a of the inner layer 18 of the rubber ring receiving port 14 are tightly coupled to each other, and the respective rubber in the hollow portion 28 a of the rib 28 and the space 40. The openings 28b and 40a on the wheel receiving port 14 side are watertightly sealed. Therefore, even if waste water flows in from the hollow portions 28a of the ribs 28 and the openings 28c and 40b on the side of the differential port 12a of the space 10 in a state where the tubes 10 are joined to each other, Does not flow through the hollow portion 28a of the rib 28 and the space 40 into the ground. And groundwater does not flow into the pipe 10.
[0041]
In the case of nominal 600, the dimensions of the rubber ring receptacle 14 of the inner and outer surface smooth wave tube 10 are as follows. The outer diameter is about 815 mm, the outer diameter of the tube body 12 is about 700 mm, the inner diameter is about 600 mm, The thickness of the tube wall is about 50 mm, and the pitch of the ribs 28 of the corrugated layer 20 is about 73 mm.
[0042]
Next, referring to FIG. 13 and FIG. 14 and the like, a method for processing the diameter-enlarged receiving port of the inner and outer surface smooth wave-added tube of the second embodiment of the present invention, and an inner and outer surface smooth wave-added tube formed by the processing method (Hereafter, it may only be called "pipe".) 64 is demonstrated. The difference between the pipes 10 and 64 formed by the respective processing methods of the first embodiment and the second embodiment is that in the pipe 10 of the first embodiment, as shown in FIG. A rubber ring receiving portion 22 is formed on the rubber ring receiving portion 22, and a rubber ring 24 and a pressing member 26 are provided on the rubber ring receiving portion 22. On the other hand, in the pipe 64 of the second embodiment, as shown in FIG. Further, the rubber ring receiving portion 22 is not formed in the receiving port 66, and the rubber ring 68 is attached to the tip edge (opening edge) of the receiving port 66.
[0043]
As shown in FIG. 13, the inner and outer surface smooth wave-added tube 64 formed by the processing method of the second embodiment has a receiving port 66 formed in a cylindrical shape, and forms an insertion port for the receiving port 66. A rubber ring 68 is attached to the tip edge. The rubber ring 68 is formed with a flange portion 68a extending outward on one side edge, and three annular lips 68b are formed on the inner peripheral surface. When the rubber ring 68 is attached to the front end edge of the receiving port 66, the outer peripheral surface thereof is in close contact with the inner peripheral surface 66 a of the receiving port 66, and the flange portion 68 a is engaged with the front end edge of the receiving port 66. is doing.
[0044]
When forming the sewage and drainage pipes using the inner and outer surface smooth wave pipes 64 shown in FIG. 13, as shown in FIG. 14 as in the first embodiment, the outlet 12 a of one pipe 64. May be inserted into the receiving port 66 of the other pipe 64 and the pipe 64 may be joined sequentially. However, the diameter of the inner peripheral surface 66a of the receiving port 66 is set so that the rubber ring 68 can be interposed between the inner peripheral surface 66a of the receiving port 66 and the outer peripheral surface of the connecting port 12a. It is slightly larger than the diameter. Other than this, it is the same as the tube 10 of the first embodiment, and the equivalent parts are denoted by the same reference numerals, and detailed description thereof is omitted.
[0045]
Further, the difference between the processing method of the first embodiment and the processing method of the second embodiment is that, in the processing method of the first embodiment, as shown in FIG. The rubber ring receiving port 14 is formed by using the expansion / contraction mold 60 of the second embodiment, whereas in the processing method of the second embodiment, the protrusion 60b is formed in the third expansion / contraction mold 60, although not shown in the drawing. When the removed fourth expansion / contraction mold is used to form the receiving port 66 shown in FIG. 13 and in the processing method of the first embodiment, as shown in FIG. In the processing method of the second embodiment, the rubber ring 68 is attached to the front end edge of the receiving port 66 as shown in FIG. Other than this, the processing method is the same as that of the first embodiment, and detailed description thereof will be omitted.
[0046]
The fourth expansion / contraction mold of the second embodiment is obtained by removing the protrusion 60b from the third expansion / contraction mold 60 of the first embodiment, and the first embodiment shown in FIG. 6 and FIG. As in the third expansion / contraction mold 60, it is composed of eight mold members. And this 4th expansion / contraction mold | die is the structure which can be expanded / contracted in a diameter-reduced state and a diameter-expanded state similarly to the 3rd expansion / contraction mold 60, and an external shape is a cylindrical shape in a diameter-expanded state. By increasing the diameter, the receiving port 66 can be formed by the outer peripheral surface thereof. Then, when the processing of the receiving port 66 of the inner and outer surface smooth wave-equipped tube 64 is completed, a rubber ring 68 is attached to the tip edge of the receiving port 66 as shown in FIG. This completes the inner and outer surface smooth wave-equipped tube 64 to which the rubber ring 68 is attached.
[0047]
According to the processing method of the inner and outer surface smooth waved tube receiving port, the rib (wave corrugated layer 20) 28 of the tube end 12d is crushed by the elastic force of the outer layer 16 during the diameter expansion, as in the first embodiment. In addition, the inner peripheral surface 66a of the receiving port 66 can be formed smoothly. Accordingly, it is possible to prevent the rigidity of the receiving port 66, particularly the flat rigidity, from being lowered. Then, as shown in FIG. 14, the separately prepared differential port 12 a of the inner and outer surface smooth wave-equipped tube 64 can be securely and reliably joined to the receiving port 66 as determined in advance. And since the inner peripheral surface 66a of the front-end edge (opening edge) of the receiving port 66 is also smooth, the rubber ring 68 can be mounted | worn tightly and the watertightness is reliably hold | maintained by the rubber ring 68.
[0048]
As in the pipe 10 of the first embodiment, as shown in FIG. 14, the leading edge 16 a of the outer layer 16 and the leading edge 18 a of the inner layer 18 are tightly coupled to each other, and the ribs 28 are hollow. The openings 28b and 40a on the receiving port 66 side of the part 28a and the space 40 are watertightly sealed. Therefore, even if waste water flows in from the hollow portions 28a of the ribs 28 and the openings 28c and 40b on the side of the differential port 12a of the space 10 in a state where the tubes 10 are joined to each other, Does not flow into the ground through the hollow portion 28a of the rib 28 and the space 40, and groundwater does not flow into the pipe 10.
[0049]
However, in the processing methods of the first and second embodiments, as shown in FIG. 1, the inner and outer surface smooth wave-equipped pipes 38 are processed to have the receiving ports 14 and 66 as shown in FIG. Although the outer surface smooth wave-added tubes 10 and 64 are formed, a manhole joint including the receiving ports 14 and 66 can be formed by processing a relatively short inner and outer surface smooth wave-attached tube instead. When this manhole joint is attached to the wall portion of the manhole, the end portion of the pipe body may be inserted and fixed into an attachment hole formed in the wall portion.
[0050]
In the first and second embodiments, the first to third expansion / contraction molds 46, 58, and 60 shown in FIGS. 3 and 5 are used. However, other expansion / contraction molds may be used. . In short, it can be inserted into, for example, the tube end 12d of the inner and outer surface smooth wave-equipped tube 38 shown in FIG. 5 in a reduced diameter state, and by expanding the diameter, the tube end 12d is expanded and the rubber ring socket 14 or Any material can be used as long as it can form the receiving port 66 and can sandwich and hold the distal edges 18a and 16a of the tube end 12d.
[0051]
Further, in the first and second embodiments, as shown in FIG. 2, the tips of the respective nozzles 42 are inserted into the hollow portions 28a of the ribs 28 and the openings 28b and 40a of the spaces 40, respectively. Although hot air was discharged from the tip of 42 and tube end 12d was heated with the hot air, tube end 12d may be heated by other methods. For example, a disc-like body (not shown) or an annular plate-like body (not shown) is pushed onto the tube end surface where the hollow portion 28a of the rib 28 and the annular openings 28b and 40a of the space 40 are formed. The hot air may be supplied into the hollow portion 28a and the space 40 through the through hole formed in the disk-like body or the annular plate-like body, and the tube end 12d may be heated by the hot air.
[0052]
Further, in the first and second embodiments, as shown in FIG. 3, hot air is discharged from the nozzle 42 when crushing part of the peripheral edges 16a and 18a of the left pipe end 12d in which the nozzle 42 is inserted. No cold air is supplied from the opening 28c and 40b of the hollow portion 28a of the right side difference port 12a and the space 40, respectively, but in the same manner as described with reference to FIG. Hot air and cold air may be supplied from the openings (28b, 40a) and (28c, 40b). 2 is attached to each of the openings 28c and 40b of the differential port 12a, and cold air may be supplied from a supply port 44a provided in the cover 44.
[0053]
In the first and second embodiments, as shown in FIG. 2, the tube end 12d is heated by hot air discharged from the nozzle 42. Instead, the tube end 12d is heated by a heating element such as an electric heater ( (Not shown) may be used for heating. In this case, the heating element is arranged outside and inside (in the opening) of the tube end 12d to heat the tube end 12d. However, the rib 28 forming the corrugated layer 20 inside has a predetermined temperature (softening). It is necessary to prevent the inner layer 18 and the outer layer 16 at the tube end 12d facing the heating element from being heated to a temperature higher than the melting point T2 before being heated to a temperature equal to or higher than the point T1 and lower than the melting point T2. Therefore, the tube end 12d is heated by a heating element and supplied by blowing cold air to the outer surface of the inner layer 18 and the outer layer 16 (the outer surface 12c and the inner surface 12b of the tube end 12d) of the tube end 12d. The temperature of the outer layer 16 is not heated to a temperature higher than the melting point T2. By doing in this way, the outer layer 16, the inner layer 18, and the rib 28 of the pipe end 12d can be heated to a temperature not lower than the softening point T1 and lower than the melting point T2.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a tube with inner and outer surface smooth waves used in a method of processing a diameter-enlarged receiving port of a tube with inner and outer surface smooth waves according to a first embodiment of the present invention.
2 is a cross-sectional view of a tube with inner and outer surface smooth waves showing a state in which the tube ends of the tube with inner and outer surface smooth waves of FIG. 1 showing the processing method of the first embodiment are heated. FIG.
3A is a cross-sectional view of a tube with inner and outer surface smooth waves showing a state in which the peripheral edge of the tube end of the tube with inner and outer surface smooth wave of FIG. 2 showing the processing method of the first embodiment is crushed and sealed; FIG. FIG. 4B is a cross-sectional view showing a state in which the peripheral edge of the sealed tube end in FIG. 3A is cut in a direction perpendicular to the tube axis.
4 is a cross-sectional view of the inner and outer surface smoothed wave tube showing a state in which the tube end of the inner and outer surface smoothed wave tube shown in FIG. 3A showing the processing method of the first embodiment is heated and the inner layer is pressurized. FIG. is there.
5 is a cross-sectional view of the tube with inner and outer surface smooth waves showing a state in which a second inner mold is inserted into the tube end of the tube with inner and outer surface smooth wave of FIG. 4 showing the processing method of the first embodiment.
6A is a cross-sectional view showing a state in which the diameter of the second inner mold inserted into the tube end of the inner and outer surface smooth wave-attached tube of FIG. 5 showing the processing method of the first embodiment is enlarged; FIG. 6B is a cross-sectional view showing a state in which the end edge of the sealed tube end in FIG. 6A is cut in a direction perpendicular to the tube axis.
7 is a cross-sectional view showing a state in which the diameter of the second inner mold inserted into the tube end of the inner and outer surface smooth wave-attached tube of FIG. 6 (A) showing the processing method of the first embodiment is reduced.
8 is a cross-sectional view of the inner and outer surface smoothed wave tube showing a state in which a second inner mold is taken out from the tube end of the inner and outer surface smooth wave tube shown in FIG. 7 showing the processing method of the first embodiment.
FIG. 9 shows the processing method of the first embodiment, and cuts the peripheral edge of the tube end of the tube with smooth waves on the inner and outer surfaces in FIG. 8 and attaches a rubber ring and a pressing member to a rubber ring receiving portion formed at the tube end. It is sectional drawing of the tube with an inner and outer surface smooth wave which shows the state.
10 is a cross-sectional view showing a state in which a front end of a smooth wave-attached tube is joined to a rubber ring receiving port formed by the processing method of the first embodiment of FIG. 9;
11 is a partially enlarged cross-sectional view of an inner / outer surface smooth wave-attached tube used in the processing method of the first embodiment shown in FIG. 1; FIG.
12 is a side view showing a reduced diameter state of a third expansion / contraction mold used in the first embodiment shown in FIG. 5. FIG.
FIG. 13 is a cross-sectional view of a tube with inner and outer surface smooth waves showing a state in which a rubber ring is attached to the opening edge of the receiving port formed by the processing method of the second embodiment of the present invention.
14 is a cross-sectional view showing a state in which a front end of a smooth wave-attached tube is joined to a receiving port formed by the processing method of the second embodiment of FIG.
15A is a partial cross-sectional view showing an inner / outer surface smoothed wave tube used in a conventional method for processing a diameter-enlarged receiving port of an inner / outer surface smoothed wave tube, and FIG. It is a fragmentary sectional view which shows the state which inserted the expansion / contraction metal mold | die at the pipe end of a pipe with an outer surface smooth wave.
16A is a partial cross-sectional view of an inner / outer surface smooth wave tube showing a state in which the diameter of the expansion / contraction mold of FIG. 15B showing a conventional processing method is enlarged, and FIG. 2) is a partial cross-sectional view of the inner and outer surface smooth wave-attached tube showing a state in which the diameter of the expansion / contraction mold in the expanded state is reduced.
FIG. 17 is a partial cross-sectional view showing an inner / outer surface smooth wave-attached tube formed by a conventional processing method and another inner / outer surface smooth wave-attached tube joined to a rubber ring receiving port thereof.
[Explanation of symbols]
10, 64 ... Tube with inner and outer surface smooth waves
12 ... Pipe body
12a ... opening
12b ... the inner surface of the pipe body
12c ... the outer surface of the pipe body
12d ... pipe end
14 ... Rubber ring socket
14a ... The inner peripheral surface of the rubber ring socket
16 ... outer layer
16a ... peripheral edge of outer layer
18 ... Inner layer
18a ... The peripheral edge of the inner layer
20 ... Hake layer
22 ... Rubber ring receiving part
24, 68 ... rubber ring
28… Ribs
28a ... hollow portion of rib
28b, 28c ... opening
38 ... Tubes with smooth waves inside and outside
40 ... Space
40a, 40b ... opening
42 ... Nozzle
46. First expansion / contraction mold
48 ... first outer mold
54 ... Second inner mold
56 ... Second outer mold
58 ... Second expansion / contraction mold
60 ... Third expansion / contraction mold
66 ... Receptacle

Claims (5)

内層と外層との間に波付層を形成した内外面平滑波付管の管端に拡径受口を形成する加工方法であって、
(a) 前記波付層が螺旋状のリブよって形成された内外面平滑波付管を準備し、
(b) 前記管端を加熱して軟化させ、そして
(c) 前記管端の前記内層と前記外層との間の空間を加圧した状態で前記管端を拡径させる、内外面平滑波付管の拡径受口の加工方法。
A processing method for forming an enlarged diameter receiving port at a pipe end of an inner / outer surface smooth wave tube with a corrugated layer formed between an inner layer and an outer layer,
(a) preparing the inner and outer surface smooth corrugated tube in which the corrugated layer is formed by spiral ribs;
(b) heating and softening the tube end; and
(c) A method for processing a diameter-enlargement receiving port of a tube with inner and outer surface smooth waves, wherein the diameter of the tube end is expanded in a state where a space between the inner layer and the outer layer at the tube end is pressurized.
前記ステップ(b) では、前記内層と前記外層との間に熱風を供給して前記管端を軟化させる、請求項1記載の内外面平滑波付管の拡径受口の加工方法。The method for processing an enlarged diameter receiving port of a tube with inner and outer surface smooth waves according to claim 1, wherein in the step (b), hot air is supplied between the inner layer and the outer layer to soften the tube end. 前記ステップ(b) では、前記管端を内側と外側とから発熱体によって加熱するとともに、前記管端の内面と外面とに冷風を供給して前記管端を軟化させる、請求項1記載の内外面平滑波付管の拡径受口の加工方法。2. The inner side according to claim 1, wherein in the step (b), the pipe end is heated by a heating element from the inside and the outside, and cold air is supplied to the inner and outer surfaces of the pipe end to soften the pipe end. A processing method for expanding the diameter of an outer smooth wave tube. さらに、(d) 拡径させた前記管端の前記内層および前記外層のそれぞれの先端周縁を互いに密着結合させる、請求項1ないし3のいずれかに記載の内外面平滑波付管の拡径受口の加工方法。4. The diameter-enlarged receiving of the inner / outer surface smooth wave-carrying tube according to any one of claims 1 to 3, wherein (d) the peripheral edges of the inner layer and the outer layer of the tube end having the expanded diameter are tightly coupled to each other. Mouth processing method. 前記ステップ(c) では、ゴム輪受容部を同時に形成する、請求項1ないし4のいずれかに記載の内外面平滑波付管の拡径受口の加工方法。5. The method for processing a diameter-enlarged receiving port of an inner / outer surface smooth wave-attached tube according to claim 1, wherein in step (c), a rubber ring receiving portion is formed simultaneously.
JP2001393874A 2001-12-26 2001-12-26 Machining method of diameter expansion receptacle for inner and outer surface smooth waved tube Expired - Lifetime JP3771491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393874A JP3771491B2 (en) 2001-12-26 2001-12-26 Machining method of diameter expansion receptacle for inner and outer surface smooth waved tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393874A JP3771491B2 (en) 2001-12-26 2001-12-26 Machining method of diameter expansion receptacle for inner and outer surface smooth waved tube

Publications (2)

Publication Number Publication Date
JP2003191326A JP2003191326A (en) 2003-07-08
JP3771491B2 true JP3771491B2 (en) 2006-04-26

Family

ID=27600754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393874A Expired - Lifetime JP3771491B2 (en) 2001-12-26 2001-12-26 Machining method of diameter expansion receptacle for inner and outer surface smooth waved tube

Country Status (1)

Country Link
JP (1) JP3771491B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101229119B1 (en) 2011-10-20 2013-02-01 최진선 Vacuum molding system and molding method of plastics

Also Published As

Publication number Publication date
JP2003191326A (en) 2003-07-08

Similar Documents

Publication Publication Date Title
US5053097A (en) Method of joining tubes having a corrugated wall of plastic material
US8820801B2 (en) Multi-wall corrugated pipe couplings and methods
JPS59199907A (en) Partial drain pipe equipped with insert sleeve
KR930009045B1 (en) Lined fume pipe manufacturing method
JPH11190486A (en) Resin corrugated pipe elbow and manufacture therefor
JP3771491B2 (en) Machining method of diameter expansion receptacle for inner and outer surface smooth waved tube
JP3771490B2 (en) Machining method of diameter expansion receptacle for inner and outer surface smooth waved tube
CA2765493C (en) Plastic pipe with bell
CN110005882A (en) A kind of hollow double spiral wound plastic hose and its production process
KR100763040B1 (en) Cases with provision for closing openings in the case
JP2003035386A (en) Manufacturing method of vertical pipe culvert and the vertical pipe culvert
US20050052024A1 (en) Coupling means for multi-wall pipes or tubes
JP4495268B2 (en) Lining pipe connecting method and lining pipe connecting member
JP4488501B2 (en) Insulating duct and inner surface layer exchange method thereof
JP2542232B2 (en) Pipe joint and method of manufacturing pipe joint
JP2001208262A (en) Structure and method for connecting corrugated tube
JP4842053B2 (en) Manufacturing method of pipe lining material
JPH03144186A (en) Corrugated pipe having joint and manufacture thereof
JP3749603B2 (en) Strip for existing pipe lining
JP2002295777A (en) Composite tube having socket
KR100596020B1 (en) Socket integrated double wall pipe and manufacturing method
JP2000018472A (en) Connecting member of thermoplastic pipe and manufacture thereof
JPH041027A (en) Method for lining existing pipe
JPS5828333A (en) Fusion-bonding method for thermoplastic resin hollow unit
JP2001248757A (en) Method for repairing pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060209

R150 Certificate of patent or registration of utility model

Ref document number: 3771491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term