Nothing Special   »   [go: up one dir, main page]

JP3770622B2 - Mass production method for Panax medicinal carrot seedlings - Google Patents

Mass production method for Panax medicinal carrot seedlings Download PDF

Info

Publication number
JP3770622B2
JP3770622B2 JP35383591A JP35383591A JP3770622B2 JP 3770622 B2 JP3770622 B2 JP 3770622B2 JP 35383591 A JP35383591 A JP 35383591A JP 35383591 A JP35383591 A JP 35383591A JP 3770622 B2 JP3770622 B2 JP 3770622B2
Authority
JP
Japan
Prior art keywords
carrot
seedlings
panax
somatic embryos
somatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35383591A
Other languages
Japanese (ja)
Other versions
JPH05168359A (en
Inventor
力 古谷
勲 浅香
一夫 伊井
Original Assignee
旭テクノグラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭テクノグラス株式会社 filed Critical 旭テクノグラス株式会社
Priority to JP35383591A priority Critical patent/JP3770622B2/en
Publication of JPH05168359A publication Critical patent/JPH05168359A/en
Application granted granted Critical
Publication of JP3770622B2 publication Critical patent/JP3770622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Description

【0001】
【産業上の利用分野】
本発明は組織培養によって、薬用ニンジンの苗を大量に得るための方法に関するものである。
【0002】
【従来の技術】
オタネニンジン(Panax ginseng C. A. Meyer )、トチバニンジン(Panax japonicum C. A. Meyer )、アメリカニンジン(Panax quinquefolium L.)、三七ニンジン(Panax notoginseng F. H. Chen)を含むパナックス属薬用ニンジンは、重要な薬用植物として栽培され、通常は種子により繁殖されている。特にオタネニンジンは古くから漢方薬、民間薬として広く用いられてきた生薬の一種で、最近では健康食品にも利用されるようになり、需要はますます伸びている。
【0003】
しかし、生薬原料として用いられる薬用ニンジンは、通常収穫までに4年〜7年を要し、天候によっても生育が左右されやすく、また病害(ネグサレ病、タチガレ病、ハンテン病など)や害虫(ウドコブゾウムシ、ズイムシなど)による被害も多いため栽培には多大な労力を要している。従って、優良な品種の安定な保存と供給が望まれていたが、これらパナックス属植物は自殖性であり種子の採取までに3年を要するため、優良品種の苗を大量に得ることは困難なものとされていた。
【0004】
そこで上記の問題を解決するために、オタネニンジンの根、茎、葉などの組織からオーキシン類及びサイトカイニン類を含有するカルス誘導培地を用いてカルスを誘導し、該カルスを増殖し、次いで該カルスを光照射下で再分化させる方法(特開昭61−216619号公報)が提案されたが、地上部を誘導した後に根を誘導する過程が必要であるため手間がかかり、また発根の効率や幼苗の圃場での活着にも問題がある。さらに、再分化して得られる幼苗の数がカルスの量に依存し、またカルスは継代を繰り返すとかなりの割合で変異するので、1個体の植物から得られる正常なクローン苗の量に限界があるという欠点がある。
【0005】
一方、これまでに食用ニンジンなど多くの植物において、種子と同様の形態変化の過程をとって成長する不定胚を誘導して幼苗を得る技術が多数報告されているが、薬用ニンジンにおいては既に根や子葉などからカルスを誘導し、さらに不定胚を誘導してこれを再分化させ幼苗を得る方法(W.C.Chang, Y. I. Hsing; THEORETICAL AND APPLIED GENETICS, 57, 133,(1980)、特開昭62−151117号公報、特開昭63−248321号公報)が提案されている。
【0006】
しかしこの方法では不定胚の誘導効率に問題があり、また培養開始から幼苗を得るまでに長期間を要するという欠点がある。さらに前述のカルスから光照射で再分化させる方法と同様カルスを経由するために、継代培養を繰り返すうちに不定胚形成能や再分化能が失われ、加えて変異も多発するために1個体から得られる正常なクローン苗の量に限界があるという欠点がある。そこでこれらの問題点を解決するために、花芽を材料に不定胚を誘導する方法(特公平2−51573号公報)、及び不定胚からシュートを誘導し、これをマルチプルシュート化して増殖させる方法(特公平3−44725号公報)などが提案されている。
【0007】
ところで、通常不定胚は雑多な組織中において徐々に分化してくるため、他の組織から成熟不定胚だけを分離しなければ効率よく苗を生産することはできない。したがって、不定胚からの苗の大量生産を行うためには、1培養周期内でできるかぎり大量に、かつ同調的に成熟胚を得ることが必要である。既に食用ニンジンにおいては細胞塊の大きさをメッシュによって揃える方法(鎌田 博,原田 宏,「植物細胞組織培養」,理工学社,p.94,(1979))や、細胞塊の培地中の密度を調整する方法(第12回植物組織培養学会 講演要旨集,p53,(1991))などが同調的に不定胚を誘導する方法として提案されているが、薬用ニンジンに関してはそのような同調化の方法はまだ確立されていない。
【0008】
また食用ニンジンなどでは、芽生えの茎頂を高濃度のサッカロースやマンニトールを含む培地で一時的に高浸透圧処理することにより、不定胚が誘導できるとの報告があるが(KAMADA H., KOBAYASHI K., KIYOSUE T., AND HARADA H., In Vitro Cell. Dev. Biol.,25,1163,(1989))、薬用ニンジンにおいてはそのような方法、および条件は未だに確立されていない。
【0009】
【発明が解決しようとする課題】
本発明の目的は、前述の問題点を解決しようとするものであり、同一の形質を持つ薬用ニンジンの苗を短期間に大量に提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、前述の課題を解決すべくなされたものであり、オタネニンジン、トチバニンジン、アメリカニンジン、三七ニンジンを含めたパナックス属の薬用ニンジンの組織を水1リットルに炭素源40〜200gの割合で溶解したムラシゲ・スクーグ培地で培養することにより不定胚を増殖させ、増殖した不定胚を発芽させて苗を得ることを特徴とするパナックス属薬用ニンジン苗の大量生産方法を提供する。
【0011】
本発明でいうパナックス属の薬用ニンジンとは、種子植物門、セリ目、ウコギ科、パナックス属に属する植物のうち薬用に供されるニンジンをいい、具体的にはオタネニンジン(Panax ginseng C. A. Meyer )、トチバニンジン(Panax japonicum C. A. Meyer )、アメリカニンジン(Panax quinquefolium L.) 、三七ニンジン(Panax notoginseng F. H. Chen)などがある。
【0012】
本発明でいう不定胚とは、受精卵と同様な形態変化の過程をとって植物の体細胞から生ずる一種の胚で、胚様体(embryoid)ともいい、完全な植物体にまで発育しうる能力を有するものである(岩波書店刊「生物学辞典」第3版、1123(1983年)参照)。
【0013】
本発明でいう炭素源とは、植物細胞に吸収利用される炭素化合物をいい、培養細胞においては通常糖類が用いられる。
【0014】
本発明においては、不定胚は水1リットルに炭素源40〜200gの割合で溶解した培地で培養され増殖される。炭素源40g未満、200gを超える培地では不定胚の増殖の効率が低下する。不定胚の増殖の効率と、不定胚形成組織の生育の面から水1リットルに炭素源50〜150gの割合で溶解した培地がより好ましい。
【0015】
本発明で用いる炭素源の種類は、糖類が好ましく、栄養源として利用されやすい単糖類および/または2糖類が好ましい。単糖類としては、グルコース、ガラクトース、マンノース、キシロース、アラビノースが例示され、2糖類としては、サッカロース、ラクトースが例示される。なお、マンニトールは栄養源として利用されにくいためこれを用いることは好ましくない。
【0016】
本発明で用いる培地の支持材は、実施例3から明らかなようにゲランガムや寒天のようなゲル性の支持材と、セラミックファイバー、ロックウールなどの無機性ファイバーのいずれを使用しても有効である。
【0017】
本発明で増殖された不定胚は、水1リットルに炭素源5〜30gの割合で溶解した培地で培養し発芽させることが、発芽効率に優れるので好ましい。かかる培地で増殖した不定胚を6週間程度培養を続けることで地上部約3cm、地下部約3cmの幼苗を得ることができる。
【0018】
【作用】
本発明での不定胚増殖に対する詳細な作用は明らかではないが、組織の観察によれば従来用いていた炭素源濃度で培養した場合はマルチプルシュートが多量に形成され、また非常に低い頻度で不定胚が形成されても順次マルチプルシュート化するのに対して、本発明によれば、マルチプルシュートの形成がほとんどみられない。このことから推測すると、本発明の条件では従来の条件よりも不定胚形成の頻度が向上するばかりでなく、成熟胚の以後のステージへ分化が進行しにくいため、順次分化してくる不定胚が蓄積され結果的に大量の成熟胚が得られるものと考えられる。また、この効果は、サッカロースが低濃度域でほとんど不定胚増殖効果が認められないことと、マンニトールを用いた場合ではほとんど不定胚増殖効果が認められないことなどから、前述の高浸透圧による効果とは別の原理によるものと考えられる。
【0019】
【実施例】
実施例1
1リットルにサッカロースを30gの割合で溶解し、これにカイネチンを1ppm添加したムラシゲ・スクーグ培地(以下K1培地と略す)を準備した。K1培地を用いオタネニンジンの5年根を20℃、5,000 ルクス、14時間の光照射下で培養し、マルチプルシュートを誘導した。次いでセラミックファイバーを支持材とし、植物ホルモンを添加しないサッカロース濃度の異なるムラシゲ・スクーグ培地を準備した。この培地に上記マルチプルシュートを置床し、移植重量を測定後20℃、5,000 ルクス、14時間の光照射下で6週間培養を続けた。培養終了後不定胚数を計数し、移植重量1gあたりの不定胚形成数を算出した。この時の結果を表1に示した。表1から明らかなように本発明によるものは不定胚の形成数が極めて多い。
【0020】
【表1】

Figure 0003770622
【0021】
実施例2
実施例1と同様のマルチプルシュートを、炭素源の種類および濃度を変えたほかは実施例1と同様にした培地に置床し、実施例1と同様の条件で5週間培養を続けた。培養終了後不定胚数を計数し、移植重量1gあたりの不定胚形成数を算出した。この時の結果を表2に示した。表2から、サッカロースと同様炭素源として利用されやすいグルコースでも高濃度にすると不定胚増量の効果がみられるが、炭素源として利用されにくいマンニトールでは、その効果がほとんどみられないことがわかった。
【0022】
表2
Figure 0003770622
【0023】
実施例3
実施例1と同様のマルチプルシュートを、培地支持材をゲランガムに代えサッカロースの濃度を変えたほかは実施例1と同様にした培地に置床し、実施例1と同様の条件で5週間培養を続けた。培養終了後各サッカロース濃度について不定胚数を計数し、移植重量1gあたりの不定胚形成数を算出した。このときの結果を表3に示した。表3から、支持材をゲル状のものに変更しても、炭素源を高濃度にすることにより不定胚増量の効果がみられることがわかった。
【0024】
【表3】
Figure 0003770622
【0025】
実施例4
実施例1と同様のマルチプルシュートを、サッカロースの濃度を変えほかは実施例1と同様にした培地に置床し、実施例1と同様の条件で6週間培養を続けて不定胚を得た。次いで、サッカロースの濃度を変えた培地に移植後、さらに6週間培養を続けた。培養終了後各サッカロース濃度で発芽した胚の数を計数し表4に示した。なお、表4から明らかなように、不含有の培地を除き不定胚の発芽が認められた。但し、観察の結果では、サッカロースの重量30gの培地のものはマルチプルシュート化する苗が多く好ましくない。
なお、同表におけるA,Bは、水1リットルに対し、それぞれサッカロース60g、100gの割合で溶解した培地で増殖した不定胚を用いた場合の発芽数である。
【0026】
表4
Figure 0003770622
【0027】
【発明の効果】
本発明はパナックス属薬用ニンジンの不定胚を大量増殖させることにより、効率よく苗を大量生産できるという優れた効果を有する他、材料としてマルチプルシュートを用いることにより、優良形質を遺伝的に安定に維持することができ、長期に渡って優良苗を供給できるという効果も認められる。[0001]
[Industrial application fields]
The present invention relates to a method for obtaining a large amount of medicinal carrot seedlings by tissue culture.
[0002]
[Prior art]
Panax ginseng CA Meyer, Panax japonicum CA Meyer, American carrot (Panax quinquefolium L.), Panax notoginseng FH Chen, Panax notoginseng FH Chen, are grown as an important medicinal plant, Usually propagated by seeds. Panax ginseng is a kind of herbal medicine that has been widely used as a traditional Chinese medicine and folk medicine for a long time, and recently it has been used for health foods, and the demand is increasing.
[0003]
However, medicinal carrots, which are used as raw materials for herbal medicines, usually take 4 to 7 years to harvest, are prone to growth depending on the weather, and are also useful for diseases (eg Nesare disease, Tachigare disease, Hanten disease) Because of the great damage caused by weevil, weevil, etc., cultivation requires a lot of labor. Therefore, stable storage and supply of excellent varieties have been desired. However, since these Panax species are self-fertilizing and it takes three years to collect seeds, it is difficult to obtain a large number of seedlings of excellent varieties. It was supposed to be.
[0004]
Therefore, in order to solve the above problem, callus is induced from tissue such as ginseng root, stem, leaf, etc. using a callus induction medium containing auxins and cytokinins, the callus is proliferated, and then the callus is A method of redifferentiation under light irradiation (Japanese Patent Laid-Open No. Sho 61-216619) has been proposed, but it takes time and effort to guide the roots after guiding the ground part, and the efficiency of rooting There is also a problem with the establishment of seedlings in the field. Furthermore, the number of seedlings obtained by redifferentiation depends on the amount of callus, and since callus mutates at a significant rate when repeated, the amount of normal clonal seedlings obtained from a single plant is limited. There is a drawback that there is.
[0005]
On the other hand, in many plants such as edible carrots, many techniques for inducing seedlings by inducing somatic embryos that grow by taking the same morphological change process as seeds have been reported. A method of inducing callus from a cotyledon or the like, further inducing an somatic embryo and redifferentiating it to obtain a seedling (WCChang, YI Hsing; THEORETICAL AND APPLIED GENETICS, 57, 133, (1980), Japanese Patent Laid-Open No. Sho 62-151117 And Japanese Patent Laid-Open No. 63-248321 have been proposed.
[0006]
However, this method has a problem in the induction efficiency of somatic embryos, and has a drawback that it takes a long time from the start of culture to obtaining young seedlings. Furthermore, since the above callus is re-differentiated by light irradiation through the callus, the ability to form somatic embryos and the ability to redifferentiate is lost during repeated subcultures, and in addition, one individual has many mutations. There is a drawback that the amount of normal clonal seedlings obtained from is limited. Therefore, in order to solve these problems, a method for inducing somatic embryos using flower buds as a material (Japanese Patent Publication No. 2-51573), and a method for inducing shoots from somatic embryos, and making them multiple shoots to proliferate ( Japanese Patent Publication No. 3-44725) has been proposed.
[0007]
By the way, since somatic embryos usually differentiate gradually in various tissues, seedlings cannot be produced efficiently unless only mature somatic embryos are separated from other tissues. Therefore, in order to mass-produce seedlings from somatic embryos, it is necessary to obtain mature embryos as much as possible and synchronously within one culture cycle. Already in edible carrots, the method of aligning the size of the cell mass with a mesh (Hiro Kamada, Hiroshi Harada, “Plant Cell Tissue Culture”, Science and Engineering, p. 94, (1979)) and the density of the cell mass in the medium Have been proposed as a method for synchronously inducing somatic embryos, but for medicinal carrots, such synchronization has been proposed (see the 12th Annual Meeting of the Plant Tissue Culture Society, p . 53, (1991)) . The method of conversion has not been established yet.
[0008]
In edible carrots, it has been reported that somatic embryos can be induced by temporarily osmotically treating the shoot apex with a medium containing high concentrations of saccharose or mannitol (KAMADA H., KOBAYASHI K , KIYOSUE T., AND HARADA H., In Vitro Cell. Dev. Biol., 25, 1163, (1989)), such methods and conditions have not yet been established for medicinal carrots.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems, and an object thereof is to provide a large amount of medicinal carrot seedlings having the same character in a short time.
[0010]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems. Panax medicinal carrot tissues including ginseng, tochiban carrot, american carrot, and carrot carrot are mixed with a carbon source in a ratio of 40 to 200 g in 1 liter of water. Provided is a method for mass-producing Panax medicinal carrot seedlings, characterized by growing somatic embryos by culturing in a dissolved Murashige-Skoog medium, and germinating the proliferated somatic embryos to obtain seedlings.
[0011]
The Panax genus medicinal carrot as used in the present invention refers to a carrot that is used for medicinal purposes among plants belonging to the genus Phylum, Cleiidae, Araceae, Panax genus, specifically Panax ginseng CA Meyer, Tochiban carrot (Panax japonicum CA Meyer), American carrot (Panax quinquefolium L.), Radix carrot (Panax notoginseng FH Chen), etc.
[0012]
An adventitious embryo as used in the present invention is a kind of embryo generated from a plant somatic cell through the process of morphological change similar to a fertilized egg, also called an embryoid body (embryoid), and can develop into a complete plant body. (See Ibinami Shoten, Biology Dictionary, 3rd edition, page 1123 (1983)).
[0013]
The carbon source in the present invention refers to a carbon compound that is absorbed and utilized by plant cells, and sugars are usually used in cultured cells.
[0014]
In the present invention, somatic embryos are cultured and grown in a medium dissolved in 1 liter of water at a rate of 40 to 200 g of carbon source. In a medium with a carbon source of less than 40 g and more than 200 g, the efficiency of somatic embryo growth decreases. From the viewpoint of the efficiency of somatic embryo growth and somatic embryogenic tissue growth, a medium in which 50 to 150 g of a carbon source is dissolved in 1 liter of water is more preferable.
[0015]
The carbon source used in the present invention is preferably a saccharide, and is preferably a monosaccharide and / or a disaccharide that can be easily used as a nutrient source. Examples of monosaccharides include glucose, galactose, mannose, xylose, and arabinose. Examples of disaccharides include saccharose and lactose. Note that it is not preferable to use mannitol because it is difficult to use as a nutrient source.
[0016]
As is clear from Example 3, the medium support material used in the present invention is effective regardless of whether a gel support material such as gellan gum or agar, or an inorganic fiber such as ceramic fiber or rock wool is used. is there.
[0017]
The somatic embryo grown in the present invention is preferably cultured and germinated in a medium dissolved in 1 liter of water at a rate of 5 to 30 g of carbon source because of excellent germination efficiency. By continuing to culture somatic embryos grown in such a medium for about 6 weeks, seedlings of about 3 cm above the ground and about 3 cm below the ground can be obtained.
[0018]
[Action]
Although the detailed effect on somatic embryo growth in the present invention is not clear, according to the observation of the tissue, a large number of multiple shoots are formed when cultured at a carbon source concentration used conventionally, and the somatic embryo is indefinitely infrequent. In contrast to the formation of multiple shoots even when an embryo is formed, the formation of multiple shoots is hardly observed according to the present invention. From this, it is estimated that the conditions of the present invention not only improve the frequency of somatic embryo formation compared to the conventional conditions, but also the differentiation of somatic embryos that are sequentially differentiated because it is difficult for differentiation to proceed to the subsequent stages of mature embryos. It is considered that a large amount of mature embryos can be obtained as a result. In addition, this effect is due to the high osmotic pressure described above because the somatic embryo growth effect is hardly observed at low concentrations of saccharose and the somatic embryo growth effect is hardly observed when mannitol is used. This is thought to be due to a different principle.
[0019]
【Example】
Example 1
Murashige-Skoog medium (hereinafter abbreviated as K1 medium) was prepared by dissolving saccharose at a rate of 30 g in 1 liter of water and adding 1 ppm of kinetin thereto. Using K1 medium, 5-year-old roots of ginseng were cultured under light irradiation at 20 ° C. and 5,000 lux for 14 hours to induce multiple shoots. Next, Murashige-Skoog culture media having different saccharose concentrations without adding plant hormones using ceramic fibers as a support material were prepared. The above multiple shoot was placed on this medium, and after the transplant weight was measured, the culture was continued for 6 weeks under light irradiation at 20 ° C., 5,000 lux, and 14 hours. After completion of the culture, the number of somatic embryos was counted, and the number of somatic embryos formed per 1 g of transplanted weight was calculated. The results at this time are shown in Table 1. As is apparent from Table 1, the number of somatic embryos formed in the present invention is extremely large.
[0020]
[Table 1]
Figure 0003770622
[0021]
Example 2
Multiple shoots similar to those in Example 1 were placed in a medium similar to Example 1 except that the type and concentration of the carbon source were changed, and the culture was continued for 5 weeks under the same conditions as in Example 1. After completion of the culture, the number of somatic embryos was counted, and the number of somatic embryos formed per 1 g of transplanted weight was calculated. The results at this time are shown in Table 2. From Table 2, it was found that, even with glucose that is easily used as a carbon source in the same manner as saccharose, the effect of increasing somatic embryos was observed when the concentration was high, but that effect was hardly observed with mannitol, which is difficult to use as a carbon source.
[0022]
[ Table 2 ]
Figure 0003770622
[0023]
Example 3
The same multiple chute as in Example 1 was placed on the same medium as in Example 1 except that the medium support material was changed to gellan gum and the saccharose concentration was changed, and the culture was continued for 5 weeks under the same conditions as in Example 1. It was. After completion of the culture, the number of somatic embryos was counted for each saccharose concentration, and the number of somatic embryos formed per gram of transplanted weight was calculated. The results at this time are shown in Table 3. From Table 3, it was found that even when the support material was changed to a gel, the effect of increasing somatic embryos was observed by increasing the carbon source concentration.
[0024]
[Table 3]
Figure 0003770622
[0025]
Example 4
Multiple shoots similar to those in Example 1 were placed in a medium similar to that in Example 1 except that the saccharose concentration was changed, and culturing was continued for 6 weeks under the same conditions as in Example 1 to obtain somatic embryos. Subsequently, the cells were further cultured for 6 weeks after transplantation to a medium having a different saccharose concentration. Table 4 shows the number of embryos germinated at each saccharose concentration after completion of the culture. As apparent from Table 4, germination of somatic embryos was observed except for the non-containing medium. However, as a result of observation, a medium with a saccharose weight of 30 g is not preferable because many seedlings are formed into multiple shoots.
In addition, A and B in the same table | surface are the germination numbers at the time of using the somatic embryo which grew on the culture medium melt | dissolved in the ratio of 60g of saccharose and 100g, respectively with respect to 1 liter of water.
[0026]
[ Table 4 ]
Figure 0003770622
[0027]
【The invention's effect】
The present invention has an excellent effect of efficiently mass-producing seedlings by mass-producing panax medicinal carrot somatic embryos. In addition, the use of multiple shoots as a material enables genetically maintaining excellent traits. It is also possible to supply excellent seedlings over a long period of time.

Claims (2)

オタネニンジン、トチバニンジン、アメリカニンジン、三七ニンジンを含めたパナックス属の薬用ニンジンの組織を、炭素源としての単糖類および/または2糖類を50〜150g/Lに調製したムラシゲ・スクーグ培地で培養することにより不定胚を増殖させ、増殖した不定胚を発芽させて苗を得ることを特徴とするパナックス属薬用ニンジン苗の大量生産方法。Incubating Panax medicinal carrot tissue including ginseng, tochiban carrot, american carrot, and three-seven carrot in Murashige-Skoog medium prepared with monosaccharide and / or disaccharide as a carbon source to 50-150 g / L A method for mass production of Panax medicinal carrot seedlings, characterized in that somatic embryos are propagated by germination and germinated somatic embryos are germinated to obtain seedlings. 増殖した不定胚を、炭素源としての単糖類および/または2糖類を5〜25g/Lに調製したムラシゲ・スクーグ培地で発芽させる請求項1に記載のパナックス属薬用ニンジン苗の大量生産方法。The method for mass production of Panax medicinal carrot seedlings according to claim 1, wherein the proliferated somatic embryo is germinated in a Murashige-Skoog medium prepared with 5 to 25 g / L of monosaccharide and / or disaccharide as a carbon source .
JP35383591A 1991-12-18 1991-12-18 Mass production method for Panax medicinal carrot seedlings Expired - Fee Related JP3770622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35383591A JP3770622B2 (en) 1991-12-18 1991-12-18 Mass production method for Panax medicinal carrot seedlings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35383591A JP3770622B2 (en) 1991-12-18 1991-12-18 Mass production method for Panax medicinal carrot seedlings

Publications (2)

Publication Number Publication Date
JPH05168359A JPH05168359A (en) 1993-07-02
JP3770622B2 true JP3770622B2 (en) 2006-04-26

Family

ID=18433540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35383591A Expired - Fee Related JP3770622B2 (en) 1991-12-18 1991-12-18 Mass production method for Panax medicinal carrot seedlings

Country Status (1)

Country Link
JP (1) JP3770622B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102907318B (en) * 2011-08-01 2015-09-09 东北林业大学 A kind of method utilizing the fast numerous pseudo-ginseng regeneration plant of bioreactor culture somatic embryo
CN112640783A (en) * 2020-12-31 2021-04-13 云南农业大学 Method for directly inducing seedling emergence by using pseudo-ginseng leaves
CN118285194B (en) * 2024-06-03 2024-08-02 云南农业职业技术学院 Treatment method for promoting germination rate of ginseng seeds

Also Published As

Publication number Publication date
JPH05168359A (en) 1993-07-02

Similar Documents

Publication Publication Date Title
Eccher et al. Comparison between 2iP and zeatin in the micropropagation of highbush blueberry (Vaccinium corymbosum)
CN102499086B (en) Method for breeding locust
CN110583482B (en) High-efficiency in-vitro regeneration method for larch needles
Liu et al. Micropropagation of Camptotheca acuminata Decaisne from axillary buds, shoot tips, and seed embryos in a tissue culture system
Arenmongla et al. Germination of immature embryos and multiplication of Malaxis acuminata D. Don, an endangered therapeutically important orchid, by asymbiotic culture in vitro
Hossain et al. High efficiency plant regeneration from petiole explants of Carica papaya L. through organogenesis
JPH0315326A (en) Production of young seedling of plant of genus pinellia
BRPI0820686B1 (en) PROCESS FOR THE PROPAGATION OF THEOBROMA CACAO L. BY SOMATIC EMBRYOGENESIS
Vieitez et al. Propagation of Camellia japonica cv. Alba Plena by tissue culture
Roy et al. Clonal propagation of Rauvolfia serpentina through in vitro culture
JP3770622B2 (en) Mass production method for Panax medicinal carrot seedlings
Krishnan et al. Rapid propagation through shoot tip culture of Trichopus zeylanicus Gaertn., a rare ethnomedicinal plant
CN110214694B (en) Tissue culture rapid propagation method of male and female plants of hemsleya amabilis
CN102499087B (en) Isolated culture and plant regeneration method of silver chain
Sanago et al. Morphoregulatory role of thidiazuron: morphogenesis of root outgrowths in thidiazuron-treated geranium (Pelargonium x hortorum Bailey)
CN111387060A (en) In-vitro rapid propagation method of cypripedium parvifolium
Tetyana Micropropagation of Cussonia paniculata—a medicinal plant with horticultural potential
KR100322351B1 (en) A method for producing seedlings of Acanthopanax koreanum NAKAI by tissue culture
Morini et al. In vitro propagation of PS B2 peach rootstock.
KR100300765B1 (en) Mass propagation method of phalaenopsis nutrients by stem basal culture
Verma et al. Plantlet development through somatic embryogenesis and organogenesis in plant cell cultures of Colocasia esculenta (L.) Schott
JPH0822195B2 (en) Tissue culture method for Panatsux hybrid plant
Douglas Embryo culture of a rare plant, Hyophorbe amaricaulis Martius (Palmae)
JP3191953B2 (en) Method for inducing somatic embryo of medicinal carrot and method of mass-producing medicinal carrot
KR100302206B1 (en) In-flight mass production and forge transplanting method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees