Nothing Special   »   [go: up one dir, main page]

JP3764366B2 - Tire manufacturing method - Google Patents

Tire manufacturing method Download PDF

Info

Publication number
JP3764366B2
JP3764366B2 JP2001306667A JP2001306667A JP3764366B2 JP 3764366 B2 JP3764366 B2 JP 3764366B2 JP 2001306667 A JP2001306667 A JP 2001306667A JP 2001306667 A JP2001306667 A JP 2001306667A JP 3764366 B2 JP3764366 B2 JP 3764366B2
Authority
JP
Japan
Prior art keywords
bead
tire
heating coil
tread
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001306667A
Other languages
Japanese (ja)
Other versions
JP2003112320A (en
Inventor
力夫 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2001306667A priority Critical patent/JP3764366B2/en
Publication of JP2003112320A publication Critical patent/JP2003112320A/en
Application granted granted Critical
Publication of JP3764366B2 publication Critical patent/JP3764366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/0005Pretreatment of tyres or parts thereof, e.g. preheating, irradiation, precuring

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘導加熱による予備加熱を利用することにより、加硫時間を短縮しうるタイヤの製造方法に関する。
【0002】
【従来の技術】
タイヤの加硫方法としては、一般に、図6に示すように、成形金型aと、その内面a1にタイヤ生カバーTを押付けるブラダーbとを具える加硫装置を用い、前記成形金型aに内蔵するヒータcおよびブラダーb内に充填される熱媒体(例えばスチーム等)から熱伝導するタイヤ表面からの熱によって加熱している。
【0003】
しかしながら、ゴムは熱伝導率が低いため、熱がその中心部まで伝達するのに時間がかかり、特に厚肉の部位では、加硫時間が長くなるという問題がある。又中心部を最適加硫に仕上げようとすると、タイヤ表面部が過加硫になりがちであり好ましくない。
【0004】
そのため本発明者は、特開平2000−61963号公報において、厚肉の部位であるトレッド部およびビード部を誘導加熱によって予備加熱し、本加硫における加硫時間を短縮することを提案している。
【0005】
このものは、図7に略示する如く、導電線がビード底部とトレッド部とを通って螺旋に周回してなる加熱コイルeを用い、その電磁誘導作用によって、トレッド部Ttおよびビード部Tbに埋設されるタイヤ補強部材(例えばブレーカコードおよびビードコア)を誘導加熱している。
【0006】
このとき、トレッド部Ttとビード部Tbとでは、ゴム厚さや埋設するタイヤ補強部材のスチール量に差異があり、又この差異もタイヤの種類(サイズを含む)毎に相違する。従って、タイヤをより均一に加硫するためには、前記予備加熱において、トレッド部Ttとビード部Tbとの温度上昇を個別に制御することが必要となる。
【0007】
【発明が解決しようとする課題】
そのために、前記公報のものでは、温度上昇が遅い側、例えばトレッド側のタイヤ表面に、シート状の温度調整用導電材を貼着し、誘導加熱の発熱量を増加させることによって、トレッド部Ttとビード部Tbとの上昇温度を制御している。
【0008】
しかし、このような温度調整用の導電材では、温度制御の自由度が小さく、かつタイヤの種類に応じた温度制御を高精度で行うことが困難である。しかも、その貼着作業を不便とする他、予備加熱中の温度測定を妨げる要因にもなる。
【0009】
そこで本発明は、ビード部加熱用のビード加熱コイルと、トレッド部加熱用のトレッド加熱コイルとを用い、夫々の発熱量を高周波電源装置によって個別に調整することを基本として、トレッド部およびビード部の夫々の温度上昇速度や設定温度を、広い自由度を有して精度良く制御することができ、タイヤの種類に応じて均一かつ迅速に予備加熱しうるとともに、本加硫における時短とタイヤ表面での過加硫の防止を達成しうるタイヤの製造方法の提供を目的としている。
【0010】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、タイヤ生カバーのトレッド部とビード部とを本加硫に先行して予備加熱するタイヤの製造方法であって、
ビード部加熱用のビード加熱コイル、トレッド部加熱用のトレッド加熱コイル、及び前記ビード加熱コイルとトレッド加熱コイルとによる発熱を個別に調整しうる高周波電源装置とを具える誘導加熱装置により、トレッド部とビード部とを予備加熱したのちに金型加硫することを特徴としている。
【0011】
又請求項2の発明では、前記ビード加熱コイルは、導電線をタイヤと略同心に周回した環状部を具え、かつ前記トレッド加熱コイルは、導電線を略渦巻き状に半径方向に径を異ならせて巻回されかつタイヤ周方向に並べて接続した複数の渦巻きコイル部を具えることを特徴としている。
【0012】
又請求項3の発明では、前記ビード加熱コイルは、タイヤ生カバーの両側のビード部を加熱しかつ前記予備加熱装置の上下に配される上、下のビード加熱コイル部を含み、上のビード加熱コイル部は、その内径をタイヤ生カバーのトレッド部の直径よりも大とするとともに、下のビード加熱コイル部は、トレッド部の直径よりも小としたことを特徴としている。
【0013】
【発明の実施の形態】
以下、本発明の実施の一形態を、図示例とともに説明する。
図1は、本発明のタイヤの製造方法に用いる誘導加熱装置1を概念的に示す線図である。
【0014】
図1において、誘導加熱装置1は、タイヤ生カバーTのトレッド部Ttとビード部Tbとを、本加硫に先行して予備加熱する加熱装置であって、ビード部加熱用のビード加熱コイル2、トレッド部加熱用のトレッド加熱コイル3、及び前記ビード加熱コイル2とトレッド加熱コイル3とによる各発熱を個別に調整しうる高周波電源装置4とを具えている。
【0015】
なお、前記タイヤ生カバーTは、図5に示すように、トレッド部Ttと、その両端からタイヤ半径方向内方にのびる一対のサイドウォール部Tsと、その内方端に位置しかつビードコア30で補強されるビード部Tbとを具え、又ビードコア30、30間には、カーカス31が架け渡されるとともに、このカーカス31の外側かつトレッド部Ttの内方にはブレーカ32が配される。
【0016】
ここで、前記ビードコア30としては、スチール製のビードワイヤを複数層に巻回したリング状体のものが使用される。又前記ブレーカ32は、スチール製のブレーカコードをタイヤ周方向に対して例えば70°以下の角度で配列した複数枚(自動二輪車用タイヤでは通常1,2枚、乗用車用タイヤでは通常2枚、重荷重用タイヤでは通常3,4枚)のプライから形成される。
【0017】
従って、前記タイヤ生カバーTは、厚さが大であり多くの加熱時間が必要なトレッド部Tt及びビード部Tbに、夫々電磁誘導作用によって発熱しうるスチール製のタイヤ補強部材33を、ブレーカコード及びビードワイヤとして埋設している。
【0018】
このタイヤ生カバーTは、図1に略示する如く、誘導加熱装置1に付設の支持手段6により、横置き状態でかつタイヤ軸芯廻りで回転可能に水平保持される。なお支持手段6は、本例では、下のビード部Tbを受けるトレー状の受け台7と、この受け台7をタイヤ軸芯廻りで回転自在に枢支する支持台8とを具えるとともに、前記受け台7は、例えばプーリ、ベルトなどを用いた周知構成の伝達手段9を介して電動機Mで駆動される。
【0019】
次に、前記誘導加熱装置1のビード加熱コイル2は、図2に示すように、タイヤ生カバーTの上のビード部Tbを加熱する上のビード加熱コイル部2U、及び下のビード部Tbを加熱する下のビード加熱コイル部2Lを含み、各ビード加熱コイル部2U、2Lは、夫々導電線10をタイヤと略同心に周回した環状部11を具えて形成される。本例では、前記環状部11として、導電線10が2周巻きされたものを例示しているが、この周回数は特に規制されるものではなく、要求に応じて適宜設定できる。
【0020】
又本例では、タイヤ生カバーTのセットを容易とするため、前記上のビード加熱コイル部2Uにおける環状部11Uの内径を、タイヤ生カバーTのトレッド部Ttの直径よりも大とするとともに、下のビード加熱コイル部2Lにおける環状部11Lの内径を、前記トレッド部Ttの直径よりも小に設定している。これによって、タイヤ生カバーTを上方から吊り下げ、上の環状部11Uを通って受け台7にセットすることができる。
【0021】
又前記トレッド加熱コイル3は、複数の渦巻きコイル部12を、タイヤ周方向に並べて接続してなり、又各渦巻きコイル部12は、導電線13を略渦巻き状に半径方向に径を異ならせて巻回することによって形成している。
【0022】
なお渦巻きコイル部12としては、図3に平面に展開して示すように、矩形な渦巻き状に形成することが、各渦巻きコイル部12を周方向に均一に配置する上で好ましいが、円形な渦巻き状とすることもできる。又渦巻きコイル部12は、渦巻きの半径方向内端と、隣り合う渦巻きコイル部12の渦巻きの半径方向外端とが継ぎ部14を介して電気的に接続される。この渦巻きコイル部12の巻回数も特に規制されるものではなく、要求に応じて適宜設定できる。
【0023】
ここで、前記ビード加熱コイル2は、図4に示す如く、環状部11U、11L間を、その環状の内側を通ってタイヤ軸芯方向にのびる磁界GAを発生せしめ、ビードコア30を誘電加熱する。又トレッド加熱コイル3は、トレッド面と略直角にトレッド部Ttを貫通してのびる磁界GBを発生せしめ、ブレーカ32を誘電加熱する。
【0024】
なお前記支持手段6の受け台7及び支持台8は、前記磁界GA、GBによって発熱しないように、非金属材で形成することが必要であり、又前記電動機Mは、前記環状部11U、11L及び渦巻きコイル部12の少なくともタイヤ半径方向外方に設置し、前記磁界GA、GBからの影響をできるだけ排除することが望ましい。
【0025】
次に、高周波電源装置4は、前記ビード加熱コイル2に接続される第1の電源部4Aと、トレッド加熱コイル3に接続される第2の電源部4Aとから形成されてなり、第1の電源部4Aは、上下のビード加熱コイル部2U、2Lを直列に接続する。又第1、第2の電源部4A、4Bは、その高周波電流の出力及び周波数を個別に調整でき、これによって、ビード加熱コイル2及びトレッド加熱コイル3による発熱を個別に調整しうる。なお、誘導加熱に用いられる高周波電流の周波数は、通常、50Hz〜1MHzの範囲であるが、周波数が高いと所謂表皮効果が大きく温度ムラとなる傾向が強く、従って、好ましくは1KHz〜500KHzの範囲、さらに好ましくは、10〜40KHzの低周波数域で使用するのが望ましい。
【0026】
又本例では、図1に示す如く、誘導加熱装置1に、トレッド部Tt及びビード部Tbの各表面温度を夫々非接触で測定する例えば赤外線温度センサー等の温度センサー15A、15Bと、この温度センサー15A、15Bの測定データによって、前記高周波電源装置4の出力制御(オン/オフを含む)を行う制御手段16とを設けた場合を例示している。
【0027】
次に、前記誘導加熱装置1を用いたタイヤの製造方法を説明する。この製造方法は、本加硫に先行してトレッド部Ttとビード部Tbとを誘導加熱によって予備加熱する予備加熱工程を含み、この予備加熱工程では、まずタイヤ生カバーTを上方から吊り下げて受け台7上にセットする。
【0028】
しかる後、電動機Mによってタイヤ生カバーTをタイヤ軸芯廻りで回転させるとともに、高周波電源装置4を作動し、前記ビード加熱コイル2及びトレッド加熱コイル3によって生じる磁界GA、GBにより、タイヤ補強部材33を誘導加熱(自己発熱)せしめ、厚肉のトレッド部Tt及びビード部Tbをその内部から有効に加熱する。
【0029】
このとき、タイヤ生カバーTの前記回転によって、タイヤ周方向の温度ムラが抑制され、温度分布をより均一化することができる。
【0030】
又トレッド部Tt及びビード部Tbを所望の設定温度まで、できるだけ同じ時間内で昇温させる、即ちできるだけ効率良く昇温させるために、前記ビード加熱コイルおよびトレッド加熱コイルによる発熱を個別に調整する。なお通常は、トレッド部Tt及びビード部Tbの設定温度は同じであるが、以後の本加硫を考慮し、タイヤの種類(サイズを含む)に応じて、トレッド部Ttの設定温度を、ビード部Tbの設定温度よりも、例えば10度程度高く設定することもできる。
【0031】
なお本例では、温度センサー15A、15Bによってトレッド部Tt及びビード部Tbの各表面温度を常時測定し、夫々の温度上昇速度に応じて第1、第2の電源部4A、4Bの出力を制御している。又夫々設定温度に到達した場合には、出力を保温用の低出力に切り替え、本加硫用の加硫装置の準備が整うまで設定温度の維持が図られる。
【0032】
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【0033】
【実施例】
図5に示すタイヤサイズ195/65R15の乗用車用のタイヤ生カバーを試作し、図1〜4に示す誘導加熱装置を用い、以下の条件で予備加熱を行った。
・高周波電源装置の周波数:20〜30KHz
・設定温度(トレッド部/上下のビード部):80゜C/80゜C
【0034】
加熱時間約300秒で、トレッド部及び上下のビード部を、夫々80゜Cの設定温度に、略同時にかつ周方向に均一に加熱することができた。
【0035】
これを、従来の加硫装置型による本加熱によって加硫したところ、標準加硫時間が従来10分であったものが、75秒の短縮を達成することができた。
【0036】
【発明の効果】
叙上の如く本発明は、ビード部加熱用のビード加熱コイルと、トレッド部加熱用のトレッド加熱コイルとを用い、夫々の発熱量を高周波電源装置によって個別に調整しているため、トレッド部およびビード部の夫々の温度上昇速度や設定温度を、広い自由度を有して精度良く制御することができ、タイヤの種類に応じて均一かつ迅速に予備加熱しうる。又本加硫における時短とタイヤ表面での過加硫の防止を達成しうる。
【図面の簡単な説明】
【図1】本発明のタイヤの製造方法に使用する誘導加熱装置の一実施例を概念的に示す断面図である。
【図2】そのビード加熱コイル及びトレッド加熱コイルを示す斜視図である。
【図3】トレッド加熱コイルの渦巻きコイル部を展開して示す線図である。
【図4】ビード加熱コイル及びトレッド加熱コイルによる磁界を示す略図である。
【図5】本発明に好適に用いられるタイヤ生カバーの一例を示す断面図である。
【図6】従来の加硫装置を説明する断面図である。
【図7】従来の予備加熱用の誘導加熱装置を示す略図である。
【符号の説明】
1 誘導加熱装置
2 ビード加熱コイル
2U、2L ビード加熱コイル部
3 トレッド加熱コイル
4 高周波電源装置
10、13 導電線
11 環状部
12 渦巻きコイル部
T タイヤ生カバー
Tt トレッド部
Tb ビード部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a tire that can shorten the vulcanization time by utilizing preheating by induction heating.
[0002]
[Prior art]
As a method for vulcanizing a tire, generally, as shown in FIG. 6, a vulcanizing device including a molding die a and a bladder b that presses the tire raw cover T against the inner surface a1 is used. Heating is performed by heat from the tire surface that conducts heat from a heater c built in a and a heat medium (for example, steam or the like) filled in the bladder b.
[0003]
However, since rubber has a low thermal conductivity, it takes time for heat to be transferred to the center thereof, and there is a problem that the vulcanization time becomes long particularly in a thick portion. If the center portion is to be finished with optimum vulcanization, the tire surface portion tends to be overvulcanized, which is not preferable.
[0004]
Therefore, the present inventor has proposed in Japanese Unexamined Patent Publication No. 2000-61963 to preheat the tread part and the bead part, which are thick parts, by induction heating to shorten the vulcanization time in the main vulcanization. .
[0005]
As schematically shown in FIG. 7, this uses a heating coil e in which a conductive wire circulates in a spiral through the bottom of the bead and the tread portion, and the electromagnetic induction action causes the tread portion Tt and the bead portion Tb. An embedded tire reinforcing member (for example, a breaker cord and a bead core) is induction-heated.
[0006]
At this time, the tread portion Tt and the bead portion Tb are different in rubber thickness and the steel amount of the tire reinforcing member to be embedded, and this difference is also different for each tire type (including size). Therefore, in order to vulcanize the tire more uniformly, it is necessary to individually control the temperature rise of the tread portion Tt and the bead portion Tb in the preliminary heating.
[0007]
[Problems to be solved by the invention]
Therefore, in the above-mentioned publication, a tread portion Tt is obtained by sticking a sheet-like temperature adjusting conductive material to the tire surface on the side where the temperature rise is slow, for example, the tread side, and increasing the heat generation amount of induction heating. And the rising temperature of the bead portion Tb are controlled.
[0008]
However, with such a temperature adjusting conductive material, the degree of freedom of temperature control is small, and it is difficult to perform temperature control according to the type of tire with high accuracy. In addition to making the sticking work inconvenient, it also becomes a factor that hinders temperature measurement during preheating.
[0009]
Therefore, the present invention uses a bead heating coil for heating a bead part and a tread heating coil for heating a tread part, and the tread part and the bead part are based on the individual adjustment of the amount of heat generated by the high frequency power supply device. Each temperature rise speed and set temperature can be accurately controlled with a wide degree of freedom, and can be preheated uniformly and quickly according to the type of tire. It aims at providing the manufacturing method of the tire which can achieve prevention of the overvulcanization in the.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is a tire manufacturing method in which a tread part and a bead part of a tire raw cover are preheated prior to the main vulcanization.
A tread portion is formed by an induction heating device including a bead heating coil for heating the bead portion, a tread heating coil for heating the tread portion, and a high frequency power supply device capable of individually adjusting heat generated by the bead heating coil and the tread heating coil. And the bead portion are preheated and then the mold is vulcanized.
[0011]
According to a second aspect of the present invention, the bead heating coil includes an annular portion in which a conductive wire is substantially concentric with the tire, and the tread heating coil has a conductive wire having a substantially spiral shape with a different diameter in the radial direction. And a plurality of spiral coil portions that are wound and connected side by side in the tire circumferential direction.
[0012]
In the invention of claim 3, the bead heating coil heats the bead portions on both sides of the tire raw cover and is disposed above and below the preheating device, and further includes a lower bead heating coil portion, The heating coil portion is characterized in that its inner diameter is larger than the diameter of the tread portion of the tire raw cover, and the lower bead heating coil portion is smaller than the diameter of the tread portion.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram conceptually showing an induction heating apparatus 1 used in the tire manufacturing method of the present invention.
[0014]
In FIG. 1, an induction heating device 1 is a heating device that preheats a tread portion Tt and a bead portion Tb of a tire raw cover T prior to the main vulcanization, and a bead heating coil 2 for heating the bead portion. , A tread heating coil 3 for heating the tread portion, and a high frequency power supply device 4 capable of individually adjusting each heat generated by the bead heating coil 2 and the tread heating coil 3.
[0015]
As shown in FIG. 5, the tire raw cover T includes a tread portion Tt, a pair of sidewall portions Ts extending inward in the tire radial direction from both ends thereof, and a bead core 30 positioned at the inner ends thereof. Further, a carcass 31 is bridged between the bead cores 30 and 30, and a breaker 32 is disposed outside the carcass 31 and inside the tread portion Tt.
[0016]
Here, as the bead core 30, a ring-shaped body in which steel bead wires are wound in a plurality of layers is used. The breaker 32 includes a plurality of steel breaker cords arranged at an angle of, for example, 70 ° or less with respect to the tire circumferential direction (usually 1, 2 for motorcycle tires, 2 normally for passenger tires, heavy load) In heavy duty tires, usually three or four plies are formed.
[0017]
Therefore, the tire raw cover T is provided with breaker cords on the tread portion Tt and the bead portion Tb, which have a large thickness and require a long heating time, and are made of steel tire reinforcing members 33 that can generate heat by electromagnetic induction. And buried as a bead wire.
[0018]
As schematically shown in FIG. 1, the raw tire cover T is horizontally held by a supporting means 6 attached to the induction heating device 1 so as to be rotated horizontally around the tire shaft center. In this example, the supporting means 6 includes a tray-like receiving base 7 that receives the lower bead portion Tb, and a supporting base 8 that pivotally supports the receiving base 7 around the tire axis, The cradle 7 is driven by an electric motor M through a transmission means 9 having a known configuration using, for example, a pulley, a belt, or the like.
[0019]
Next, the bead heating coil 2 of the induction heating device 1 includes an upper bead heating coil portion 2U for heating the bead portion Tb on the tire raw cover T and a lower bead portion Tb as shown in FIG. Each of the bead heating coil portions 2U and 2L includes an annular portion 11 that circulates the conductive wire 10 substantially concentrically with the tire. In the present example, the annular portion 11 is illustrated with the conductive wire 10 wound twice, but the number of turns is not particularly limited and can be set as appropriate according to demand.
[0020]
In this example, in order to facilitate the setting of the tire raw cover T, the inner diameter of the annular portion 11U in the upper bead heating coil portion 2U is made larger than the diameter of the tread portion Tt of the tire raw cover T, The inner diameter of the annular portion 11L in the lower bead heating coil portion 2L is set smaller than the diameter of the tread portion Tt. Thereby, the tire raw cover T can be suspended from above and set on the cradle 7 through the upper annular portion 11U.
[0021]
The tread heating coil 3 is formed by connecting a plurality of spiral coil portions 12 side by side in the tire circumferential direction, and each spiral coil portion 12 has a conductive wire 13 having a substantially spiral shape with a different diameter in the radial direction. It is formed by winding.
[0022]
As the spiral coil portion 12, it is preferable that the spiral coil portion 12 is formed in a rectangular spiral shape as shown in a flat plane in FIG. 3 in order to uniformly arrange the spiral coil portions 12 in the circumferential direction. It can also be made spiral. Further, in the spiral coil portion 12, the inner end in the radial direction of the spiral is electrically connected to the outer end in the radial direction of the spiral in the adjacent spiral coil portion 12 through the joint portion 14. The number of turns of the spiral coil portion 12 is not particularly limited, and can be set as appropriate according to demand.
[0023]
Here, as shown in FIG. 4, the bead heating coil 2 generates a magnetic field GA extending between the annular portions 11U and 11L through the inside of the annular shape in the tire axial direction, and dielectrically heats the bead core 30. The tread heating coil 3 generates a magnetic field GB extending through the tread portion Tt substantially at right angles to the tread surface, and dielectrically heats the breaker 32.
[0024]
The receiving base 7 and the supporting base 8 of the support means 6 must be formed of a non-metallic material so as not to generate heat by the magnetic fields GA and GB, and the electric motor M includes the annular portions 11U and 11L. In addition, it is desirable that the spiral coil portion 12 be installed at least outward in the tire radial direction so as to eliminate the influence of the magnetic fields GA and GB as much as possible.
[0025]
Next, the high-frequency power supply device 4 is formed of a first power supply unit 4A connected to the bead heating coil 2 and a second power supply unit 4A connected to the tread heating coil 3, and the first power supply unit 4A The power supply unit 4A connects the upper and lower bead heating coil units 2U and 2L in series. The first and second power supply units 4A and 4B can individually adjust the output and frequency of the high-frequency current, thereby individually adjusting the heat generated by the bead heating coil 2 and the tread heating coil 3. The frequency of the high-frequency current used for induction heating is usually in the range of 50 Hz to 1 MHz. However, when the frequency is high, the so-called skin effect tends to be large and temperature unevenness tends to be strong, and therefore preferably in the range of 1 KHz to 500 KHz. More preferably, it is desirable to use in a low frequency range of 10 to 40 KHz.
[0026]
In this example, as shown in FIG. 1, the induction heating device 1 is provided with temperature sensors 15A and 15B such as infrared temperature sensors for measuring the surface temperatures of the tread portion Tt and the bead portion Tb in a non-contact manner, and the temperature. The case where the control means 16 which performs the output control (including ON / OFF) of the high-frequency power supply device 4 by the measurement data of the sensors 15A and 15B is illustrated.
[0027]
Next, a tire manufacturing method using the induction heating device 1 will be described. This manufacturing method includes a preheating step in which the tread portion Tt and the bead portion Tb are preheated by induction heating prior to the main vulcanization. In this preheating step, the tire raw cover T is first suspended from above. Set on cradle 7.
[0028]
Thereafter, the tire raw cover T is rotated around the tire axis by the electric motor M, and the high-frequency power supply device 4 is operated, and the tire reinforcing member 33 is generated by the magnetic fields GA and GB generated by the bead heating coil 2 and the tread heating coil 3. Is heated by induction (self-heating), and the thick tread portion Tt and bead portion Tb are effectively heated from the inside.
[0029]
At this time, due to the rotation of the tire raw cover T, temperature unevenness in the tire circumferential direction is suppressed, and the temperature distribution can be made more uniform.
[0030]
Further, in order to raise the temperature of the tread portion Tt and the bead portion Tb to a desired set temperature within the same time as much as possible, that is, to raise the temperature as efficiently as possible, the heat generated by the bead heating coil and the tread heating coil is individually adjusted. Normally, the set temperatures of the tread portion Tt and the bead portion Tb are the same, but considering the subsequent main vulcanization, the set temperature of the tread portion Tt is set according to the tire type (including size). For example, it can be set higher by about 10 degrees than the set temperature of the portion Tb.
[0031]
In this example, the surface temperature of each of the tread portion Tt and the bead portion Tb is constantly measured by the temperature sensors 15A and 15B, and the outputs of the first and second power supply portions 4A and 4B are controlled in accordance with the respective temperature rising speeds. is doing. When the set temperature is reached, the output is switched to a low output for keeping the temperature, and the set temperature is maintained until the vulcanizing apparatus for the main vulcanization is ready.
[0032]
As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.
[0033]
【Example】
A tire raw cover for a passenger car having a tire size of 195 / 65R15 shown in FIG. 5 was prototyped and preheated under the following conditions using the induction heating apparatus shown in FIGS.
・ Frequency of the high frequency power supply: 20 to 30 KHz
・ Set temperature (tread / upper and lower beads): 80 ° C / 80 ° C
[0034]
In the heating time of about 300 seconds, the tread portion and the upper and lower bead portions could be uniformly heated to the set temperature of 80 ° C. substantially simultaneously and in the circumferential direction.
[0035]
When this was vulcanized by main heating using a conventional vulcanizer, the standard vulcanization time of 10 minutes in the past could achieve a reduction of 75 seconds.
[0036]
【The invention's effect】
As described above, the present invention uses a bead heating coil for heating the bead part and a tread heating coil for heating the tread part, and the amount of generated heat is individually adjusted by the high frequency power supply device. The temperature increase speed and set temperature of each bead part can be controlled with a wide degree of freedom and with high precision, and can be preheated uniformly and quickly according to the type of tire. Moreover, it is possible to achieve a short time in the main vulcanization and prevention of overvulcanization on the tire surface.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view conceptually showing an embodiment of an induction heating device used in a tire manufacturing method of the present invention.
FIG. 2 is a perspective view showing the bead heating coil and the tread heating coil.
FIG. 3 is a diagram showing an expanded spiral coil portion of a tread heating coil.
FIG. 4 is a schematic diagram showing a magnetic field generated by a bead heating coil and a tread heating coil.
FIG. 5 is a cross-sectional view showing an example of a tire raw cover that is preferably used in the present invention.
FIG. 6 is a cross-sectional view illustrating a conventional vulcanizing apparatus.
FIG. 7 is a schematic view showing a conventional induction heating apparatus for preheating.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Induction heating apparatus 2 Bead heating coil 2U, 2L Bead heating coil part 3 Tread heating coil 4 High frequency power supply device 10, 13 Conductive wire 11 Annular part 12 Spiral coil part T Tire raw cover Tt Tread part Tb Bead part

Claims (3)

タイヤ生カバーのトレッド部とビード部とを本加硫に先行して予備加熱するタイヤの製造方法であって、 ビード部加熱用のビード加熱コイル、トレッド部加熱用のトレッド加熱コイル、及び前記ビード加熱コイルとトレッド加熱コイルとによる発熱を個別に調整しうる高周波電源装置とを具える誘導加熱装置により、トレッド部とビード部とを予備加熱したのちに金型加硫することを特徴とするタイヤの製造方法。A tire manufacturing method for preheating a tread portion and a bead portion of a raw tire cover prior to main vulcanization, comprising: a bead heating coil for heating a bead portion, a tread heating coil for heating a tread portion, and the bead A tire characterized by pre-heating the tread portion and the bead portion and then vulcanizing the die by an induction heating device including a high frequency power supply device capable of individually adjusting the heat generated by the heating coil and the tread heating coil. Manufacturing method. 前記ビード加熱コイルは、導電線をタイヤと略同心に周回した環状部を具え、かつ前記トレッド加熱コイルは、導電線を略渦巻き状に半径方向に径を異ならせて巻回されかつタイヤ周方向に並べて接続した複数の渦巻きコイル部を具えることを特徴とする請求項1記載のタイヤの製造方法。The bead heating coil includes an annular portion in which a conductive wire circulates substantially concentrically with the tire, and the tread heating coil is wound around the conductive wire in a substantially spiral shape with different diameters in the radial direction and in the tire circumferential direction. The tire manufacturing method according to claim 1, further comprising a plurality of spiral coil portions arranged side by side and connected to each other. 前記ビード加熱コイルは、タイヤ生カバーの両側のビード部を加熱しかつ前記予備加熱装置の上下に配される上、下のビード加熱コイル部を含み、上のビード加熱コイル部は、その内径をタイヤ生カバーのトレッド部の直径よりも大とするとともに、下のビード加熱コイル部は、トレッド部の直径よりも小としたことを特徴とする請求項1又は2記載のタイヤの製造方法。The bead heating coil heats the bead portions on both sides of the tire raw cover and is arranged above and below the preheating device, and includes a lower bead heating coil portion, and the upper bead heating coil portion has an inner diameter. The tire manufacturing method according to claim 1 or 2, wherein the diameter of the tread portion of the raw tire cover is larger than that of the tread portion, and the lower bead heating coil portion is smaller than the diameter of the tread portion.
JP2001306667A 2001-10-02 2001-10-02 Tire manufacturing method Expired - Fee Related JP3764366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001306667A JP3764366B2 (en) 2001-10-02 2001-10-02 Tire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001306667A JP3764366B2 (en) 2001-10-02 2001-10-02 Tire manufacturing method

Publications (2)

Publication Number Publication Date
JP2003112320A JP2003112320A (en) 2003-04-15
JP3764366B2 true JP3764366B2 (en) 2006-04-05

Family

ID=19126265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001306667A Expired - Fee Related JP3764366B2 (en) 2001-10-02 2001-10-02 Tire manufacturing method

Country Status (1)

Country Link
JP (1) JP3764366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230021299A (en) * 2021-08-05 2023-02-14 금호타이어 주식회사 Manufacturing method of tire with uniformity characteristics and tire thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787531B2 (en) * 2005-04-15 2011-10-05 株式会社ブリヂストン Raw tire heating device
KR100771688B1 (en) * 2006-07-31 2007-10-31 금호타이어 주식회사 Loader for pre-heating bead section of green tire
KR100867600B1 (en) 2007-07-24 2008-11-10 금호타이어 주식회사 Preheating device of core mole for bladderless cure mold
JP5456336B2 (en) * 2009-02-26 2014-03-26 グンゼ株式会社 Mold heating device
FR2981883B1 (en) * 2011-10-28 2014-09-12 Michelin Soc Tech PNEUMATIC VULCANIZATION PRESS INCLUDING INDUCTION HEATING MEANS
JP6002635B2 (en) * 2013-06-14 2016-10-05 株式会社ブリヂストン Raw tire heating method and apparatus
JP6114476B2 (en) * 2015-02-13 2017-04-12 三菱重工マシナリーテクノロジー株式会社 Tire preheating device, tire vulcanizing system, tire preheating method, and tire manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230021299A (en) * 2021-08-05 2023-02-14 금호타이어 주식회사 Manufacturing method of tire with uniformity characteristics and tire thereof
KR102523200B1 (en) 2021-08-05 2023-04-18 금호타이어 주식회사 Manufacturing method of tire with uniformity characteristics and tire thereof

Also Published As

Publication number Publication date
JP2003112320A (en) 2003-04-15

Similar Documents

Publication Publication Date Title
EP0978370B1 (en) Vulcanising method and vulcanising apparatus for a tyre
JP3834540B2 (en) Raw tire preheating method and apparatus
KR100473071B1 (en) A heating apparatus for a green tire
JP3764366B2 (en) Tire manufacturing method
JP5052688B2 (en) Pedestal tire manufacturing method, tyre manufacturing method and pedestal tire
JPS61137707A (en) Mold and vulcanizer
JP4387047B2 (en) Central mechanism
JP2002096403A (en) Method and apparatus of manufacturing tire
JP2006224417A (en) Vulcanizer
JP4220963B2 (en) Tire manufacturing method and toroidal support for carrying out such a method
JP3914379B2 (en) Raw tire preheating method and apparatus
JPH10128764A (en) Production of pneumatic tire and pneumatic tire produced thereby
JP3484350B2 (en) Tire manufacturing method and heating device used therefor
JP3542843B2 (en) Manufacturing method of retreaded tire
JP3599510B2 (en) Tire curing equipment
KR100391547B1 (en) Pre-heating apparatus of green tire
JPH09207241A (en) Regenerated tire and its manufacture
JPH08174554A (en) Tire vulcanizing mold apparatus
JP3950469B2 (en) Raw tire preheating method and apparatus
JP2942465B2 (en) Manufacturing method for pneumatic tires
JPH0159887B2 (en)
JP2003231125A (en) Tire manufacturing method and apparatus therefor
JP2002052536A (en) Tire vulcanizing method
SU852618A1 (en) Injection mould for vulcanizing pneumatic tyres
WO1999008860A1 (en) Method and apparatus for adhering precured tire components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees