JP3755159B2 - Oxide sintered body - Google Patents
Oxide sintered body Download PDFInfo
- Publication number
- JP3755159B2 JP3755159B2 JP04814695A JP4814695A JP3755159B2 JP 3755159 B2 JP3755159 B2 JP 3755159B2 JP 04814695 A JP04814695 A JP 04814695A JP 4814695 A JP4814695 A JP 4814695A JP 3755159 B2 JP3755159 B2 JP 3755159B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- powder
- particle diameter
- diameter
- pores
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Manufacturing Of Electric Cables (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、スパッタリング法によって透明導電膜を形成する際のスパッタリング用ターゲットとして極めて優れた性能を有する、酸化インジウム・酸化錫(以下、「ITO」という)焼結体に関する。
【0002】
【従来の技術】
ITO焼結体をスパッタリングして得られる透明導電膜は、その比抵抗値の低さから有望な膜として注目されている。例えば300℃程度に加熱された基板上に適当な条件でITOをスパッタリングすることにより、透明性が良くかつ比抵抗値が2.0×10-4Ω・cm以下の良質なITO膜が得られる。
【0003】
このような抵抗値の低いITO膜を成膜するためのITO焼結体として、特開昭62−21751号公報には酸化インジウム粉末と酸化錫粉末との適当な量を配合し、混合・粉砕して、これを成形し仮焼した後再度粉砕を行い、得られた仮焼済み粉末を、更に成形・焼結して製造されたITO焼結体が開示されている。このようにして得られたITO焼結体を用いてスパッタリングを行うと、異常放電の発生によりプラズマ状態が不安定になり、スパッタされた膜の構造が悪化し、膜の特性値が劣化するという不都合を生じる。また、異常放電が頻繁に発生する状況下で長時間ターゲットを使用していると、ターゲット表面にノジュールが生じ、これにより成膜速度が低下するという問題も生じる。これらの問題の原因がターゲット中に存在する空孔にあると考え、空孔の数を減らすことにより解決しようという試みがなされている。例えば、特開平2−115326号公報には酸化インジウム粉末と金属錫粉末を適当な量だけ配合し、仮焼した後再度粉砕を行って粉末とし、得られた仮焼済み粉末を、加圧下での焼結法であるホットプレスによって高密度の、すなわち空孔数の少ないITO焼結体の製造方法が開示されている。
【0004】
しかし、このようにして得られたITOターゲットでさえも工業的に十分満足できるターゲットとはいい難い。
【0005】
【発明が解決しようとする課題】
本発明は、上述したITOターゲットのスパッタリングにかかわる問題点を解決し、異常放電の発生およびノジュールの生成を有効に抑制することが可能な酸化物焼結体を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するための第1の本発明の酸化物焼結体は、インジウム、錫および酸素を主成分とし、相対密度が85%以上で、かつ、任意表面における直径2μm以上の空孔の個数が、該表面に存在する空孔の総数に対して20%以下であることを特徴とする。又、第2の本発明の酸化物焼結体は、インジウム、錫および酸素を主成分とし、相対密度が85%以上で、かつ、直径2μm以上の空孔の95%以上が断面形状の扁平率が2以下の概ね球状であることを特徴とする。
【0007】
【作用】
異常放電現象の発生およびノジュールの生成を抑制するためには空孔の数を減少させるだけでは不十分であり、空孔の分布状態および、あるいは空孔の形状をコントロールしなくてはならない。即ち異常放電やノジュールの生成は、空孔が集中し電気伝導度が悪化している微小領域や、空孔が鋭角の突起やくぼみを持ち電荷が集中しやすい部分、あるいは空孔が互いにつながりながら連続していて電荷の通過を妨げる部分を起点として生じているため、これらの組織上の微小な欠陥を除去することにより異常放電の発生およびノジュールの生成を有効に抑制することが可能となるのである。
【0008】
(ITO焼結体)
本発明のITO焼結体は実質的にインジウム、錫および酸素を主成分とするものであり、酸化インジウム・酸化錫系のものである。この組成自体は公知のITO焼結体と同様であり、一般に錫の平均組成は3〜12重量%であり、インジウムの平均組成は70〜78重量%である。
【0009】
焼結体の密度は相対密度が85%以上でなくてはならない。相対密度が90%以上であれば更に好ましい。相対密度が85%未満であるとターゲット内に存在する空孔の個数が多くなり、ターゲット全体の電気伝導度が悪化してしまい、本発明の効果が得られなくなる。なお相対密度は、理論密度を7.15g/cm3として計算される。
【0010】
また直径10μm以上の粗大な空孔は存在しないことが好ましい。但し本発明の要件を満たす空孔であれば存在していたとしても本発明の効果を損なうことはない。
【0011】
第1の本発明においては、任意表面における直径2μm以上の空孔の個数が、該表面に存在する空孔の総数に対して20%以下でなくてはならない。ある微小領域における直径2μm以上の空孔の個数が、該領域に存在する空孔の総数に対して20%を超えていると、それは空孔が集中していることを意味するが、そのような領域は電気伝導度が他の領域と比較して相対的に高くなり、異常放電やノジュールの起点となり易いからである。なお、直径2μm未満の空孔の存在は電気伝導度に与える影響が無視し得るほど小さいため、考慮する必要はない。
【0012】
任意表面で観察される空孔の個数は、例えば、焼結体の任意表面を鏡面に研磨した後、異なる20以上の視野で1000倍の倍率で撮影された一辺100mmの写真に存在する空孔の数を平均して求められる。
【0013】
第2の本発明においては、空孔の形状は限りなく球形に近いことが必要である。空孔が長くつながっていたり、鋭角の突起やくぼみをもっていると、その部分に電荷が集中し易く異常放電やノジュールの起点となり易い。従って、直径2μm以上の空孔の95%以上が断面形状の扁平率が2以下の概ね球状であることが必要である。
【0014】
なお、上記第1、第2の発明は組み合わされていても良い。
【0015】
(ITO焼結体の製造)
第1の本発明のITO焼結体において空孔の分布が均一な焼結体を得るためには、原料粉末の選択と、混合・粉砕工程および成形工程が極めて重要となる。
【0016】
また、第2の本発明において空孔の形状をコントロールするためには、焼結温度および焼結時間、昇温速度を正確にコントロールする必要がある。
【0017】
原料粉末にはいずれも一次粒径が0.2μm以下、平均粒径が1μm以下の微細なIn2O3およびSnO2酸化物粉末を用いる。原料粉末の一次粒径は微細である方が好ましい。また、原料粉末の混合・粉砕には湿式ボールミルを用いる。混合には直径5mm以下のボールを使用し、ボールの挿入量は重量比で原料粉末の2倍以上とする。また混合時間は18時間以上とする。この条件は原料粉末の凝集を解砕するために必要な条件である。
【0018】
なお、従来技術の例に述べられている仮焼は行わない。これは仮焼によって粉末の粒度が大きくなると、焼結体の空孔の分布が不均一になるめである。
【0019】
混合・粉砕を行われたスラリーは、30μmから60μmの大きさで球形に造粒することが好ましい。造粒方法としては例えばスプレードライヤーがある。
【0020】
成形は静水圧加圧プレスによって行う。一軸のプレスであると厚み方向で空孔の分布が不均一になるので好ましくない。
【0021】
焼結温度は1450℃以上、1550℃以下とする。焼結温度が1450℃未満であると、空孔の形状が球形にならず、また1550℃よりも高温であると空孔どうしの結合が起こり、空孔が粗大化あるいは連続化してしまう。焼結保持時間は5時間以上15時間以下とする。昇温速度は特に1000℃以上の温度範囲で制御する必要があり、3℃/min以上、10℃/min以下とする。また焼結雰囲気を酸素ガスの気流中とすると高密度の焼結体が得られる。
【0022】
【実施例】
以下に実施例を用いて本発明の優れた効果を説明する。実施例1は第1、第2の本発明の要件を兼ね備えた実施例、参考例1は第1の本発明の要件のみを備えた例、実施例2は第2の本発明の要件のみを備えた実施例、比較例1、2はいずれの要件も満たさない例である。
【0023】
実施例1 ・・・ BET比表面積から求めた一次粒径が0.04μm、平均粒径が0.2μmの酸化インジウム粉末と、BET比表面積から求めた一次粒径が0.09μm、平均粒径が0.5μmの酸化錫粉末を原料粉末とし、これらの粉末を酸化錫組成が10重量%となるように配合した。粉末を5kg、成形用バインダーとしてPVAを50g、直径3mmφのジルコニアボールを12kg、イオン交換水を7.5kgを容量20リットルの樹脂ポットに入れて24時間混合し、取り出した後スプレードライヤーで造粒した。造粒粉をビニル製の型に充填し3ton/cm2でCIP成形した。焼結は酸素ガスを5l/minで流しながら1500℃にて10時間保持した。また1000℃から1500℃までの昇温速度は5℃/minである。得られた焼結体を幅127mm、長さ507mm、厚さ6mmに加工した。
【0024】
焼結体の密度および任意の20視野の空孔の分布および形状を観察した後スパッタリング用ターゲット材として使用し、DCマグネトロンスパッタ法によってスパッタリングを行った。使用開始から20時間経過後の10分間当たりの異常放電回数の測定と、40時間経過後のターゲット表面のノジュールの生成状況の観察を行った。観察した表面における空孔の総数に対する、該表面における直径2μm以上の空孔の個数の割合(%)、直径2μm以上の空孔のうち、断面形状の扁平率が2を超えた空孔の存在率(%)、焼結体密度(%)、異常放電回数(/10分)、ノジュールの発生状況を表1に示す。
【0025】
【表1】
【0026】
参考例1 ・・・ BET比表面積から求めた一次粒径が0.04μm、平均粒径が0.2μmの酸化インジウム粉末と、BET比表面積から求めた一次粒径が0.09μm、平均粒径0.5μmの酸化錫粉末を原料粉末とし、これらの粉末を酸化錫組成が10重量%となるように配合した。粉末を5kg、成形用バインダーとしてPVAを50g、直径3mmφのジルコニアボールを12kg、イオン交換水を7.5kgを容量20リットルの樹脂ポットに入れて24時間混合し、取り出した後スプレードライヤーで造粒した。造粒粉をビニル製の型に充填し3ton/cm2でCIP成形した。焼結は酸素ガスを5l/minで流しながら1400℃にて15時間保持した。また1000℃から1500℃までの昇温速度は1℃/minである。焼結体の大きさ、および試験方法は実施例1と同様である。得られた結果を表1に示す。
【0027】
実施例2 ・・・ BET比表面積から求めた一次粒径が0.04μm、平均粒径が0.2μmの酸化インジウム粉末と、BET比表面積から求めた一次粒径が0.09μm、平均粒径0.5μmの酸化錫粉末を原料粉末とし、これらの粉末を酸化錫組成が10重量%となるように配合した。粉末を5kg、成形用バインダーとしてPVAを50g、直径20mmφのジルコニアボールを5kg、イオン交換水を7.5kgを容量20リットルの樹脂ポットに入れて24時間混合し、取り出した後スプレードライヤーで造粒した。造粒粉をビニル製の型に充填し3ton/cm2でCIP成形した。焼結は酸素ガスを5l/minで流しながら1500℃にて10時間保持した。また1000℃から1500℃までの昇温速度は5℃/minである。焼結体の大きさ、および試験方法は実施例1と同様である。得られた結果を表1に示す。
【0028】
比較例1 ・・・ BET比表面積から求めた一次粒径が0.04μm、平均粒径が0.2μmの酸化インジウム粉末と、BET比表面積から求めた一次粒径が0.09μm、平均粒径0.5μmの酸化錫粉末を原料粉末とし、これらの粉末を酸化錫組成が10重量%となるように配合した。粉末を5kg、成形用バインダーとしてPVAを50g、直径20mmφのジルコニアボールを5kg、イオン交換水を7.5kgを容量20リットルの樹脂ポットに入れて24時間混合し、取り出した後スプレードライヤーで造粒した。造粒粉をビニル製の型に充填し3ton/cm2でCIP成形した。焼結は酸素ガスを5l/minで流しながら1400℃にて20時間保持した。また1000℃から1500℃までの昇温速度は1℃/minである。焼結体の大きさ、および試験方法は実施例1と同様である。得られた結果を表1に示す。
【0029】
比較例2 ・・・ BET比表面積から求めた一次粒径が0.3μm、平均粒径が2μmの酸化インジウム粉末と、BET比表面積から求めた一次粒径が0.5μm、平均粒径3μmの酸化錫粉末を原料粉末とし、これらの粉末を酸化錫組成が10重量%となるように配合した。粉末を5kg、成形用バインダーとしてPVAを50g、直径20mmφのジルコニアボールを5kg、イオン交換水を7.5kgを容量20リットルの樹脂ポットに入れて24時間混合し、取り出した後スプレードライヤーで造粒した。造粒粉をグラファイト型に充填し真空ホットプレスを用いて800℃、0.6ton/cm2の条件で成形・焼結を行った。焼結体の大きさ、および試験方法は実施例1と同様である。得られた結果を表1に示す。
【0031】
【発明の効果】
本発明によれば、スパッタリング中の異常放電回数がきわめて少なく、また長時間使用後においてもノジュールが発生しないITOターゲットを提供することができる。[0001]
[Industrial application fields]
The present invention relates to a sintered body of indium oxide and tin oxide (hereinafter referred to as “ITO”) having extremely excellent performance as a sputtering target when a transparent conductive film is formed by a sputtering method.
[0002]
[Prior art]
A transparent conductive film obtained by sputtering an ITO sintered body has attracted attention as a promising film because of its low specific resistance value. For example, by sputtering ITO under appropriate conditions on a substrate heated to about 300 ° C., a high-quality ITO film having good transparency and a specific resistance value of 2.0 × 10 −4 Ω · cm or less can be obtained. .
[0003]
As an ITO sintered body for forming such an ITO film having a low resistance value, Japanese Patent Application Laid-Open No. 62-21751 contains an appropriate amount of indium oxide powder and tin oxide powder, and is mixed and pulverized. Then, an ITO sintered body produced by forming and calcining this and then pulverizing it again and further shaping and sintering the obtained calcined powder is disclosed. When sputtering is performed using the ITO sintered body thus obtained, the plasma state becomes unstable due to the occurrence of abnormal discharge, the structure of the sputtered film is deteriorated, and the characteristic value of the film is deteriorated. Cause inconvenience. In addition, when the target is used for a long time under a situation where abnormal discharge frequently occurs, nodules are generated on the target surface, thereby causing a problem that the film formation rate is lowered. Considering that the cause of these problems is vacancies existing in the target, attempts have been made to solve them by reducing the number of vacancies. For example, in JP-A-2-115326, an appropriate amount of indium oxide powder and metal tin powder is blended, calcined and then pulverized again to obtain a powder. A method for producing an ITO sintered body having a high density, that is, having a small number of pores, by hot pressing, which is a sintering method of No. 4, is disclosed.
[0004]
However, even the ITO target obtained in this way is hardly an industrially satisfactory target.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems associated with sputtering of an ITO target and to provide an oxide sintered body capable of effectively suppressing the occurrence of abnormal discharge and the generation of nodules.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the oxide sintered body according to the first aspect of the present invention is composed of indium, tin and oxygen as main components, has a relative density of 85% or more, and has pores having a diameter of 2 μm or more on an arbitrary surface. The number is 20% or less with respect to the total number of holes present on the surface . The oxide sintered body according to the second aspect of the present invention is a flat material mainly composed of indium, tin and oxygen, having a relative density of 85% or more and 95% or more of pores having a diameter of 2 μm or more and having a cross-sectional shape. It is characterized by a generally spherical shape with a rate of 2 or less.
[0007]
[Action]
In order to suppress the occurrence of abnormal discharge phenomenon and the generation of nodules, it is not sufficient to reduce the number of holes, and the distribution of holes and / or the shape of the holes must be controlled. In other words, abnormal discharge and nodule generation are caused by minute regions where vacancies are concentrated and electrical conductivity is deteriorated, vacancies with sharp protrusions and indentations, and electric charges are easily concentrated, or vacancies are connected to each other. Since it originates from a portion that is continuous and hinders the passage of charges, it is possible to effectively suppress generation of abnormal discharge and generation of nodules by removing minute defects on these tissues. is there.
[0008]
(ITO sintered body)
The ITO sintered body of the present invention is essentially composed of indium, tin and oxygen, and is of indium oxide / tin oxide system. This composition itself is the same as that of a known ITO sintered body. Generally, the average composition of tin is 3 to 12% by weight, and the average composition of indium is 70 to 78% by weight.
[0009]
The density of the sintered body must be a relative density of 85% or more. More preferably, the relative density is 90% or more. When the relative density is less than 85%, the number of vacancies existing in the target increases, the electrical conductivity of the entire target deteriorates, and the effect of the present invention cannot be obtained. The relative density is calculated with a theoretical density of 7.15 g / cm 3 .
[0010]
Moreover, it is preferable that there are no coarse pores having a diameter of 10 μm or more. However, even if the holes satisfy the requirements of the present invention, the effects of the present invention are not impaired.
[0011]
In the first aspect of the present invention, the number of holes having a diameter of 2 μm or more on an arbitrary surface must be 20% or less with respect to the total number of holes existing on the surface . The number of certain very small area in the diameter 2μm or more pores, the more than 20% relative to the total number of pores present in the region, it is meant that the pores are concentrated, such This is because such a region has a relatively high electric conductivity compared to other regions, and is likely to be a starting point for abnormal discharge and nodules. The presence of holes having a diameter of less than 2 μm need not be considered because the influence on electrical conductivity is negligibly small.
[0012]
The number of vacancies observed on an arbitrary surface is, for example, vacancy existing in a 100 mm side photograph taken at 1000 times magnification in 20 or more different fields of view after polishing an arbitrary surface of a sintered body to a mirror surface. Is obtained by averaging the number of .
[0013]
In the second aspect of the present invention, it is necessary that the shape of the holes is almost spherical. If the vacancies are connected for a long time or have sharp protrusions or indentations, the electric charge tends to concentrate on those portions, and abnormal discharge or nodule tends to start. Accordingly, it is necessary that 95% or more of the holes having a diameter of 2 μm or more have a substantially spherical shape with a cross-sectional flatness of 2 or less.
[0014]
The first and second inventions may be combined.
[0015]
(Production of ITO sintered body)
In order to obtain a sintered body with uniform pore distribution in the ITO sintered body according to the first aspect of the present invention, the selection of the raw material powder, the mixing / pulverizing step and the molding step are extremely important.
[0016]
In addition, in order to control the shape of the pores in the second aspect of the present invention, it is necessary to accurately control the sintering temperature, the sintering time, and the heating rate.
[0017]
As the raw material powder, fine In 2 O 3 and SnO 2 oxide powders having a primary particle size of 0.2 μm or less and an average particle size of 1 μm or less are used. The primary particle size of the raw material powder is preferably fine. A wet ball mill is used for mixing and pulverizing the raw material powder. For mixing, balls having a diameter of 5 mm or less are used, and the amount of balls inserted is at least twice that of the raw material powder by weight. The mixing time is 18 hours or longer. This condition is necessary to break up the aggregation of the raw material powder.
[0018]
Note that the calcination described in the prior art example is not performed. This is because when the particle size of the powder is increased by calcination, the distribution of pores in the sintered body becomes non-uniform.
[0019]
The mixed and pulverized slurry is preferably granulated into a spherical shape with a size of 30 μm to 60 μm. An example of the granulation method is a spray dryer.
[0020]
Molding is performed by a hydrostatic pressure press. A uniaxial press is not preferable because the distribution of pores becomes uneven in the thickness direction.
[0021]
The sintering temperature is 1450 ° C. or higher and 1550 ° C. or lower. When the sintering temperature is less than 1450 ° C., the shape of the pores does not become spherical, and when the sintering temperature is higher than 1550 ° C., the pores are bonded to each other, and the pores become coarse or continuous. The sintering holding time is 5 hours or more and 15 hours or less. The rate of temperature rise needs to be controlled particularly within a temperature range of 1000 ° C. or higher, and is 3 ° C./min or higher and 10 ° C./min or lower. Further, when the sintering atmosphere is an oxygen gas stream, a high-density sintered body can be obtained.
[0022]
【Example】
Hereinafter, the excellent effects of the present invention will be described using examples. Example 1 The first and second embodiments that combines the requirements of the present invention, examples Reference Example 1 having only requirement of the first invention, the second embodiment only requirement of the second aspect of the present invention The provided examples and comparative examples 1 and 2 are examples that do not satisfy any of the requirements .
[0023]
Example 1 Indium oxide powder having a primary particle diameter of 0.04 μm and an average particle diameter of 0.2 μm determined from the BET specific surface area, and a primary particle diameter of 0.09 μm and an average particle diameter determined from the BET specific surface area Was used as a raw material powder, and these powders were blended so that the tin oxide composition was 10% by weight. 5 kg of powder, 50 g of PVA as a molding binder, 12 kg of zirconia balls with a diameter of 3 mm φ, 7.5 kg of ion-exchanged water are placed in a resin pot with a capacity of 20 liters and mixed for 24 hours. Grained. The granulated powder was filled into a vinyl mold and CIP molded at 3 ton / cm 2 . Sintering was held at 1500 ° C. for 10 hours while flowing oxygen gas at 5 l / min. The rate of temperature increase from 1000 ° C. to 1500 ° C. is 5 ° C./min. The obtained sintered body was processed into a width of 127 mm, a length of 507 mm, and a thickness of 6 mm.
[0024]
After observing the density of the sintered body and the distribution and shape of the vacancies in any 20 fields of view, it was used as a sputtering target material and was sputtered by the DC magnetron sputtering method. The number of abnormal discharges per 10 minutes after 20 hours from the start of use was measured, and the generation of nodules on the target surface after 40 hours was observed. Ratio of the number of holes having a diameter of 2 μm or more on the surface to the total number of holes observed on the surface (%) . Out of holes having a diameter of 2 μm or more, existence of holes having a cross-sectional flatness exceeding 2 Table 1 shows the rate (%) , sintered body density (%), number of abnormal discharges (/ 10 minutes), and generation of nodules.
[0025]
[Table 1]
[0026]
Reference Example 1 Indium oxide powder having a primary particle diameter of 0.04 μm and an average particle diameter of 0.2 μm determined from the BET specific surface area, and an average particle diameter of 0.09 μm and a primary particle diameter determined from the BET specific surface area 0.5 μm tin oxide powder was used as a raw material powder, and these powders were blended so that the tin oxide composition was 10% by weight. 5 kg of powder, 50 g of PVA as a molding binder, 12 kg of zirconia balls with a diameter of 3 mm φ, 7.5 kg of ion-exchanged water are placed in a resin pot with a capacity of 20 liters and mixed for 24 hours. Grained. The granulated powder was filled into a vinyl mold and CIP molded at 3 ton / cm 2 . Sintering was maintained at 1400 ° C. for 15 hours while flowing oxygen gas at 5 l / min. The rate of temperature increase from 1000 ° C. to 1500 ° C. is 1 ° C./min. The size of the sintered body and the test method are the same as in Example 1. The obtained results are shown in Table 1.
[0027]
Example 2 Indium oxide powder having a primary particle diameter of 0.04 μm and an average particle diameter of 0.2 μm determined from the BET specific surface area, and an average particle diameter of 0.09 μm and a primary particle diameter determined from the BET specific surface area 0.5 μm tin oxide powder was used as a raw material powder, and these powders were blended so that the tin oxide composition was 10% by weight. Concrete powder 5 kg, the PVA as a molding binder 50 g, zirconia balls having a diameter of 20 mm phi 5 kg, put 7.5kg of deionized water to the resin pot capacity 20 liters and mixed for 24 hours, with a spray dryer after removal Grained. The granulated powder was filled into a vinyl mold and CIP molded at 3 ton / cm 2 . Sintering was held at 1500 ° C. for 10 hours while flowing oxygen gas at 5 l / min. The rate of temperature increase from 1000 ° C. to 1500 ° C. is 5 ° C./min. The size of the sintered body and the test method are the same as in Example 1. The obtained results are shown in Table 1.
[0028]
Comparative Example 1 Indium oxide powder having a primary particle diameter of 0.04 μm and an average particle diameter of 0.2 μm determined from the BET specific surface area, and an average particle diameter of 0.09 μm and a primary particle diameter determined from the BET specific surface area 0.5 μm tin oxide powder was used as a raw material powder, and these powders were blended so that the tin oxide composition was 10% by weight. Concrete powder 5 kg, the PVA as a molding binder 50 g, zirconia balls having a diameter of 20 mm phi 5 kg, put 7.5kg of deionized water to the resin pot capacity 20 liters and mixed for 24 hours, with a spray dryer after removal Grained. The granulated powder was filled into a vinyl mold and CIP molded at 3 ton / cm 2 . Sintering was held at 1400 ° C. for 20 hours while flowing oxygen gas at 5 l / min. The rate of temperature increase from 1000 ° C. to 1500 ° C. is 1 ° C./min. The size of the sintered body and the test method are the same as in Example 1. The obtained results are shown in Table 1.
[0029]
Comparative Example 2 Indium oxide powder having a primary particle diameter of 0.3 μm and average particle diameter of 2 μm determined from the BET specific surface area, and primary particle diameter of 0.5 μm and average particle diameter of 3 μm determined from the BET specific surface area The tin oxide powder was used as a raw material powder, and these powders were blended so that the tin oxide composition was 10% by weight. Concrete powder 5 kg, the PVA as a molding binder 50 g, zirconia balls having a diameter of 20 mm phi 5 kg, put 7.5kg of deionized water to the resin pot capacity 20 liters and mixed for 24 hours, with a spray dryer after removal Grained. The granulated powder was filled in a graphite mold and molded and sintered under the conditions of 800 ° C. and 0.6 ton / cm 2 using a vacuum hot press. The size of the sintered body and the test method are the same as in Example 1. The obtained results are shown in Table 1.
[0031]
【The invention's effect】
According to the present invention, it is possible to provide an ITO target in which the number of abnormal discharges during sputtering is extremely small and no nodules are generated even after a long period of use.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04814695A JP3755159B2 (en) | 1995-03-08 | 1995-03-08 | Oxide sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04814695A JP3755159B2 (en) | 1995-03-08 | 1995-03-08 | Oxide sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08246143A JPH08246143A (en) | 1996-09-24 |
JP3755159B2 true JP3755159B2 (en) | 2006-03-15 |
Family
ID=12795230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04814695A Expired - Lifetime JP3755159B2 (en) | 1995-03-08 | 1995-03-08 | Oxide sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3755159B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4701480B2 (en) * | 2000-07-17 | 2011-06-15 | 住友化学株式会社 | Tin oxide powder and method for producing tin oxide powder |
JP5215192B2 (en) * | 2007-01-05 | 2013-06-19 | 株式会社東芝 | Sputtering target |
-
1995
- 1995-03-08 JP JP04814695A patent/JP3755159B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08246143A (en) | 1996-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5071800A (en) | Oxide powder, sintered body, process for preparation thereof and targe composed thereof | |
KR102322184B1 (en) | Indium zinc oxide (izo) based sputtering target, and method for producing same | |
JP3128861B2 (en) | Sputtering target and method for manufacturing the same | |
JP4577924B2 (en) | Method for producing sputtering target containing zinc oxide | |
JP3781878B2 (en) | ITO sintered body and ITO sputtering target | |
US20090242393A1 (en) | Nonmagnetic Material Particle Dispersed Ferromagnetic Material Sputtering Target | |
JPH10306367A (en) | Zno-ga2o3 sintered body for sputtering target and its production | |
WO2012077512A1 (en) | Zinc oxide sintered compact, sputtering target, and zinc oxide thin film | |
CN105008579A (en) | ZnO-Al2O3-MgO sputtering target and method for the production thereof | |
JPH11302835A (en) | Production of zinc oxide base sintered compact | |
JP3457969B2 (en) | High density ITO sintered body and sputtering target | |
JP7158102B2 (en) | ITO sputtering target, manufacturing method thereof, ITO transparent conductive film, and manufacturing method of ITO transparent conductive film | |
JPH11256320A (en) | Zno base sintered compact | |
JP6024545B2 (en) | Zinc oxide-based sintered body, method for producing the same, and sputtering target | |
JP3755159B2 (en) | Oxide sintered body | |
CN116283251B (en) | Alumina ceramic and preparation method and application thereof | |
JPH11171539A (en) | Zno-base sintered compact and its production | |
JPH11256321A (en) | Zno base sintered compact | |
JP3988411B2 (en) | ITO sintered body, method for producing the same, and ITO sputtering target using the same | |
JP2004175616A (en) | Zinc oxide-type sintered compact and its manufacturing method | |
JP3632781B2 (en) | Oxide sintered body | |
JPH10297962A (en) | Zno-ga2o3-based sintered compact for sputtering target and production of the sintered compact | |
JPH11158607A (en) | Zno sintered compact and its production | |
JP3030913B2 (en) | Manufacturing method of ITO sintered body | |
JPH10297963A (en) | Zno-ga2o3-based sintered compact for sputtering target and production of the sintered compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041124 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20041124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050906 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051005 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20051018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051212 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120106 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120106 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140106 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |