JP3753320B2 - Shield material manufacturing method - Google Patents
Shield material manufacturing method Download PDFInfo
- Publication number
- JP3753320B2 JP3753320B2 JP2002331035A JP2002331035A JP3753320B2 JP 3753320 B2 JP3753320 B2 JP 3753320B2 JP 2002331035 A JP2002331035 A JP 2002331035A JP 2002331035 A JP2002331035 A JP 2002331035A JP 3753320 B2 JP3753320 B2 JP 3753320B2
- Authority
- JP
- Japan
- Prior art keywords
- ribbon
- soft magnetic
- alloy ribbon
- magnetic
- quenched alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Soft Magnetic Materials (AREA)
- Winding, Rewinding, Material Storage Devices (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、アモルファス材料を熱処理して得られる軟磁性急冷合金薄帯を接着ロールの外周上において樹脂フィルムに貼付するシールド材の製造方法に関するものである。
【0002】
【従来の技術】
優れた磁気特性を有する磁性薄帯として、アモルファス材料やナノ結晶材料が知られている。代表的なアモルファス材料は、溶湯をロール表面で急冷し、厚さ50μm以下のリボンとして得ることができる。このまま使用する場合もあるが、加熱処理を施し、磁気特性の向上を行う場合も多い。
また、ナノ結晶材料は、たとえばFe−Cu−Nb−(Si,B)系のごときナノ結晶組織に調整可能な合金組成を有する溶湯を、上記アモルファス合金と同様にして急冷しアモルファスリボンを製造し、その後加熱処理によりナノ結晶組織に調整して得ることができる。ナノ結晶材料は、たとえば、特公平4−4393号に示されるような、組織の少なくとも50%以上が平均結晶粒径100nm以下の微細な結晶粒からなる材料である。
【0003】
上述した熱処理を施したアモルファス材料あるいはナノ結晶材料の軟磁性急冷合金薄帯は、急冷したままのアモルファス材料に比べて靱性が低下して、脆化する傾向がある。特に、熱処理により結晶化させてナノ結晶組織に調整すると脆化傾向は著しく、ハンドリング時に薄帯が容易に破断する問題がある。
上記のアモルファス材料あるいはナノ結晶材料の用途として、たとえば特公平5−19196号等に記載されるセンサー材料や特開平1−241200号等に記載されるシールド材料がある。このような用途において、脆化した状態の薄帯を用いることは、加工時および使用時のハンドリングにおいて割れ、欠け等を生じ問題となるため、通常は軟磁性急冷合金薄帯の片面若しくは両面に樹脂を貼付することで複合し、積層薄帯としたものを使用することが多い。
【0004】
軟磁性急冷合金薄帯と樹脂とを複合して上記の積層薄帯とする場合、一般に樹脂の耐熱性は高くても300℃程度しかなく、たとえば上述したナノ結晶材料への加熱処理のように400℃を越える温度を適用する場合は、加熱処理の前に樹脂を予め貼付けたり被覆しておくことができず、従って熱処理後に複合し積層薄帯とすることが行われる。
従来、熱処理後の軟磁性急冷合金薄帯と樹脂との複合は、例えば図4、図5に示すように、二つの接着ロールを用いて磁性薄帯と樹脂とを接着することで製造されている。また図6に示すように磁性薄帯コイルに直接ローラ等を押付けて樹脂を貼付ける製造方法が検討されている(特許文献1参照。)。
【0005】
【特許文献1】
特開2000−51933号公報
【0006】
【発明が解決しようとする課題】
図4、図5に示す従来の方法では、磁性薄帯コイル7から巻きだされ接着ロール2と接触するまでの非拘束磁性薄帯4が長いため、アモルファス材料やナノ結晶材料のような形状が不均質な脆性材料を取り扱う場合においては、軟磁性急冷合金薄帯を装置にセットする段階で破断を生じる場合がある。
また、製造開始後も非拘束磁性薄帯4が図5に示すような捩れや蛇行を生じ、破断する場合がある。
【0007】
これに対し特許文献1に開示される装置は、非拘束磁性薄帯に相当する部分がないため上記のような捩れや蛇行が生じにくい。しかしながら、磁性薄帯コイルに圧着ロール9等を押付けて樹脂フィルムを貼付するため、接触点には常時応力がかかることになる。また、磁性薄帯コイルは真円ではないため接触の際、磁性薄帯コイルに衝撃が加わり、破断する場合がある。
本発明の目的は、熱処理により脆化した軟磁性急冷合金薄帯が破断することなく安定して樹脂フィルムと貼付することができるシールド材の製造方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明者は、軟磁性急冷合金薄帯を巻き回したコイルから巻き出された磁性薄帯が捩れや蛇行により破断するという問題を検討し、軟磁性急冷合金薄帯が、コイルから巻出され接着ロールと接触するまでの非拘束磁性薄帯の長さと、磁性薄帯の張力を厳密に制御する構成を採用することで捩れや蛇行を大きく改善できることを見いだし本発明に到達した。
【0009】
すなわち本発明は、軟磁性急冷合金薄帯を、該軟磁性急冷合金薄帯を巻き回したコイルから連続的に巻出し、接着ロールの外周上において樹脂フィルムに貼付するシールド材の製造方法であって、軟磁性急冷合金薄帯が、前記コイルから巻出され前記接着ロールと接触するまでの非拘束磁性薄帯の長さLを0<L≦200(mm)とし、単位断面積あたり3.0×106〜8.0×106(Pa)の張力を付与しながら前記軟磁性急冷合金薄帯を巻出すシールド材の製造方法である。
本発明は、組織の少なくとも50%以上が平均結晶粒径100nm以下のナノ結晶組織からなるナノ結晶合金薄帯を用いる場合に特に好適である。
また、圧着ロールを用い、軟磁性急冷合金薄帯が接着ロールと接触を開始する位置とは異なる接着ロール上の位置において、軟磁性急冷合金薄帯と樹脂フィルムとを圧着することが好ましい。
【0010】
【発明の実施の形態】
上記のように本発明の積層薄帯の製造方法における重要な特徴は、軟磁性急冷合金薄帯が、前記コイルから巻出され前記接着ロールと接触するまでの非拘束磁性薄帯の長さLを0<L≦200(mm)とし、且つ磁性薄帯コイルから巻出された軟磁性急冷合金薄帯に3.0×106〜8.0×106(Pa)の張力を付与することである。
【0011】
本発明の製造方法は例えば図1、図2に示す装置により実施することが出来る。図1は、片面に接着剤がついた樹脂フィルム6を樹脂フィルム巻出し機1から巻出し、磁性薄帯を磁性薄帯巻出し機3に設置した磁性薄帯コイル7から巻出し、両者を接着ロール2の外周上で接合して積層薄帯9とした後、積層薄帯9を巻取り機5で巻取る積層薄帯(シールド材)の製造装置の概略構成図である。図2は図1の磁性薄帯巻出し機3、接着ロール2および圧着ロール8のみを拡大した概略図である。
本発明の製造方法では、磁性薄帯コイル7の外周面における軟磁性急冷合金薄帯の巻出開始位置12と、接着ロール外周での接触開始位置10との距離L、すなわち積層薄帯製造時の非拘束磁性薄帯の長さLが0<L≦200mmとなるよう磁性薄帯巻出し機3と、接着ロール2を配する。加えて非拘束磁性薄帯部分の軟磁性急冷合金薄帯に3.0×106〜8.0×106(Pa)の張力を付与する。
【0012】
本発明者の検討では、シールド材製造時における軟磁性急冷合金薄帯の破断は、殆どの場合、非拘束磁性薄帯と磁性薄帯コイルとの巻出開始位置または非拘束磁性薄帯と接着ロールとの接触開始位置において生じる。これは、アモルファス材料や、ナノ結晶材料である軟磁性急冷合金薄帯は、一般の結晶質の金属材料と比べて脆性が著しいため、非拘束磁性薄帯の捩れ、蛇行が巻出開始位置または接触開始位置にもたらす応力集中により破断する為と考えられる。従って、軟磁性急冷合金薄帯の破断を低減するには、非拘束磁性薄帯の捩れ、蛇行を低減することが重要となる。本発明では非拘束磁性薄帯の長さ、および張力を特定の範囲に制御することで非拘束磁性薄帯の捩れ、蛇行を低減し、軟磁性急冷合金の破断を抑制する。
【0013】
先ず本発明者は、図4に一例を示す装置において、軟磁性急冷合金薄帯をコイルから巻出した際に非拘束磁性薄帯で生じる捩れ、蛇行の原因について検討を行った。その結果、捩れ、蛇行の発生は、軟磁性急冷合金薄帯の厚さが幅方向で一定でないことが一因であることを見出した。
軟磁性急冷合金薄帯は溶湯をロール表面で急冷する製法上、偏肉を生じやすく、幅方向で厚さを厳密に制御することが困難である。本発明者の検討では、軟磁性急冷合金薄帯の厚さのばらつきは磁性薄帯厚さの10%以上となることが多い。
【0014】
幅方向の一方の側が厚くなっている軟磁性急冷合金薄帯では、非拘束磁性薄帯が幅方向の全面で接着ロールと接触した場合、非拘束磁性薄帯は捩じられることになる。軟磁性急冷合金薄帯が連続して巻出される場合には、非拘束磁性薄帯は繰り返し捩じられるが、この際、非拘束磁性薄帯に付与されている張力が十分でないと捩れが大きくなり、その結果、軟磁性急冷合金薄帯の破断に至ると考えられる。また、場合によっては、この過程で、蛇行も生じると考えられる。
【0015】
そこで本発明では、非拘束磁性薄帯に単位断面積あたり3.0×106〜8.0×106(Pa)の張力を付与することで軟磁性急冷合金薄帯の厚さのばらつきに起因する捩じれ、蛇行を抑制する。一定以上の張力を付与した状態では、接触開始位置において非拘束磁性薄帯の幅方向で厚みの大きい箇所が主体的に接着ロールと接触し、厚みの小さい個所は浮き気味に接着ロールと接触する状態が維持されるため、破断を生じるほどの大きな捩れの発生を抑制することができる。本発明者の検討では、磁性薄帯コイルから巻出された非拘束磁性薄帯に3.0×106Pa以上の張力を付与した場合には、非拘束磁性薄帯に捩れの増幅を抑制することが出来る。好ましくは4.0×106(Pa)以上の張力を付与する。
一方、張力が高すぎると、付与した張力自体が原因となり軟磁性急冷合金薄帯が破断することがある。よって、本発明では非拘束磁性薄帯に付与する張力は8.0×106(Pa)以下とする。好ましくは6.0×106(Pa)以下の張力を付与する。
【0016】
上述の張力制御と同時に、本発明では前記接着ロールと接触するまでの非拘束磁性薄帯の長さLを0<L≦200(mm)とする。
非拘束磁性薄帯が長くなる程、捩れの増幅を抑制するためには高い張力が必要となる。一方、張力を高くしすぎると、既述のように付与した張力自体が薄帯破断の原因となる。本発明者の検討では、L≦200(mm)であれば、8.0×106(Pa)以下の張力により捩れの増幅を抑制できる。好ましくはL≦100(mm)である。
【0017】
また、L>0mm、すなわち磁性薄帯コイルと接着ロールの外周面とを非接触とするのは、接触させた場合磁性薄帯コイル7に接触ロール2を押付けることで生じる圧縮応力が破断の原因となるからである。
さらに非接触とすることで、磁性薄帯コイルから巻出された磁性薄帯は樹脂フィルムの走行方向に対する垂直方向の動きについて自由度を持ち、樹脂フィルムの走行方向と磁性薄帯コイルの回転軸とが正確に直交していない場合でも、自発的なズレの補正が可能であり、ズレを生じた後に積層を続けても破断を生じ難くなる。
【0018】
本発明の方法は、組織の少なくとも50%以上が平均結晶粒径100nm以下のナノ結晶組織を有するナノ結晶材料を用いて積層薄帯を製造するにおいて特に有効である。ナノ結晶材料は、アモルファス薄帯を熱処理した後の通常のアモルファス材料と比べても脆化が著しい。上記のように本発明の製造方法によれば非拘束磁性薄帯での応力集中を生じ難いため、脆化が著しく容易に破断を生じるナノ結晶材料を用いても製造中に破断を生じにくい。
【0019】
さらに、本発明のシールド材の製造方法では、軟磁性急冷合金薄帯と樹脂フィルとを複合する際、圧着ロールを用いて、接着ロール上の軟磁性急冷合金薄帯と樹脂フィルムとを加圧して圧着することで両者の密着が確実となるが、この際、本発明者の検討によれば、図1、2に一例を示すように接着ロール2上で圧着ロール8を押し当てる圧着位置11を、軟磁性急冷合金薄帯が接着ロールと接触を開始する位置(図1、2中の接触開始位置10)とは異なる位置とすることが好ましい。
【0020】
既に述べたように軟磁性急冷合金薄帯は幅方向で厚みがばらついている軟磁性急冷合金薄帯は、接着ロールと接触を開始する位置(例えば、図2中の接触開始位置10)において、非拘束磁性薄帯である軟磁性急冷合金薄帯は繰り返し捩じられており、接触を開始する位置での軟磁性急冷合金薄帯は未だ動的な状態である。動的な状態の軟磁性急冷合金薄帯を加圧した場合、圧着ロールと最初に接触する部分において軟磁性急冷合金薄帯に発生する応力は一定とならない。従って、動的な状態での加圧は軟磁性急冷合金薄帯に過度の応力を発生させることがあり、その場合には、圧着ロールの加圧が軟磁性急冷合金薄帯の破断原因となる。
【0021】
軟磁性急冷合金薄帯が動的な状態なのは、接触を開始する位置の極近傍のみであり、それ以外の位置では軟磁性急冷合金薄帯の位置は、樹脂フィルム上で固定されている。従って、軟磁性急冷合金薄帯が接着ロールと接触を開始する位置とは異なる位置において圧着することにより、軟磁性急冷合金薄帯の破断を低減することが出来るのである。
よって、本発明のシールド材の製造方法では、軟磁性急冷合金薄帯が前記コイルから巻出され前記接着ロールと接触を開始する位置とは異なる位置において、軟磁性急冷合金薄帯と樹脂フィルムとを圧着することが好ましい。
【0022】
さらに、本発明のシールド材の製造方法では、図3に示すように磁性薄帯コイル7を幅方向に複数配することにより幅広の積層薄帯を製造出来る。本発明の装置では接着ロール2上の任意の位置に磁性薄帯コイルを適宜配置することが可能であり、ロール幅以外に装置を大型化することなく磁性薄帯の帯幅以上の積層薄帯を製造することが出来る。図3では二つの磁性薄帯コイル7を配しているが、接着ロール外周上にスペースがあれば三つ以上の磁性薄帯コイルを配することも可能である。
【0023】
【発明の効果】
本発明によれば熱処理により脆化した軟磁性急冷合金薄帯を樹脂フィルムに貼付する際の軟磁性急冷合金薄帯の破断を飛躍的に改善することができ、破断することなく積層薄帯であるシールド材を製造するためには欠くことのできない技術となる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す製造装置の概略構成図である。
【図2】磁性薄帯コイルと接着ロールとの近接部の拡大図である。
【図3】複数の磁性薄帯コイルを配した本発明の好ましい一実施例の斜視図である。
【図4】従来の積層薄帯の製造装置の概略構成図である。
【図5】従来の装置での応力集中発生部を示す斜視図である。
【図6】従来の積層薄帯の製造装置の概略構成図である。
【符号の説明】
1 樹脂フィルム巻出機、2 接着ロール、3 磁性薄帯巻出機、4 非拘束磁性薄帯、5 巻取機、6 樹脂フィルム、7 磁性薄帯コイル、8 圧着ロール、9積層薄帯、10 接触開始位置、11 圧着位置、12 巻出開始位置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a shield material in which a soft magnetic quenched alloy ribbon obtained by heat treatment of an amorphous material is attached to a resin film on the outer periphery of an adhesive roll.
[0002]
[Prior art]
Amorphous materials and nanocrystalline materials are known as magnetic ribbons having excellent magnetic properties. A typical amorphous material can be obtained as a ribbon having a thickness of 50 μm or less by rapidly cooling the molten metal on the roll surface. Although it may be used as it is, it is often subjected to heat treatment to improve magnetic properties.
In addition, the nanocrystalline material is prepared by rapidly cooling a molten metal having an alloy composition that can be adjusted to a nanocrystalline structure, such as Fe-Cu-Nb- (Si, B), in the same manner as the above amorphous alloy. Then, it can be obtained by adjusting to a nanocrystalline structure by heat treatment. The nanocrystalline material is a material in which at least 50% of the structure is composed of fine crystal grains having an average crystal grain size of 100 nm or less, as shown in, for example, Japanese Patent Publication No. 4-4393.
[0003]
The soft magnetic quenched alloy ribbon of amorphous material or nanocrystalline material subjected to the heat treatment described above tends to be brittle due to reduced toughness compared to the amorphous material that has been quenched. In particular, when crystallized by heat treatment and adjusted to a nanocrystalline structure, the tendency to embrittle is remarkable, and there is a problem that the ribbon is easily broken during handling.
Applications of the amorphous material or nanocrystalline material include, for example, a sensor material described in Japanese Patent Publication No. 5-19196 and a shielding material described in Japanese Patent Application Laid-Open No. 1-241200. In such applications, the use of brittle strips causes problems such as cracking, chipping, etc. during handling and use, so usually one side or both sides of soft magnetic quenched alloy strips. In many cases, a laminated ribbon is used as a composite by pasting resin.
[0004]
When a soft magnetic quenching alloy ribbon and a resin are combined to form the above-described laminated ribbon, the resin generally has a high heat resistance of only about 300 ° C., for example, the heat treatment of the nanocrystalline material described above. When a temperature exceeding 400 ° C. is applied, the resin cannot be attached or coated in advance before the heat treatment, and therefore, a composite thin film is formed after the heat treatment.
Conventionally, a composite of a soft magnetic quenched alloy ribbon and a resin after heat treatment is manufactured by bonding the magnetic ribbon and the resin using two adhesive rolls as shown in FIGS. Yes. In addition, as shown in FIG. 6, a manufacturing method in which a roller or the like is pressed directly on a magnetic ribbon coil to attach a resin has been studied (see Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-51933
[Problems to be solved by the invention]
In the conventional method shown in FIG. 4 and FIG. 5, since the unconstrained magnetic ribbon 4 from the
Further, even after the start of production, the unconstrained magnetic ribbon 4 may be twisted or meandered as shown in FIG.
[0007]
On the other hand, the device disclosed in
An object of the present invention is to provide a method for producing a shield material that can be stably stuck to a resin film without breaking a soft magnetic quenched alloy ribbon that has become embrittled by heat treatment.
[0008]
[Means for Solving the Problems]
The present inventor examined the problem that the magnetic ribbon unwound from the coil wound with the soft magnetic quenched alloy ribbon was broken by twisting or meandering, and the soft magnetic quenched alloy ribbon was unwound from the coil. It has been found that twisting and meandering can be greatly improved by adopting a configuration in which the length of the unconstrained magnetic ribbon until contact with the adhesive roll and the tension of the magnetic ribbon are strictly controlled.
[0009]
That is, the present invention is a method for producing a shield material in which a soft magnetic quenched alloy ribbon is continuously unwound from a coil wound with the soft magnetic quenched alloy ribbon and adhered to a resin film on the outer periphery of an adhesive roll. The length L of the unconstrained magnetic ribbon until the soft magnetic quenched alloy ribbon is unwound from the coil and contacts the adhesive roll is set to 0 <L ≦ 200 (mm), and 3.3 per unit cross-sectional area. is 0 × 10 6 ~8.0 × 10 6 manufacturing method of the soft magnetic thin-strip rapidly solidified alloy unwinding the shielding member while applying tension (Pa).
The present invention is particularly suitable when using a nanocrystalline alloy ribbon in which at least 50% of the structure is composed of a nanocrystalline structure having an average crystal grain size of 100 nm or less.
Further, it is preferable to use a pressure-bonding roll and pressure-bond the soft magnetic quenched alloy ribbon and the resin film at a position on the adhesive roll different from the position where the soft magnetic quenched alloy ribbon starts to contact the adhesive roll.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As described above, an important feature in the method for producing the laminated ribbon of the present invention is that the length L of the unconstrained magnetic ribbon until the soft magnetic quenched alloy ribbon is unwound from the coil and contacts the adhesive roll. 0 <L ≦ 200 (mm), and a tension of 3.0 × 10 6 to 8.0 × 10 6 (Pa) is applied to the soft magnetic quenched alloy ribbon wound from the magnetic ribbon coil It is.
[0011]
The production method of the present invention can be carried out by the apparatus shown in FIGS. 1 and 2, for example. FIG. 1 shows that a
In the manufacturing method of the present invention, the distance L between the
[0012]
According to the inventor's study, in most cases, the breakage of the soft magnetic quenched alloy ribbon at the time of manufacturing the shield material is the unwinding start position of the unconstrained magnetic ribbon and the magnetic ribbon coil or bonding with the unconstrained magnetic ribbon. Occurs at the contact start position with the roll. This is because the amorphous magnetic material and the soft magnetic quenched alloy ribbon, which is a nanocrystalline material, are significantly more brittle than a general crystalline metal material. This is considered to be due to the stress concentration caused at the contact start position. Therefore, in order to reduce the breakage of the soft magnetic quenched alloy ribbon, it is important to reduce the twist and meander of the unconstrained magnetic ribbon. In the present invention, by controlling the length and tension of the unconstrained magnetic ribbon within a specific range, twisting and meandering of the unconstrained magnetic ribbon are reduced, and breakage of the soft magnetic quenched alloy is suppressed.
[0013]
First, in the apparatus shown in FIG. 4, the present inventor examined the causes of twisting and meandering generated in the unconstrained magnetic ribbon when the soft magnetic quenched alloy ribbon was unwound from the coil. As a result, it has been found that the occurrence of twisting and meandering is partly because the thickness of the soft magnetic quenched alloy ribbon is not constant in the width direction.
The soft magnetic quenched alloy ribbon tends to cause uneven thickness due to the method of quenching the molten metal on the roll surface, and it is difficult to strictly control the thickness in the width direction. According to the study of the present inventor, the thickness variation of the soft magnetic quenched alloy ribbon is often 10% or more of the magnetic ribbon thickness.
[0014]
In the soft magnetic quenched alloy ribbon in which one side in the width direction is thick, when the unconstrained magnetic ribbon comes into contact with the adhesive roll on the entire surface in the width direction, the unconstrained magnetic ribbon is twisted. When the soft magnetic quenching alloy ribbon is continuously unwound, the unconstrained magnetic ribbon is repeatedly twisted. At this time, if the tension applied to the unconstrained magnetic ribbon is not sufficient, the twist becomes large. As a result, it is considered that the soft magnetic quenched alloy ribbon is ruptured. In some cases, meandering may also occur during this process.
[0015]
Therefore, in the present invention, by applying a tension of 3.0 × 10 6 to 8.0 × 10 6 (Pa) per unit cross-sectional area to the unconstrained magnetic ribbon, the thickness of the soft magnetic quenched alloy ribbon can be varied. Suppresses twisting and meandering. In a state where a certain tension or more is applied, a portion having a large thickness in the width direction of the unconstrained magnetic ribbon mainly comes into contact with the adhesive roll at a contact start position, and a portion having a small thickness comes into contact with the adhesive roll in a floating manner. Since the state is maintained, it is possible to suppress the occurrence of a large twist that causes breakage. According to the study of the present inventor, when a tension of 3.0 × 10 6 Pa or more is applied to the unconstrained magnetic ribbon wound from the magnetic ribbon coil, the unconstrained magnetic ribbon is restrained from torsional amplification. I can do it. Preferably, a tension of 4.0 × 10 6 (Pa) or more is applied.
On the other hand, if the tension is too high, the applied tension itself may cause the soft magnetic quenched alloy ribbon to break. Therefore, in the present invention, the tension applied to the unconstrained magnetic ribbon is set to 8.0 × 10 6 (Pa) or less. Preferably, a tension of 6.0 × 10 6 (Pa) or less is applied.
[0016]
Simultaneously with the tension control described above, in the present invention, the length L of the unconstrained magnetic ribbon until it comes into contact with the adhesive roll is set to 0 <L ≦ 200 (mm).
The longer the unconstrained magnetic ribbon is, the higher tension is required to suppress torsional amplification. On the other hand, when the tension is too high, the tension itself applied as described above causes the ribbon to break. According to the study by the present inventors, if L ≦ 200 (mm), the amplification of torsion can be suppressed by a tension of 8.0 × 10 6 (Pa) or less. Preferably, L ≦ 100 (mm).
[0017]
In addition, L> 0 mm, that is, making the magnetic ribbon coil and the outer peripheral surface of the adhesive roll non-contact is that the compressive stress generated by pressing the
Furthermore, by making non-contact, the magnetic ribbon unwound from the magnetic ribbon coil has a degree of freedom in the movement in the direction perpendicular to the running direction of the resin film. Even when they are not exactly orthogonal, it is possible to correct the spontaneous displacement, and even if the lamination is continued after the occurrence of the displacement, it is difficult to cause breakage.
[0018]
The method of the present invention is particularly effective in producing a laminated ribbon using a nanocrystalline material in which at least 50% of the structure has a nanocrystalline structure with an average crystal grain size of 100 nm or less. Nanocrystalline materials are significantly more brittle than ordinary amorphous materials after heat treatment of amorphous ribbons. As described above, according to the manufacturing method of the present invention, stress concentration is hardly generated in the unconstrained magnetic ribbon, so that even when a nanocrystalline material that is fragile and breaks easily is used, it is difficult to break during manufacturing.
[0019]
Furthermore, in the manufacturing method of the shielding material of the present invention, when the soft magnetic quenched alloy ribbon and the resin film are combined, the pressure-sensitive roll is used to press the soft magnetic quenched alloy ribbon and the resin film on the adhesive roll. In this case, according to the study of the present inventor, the crimping
[0020]
As already described, the soft magnetic quenched alloy ribbon in which the thickness varies in the width direction, the soft magnetic quenched alloy ribbon starts contact with the adhesive roll (for example, the
[0021]
The soft magnetic quenched alloy ribbon is in a dynamic state only in the very vicinity of the position where contact starts, and at other positions, the position of the soft magnetic quenched alloy ribbon is fixed on the resin film. Therefore, the breakage of the soft magnetic quenched alloy ribbon can be reduced by pressing at a position different from the position where the soft magnetic quenched alloy ribbon starts to contact the adhesive roll.
Therefore, in the manufacturing method of the shield material of the present invention, the soft magnetic quenched alloy ribbon and the resin film are positioned at a position different from the position where the soft magnetic quenched alloy ribbon is unwound from the coil and starts to contact the adhesive roll. Is preferably crimped.
[0022]
Furthermore, in the manufacturing method of the shielding material of the present invention, a wide laminated ribbon can be manufactured by arranging a plurality of magnetic ribbon coils 7 in the width direction as shown in FIG. In the apparatus of the present invention, it is possible to appropriately arrange a magnetic ribbon coil at an arbitrary position on the
[0023]
【The invention's effect】
According to the present invention, it is possible to dramatically improve the breakage of a soft magnetic quenched alloy ribbon when a soft magnetic quenched alloy ribbon embrittled by heat treatment is applied to a resin film. This is an indispensable technique for manufacturing a certain shield material.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a manufacturing apparatus showing an embodiment of the present invention.
FIG. 2 is an enlarged view of a proximity portion between a magnetic ribbon coil and an adhesive roll.
FIG. 3 is a perspective view of a preferred embodiment of the present invention in which a plurality of magnetic ribbon coils are arranged.
FIG. 4 is a schematic configuration diagram of a conventional laminated ribbon manufacturing apparatus.
FIG. 5 is a perspective view showing a stress concentration generation unit in a conventional apparatus.
FIG. 6 is a schematic configuration diagram of a conventional laminated ribbon manufacturing apparatus.
[Explanation of symbols]
1 resin film unwinding machine, 2 adhesive roll, 3 magnetic ribbon unwinding machine, 4 unconstrained magnetic ribbon, 5 winding machine, 6 resin film, 7 magnetic ribbon coil, 8 pressure roll, 9 laminated ribbon, 10 Contact start position, 11 Crimp position, 12 Unwind start position
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002331035A JP3753320B2 (en) | 2002-11-14 | 2002-11-14 | Shield material manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002331035A JP3753320B2 (en) | 2002-11-14 | 2002-11-14 | Shield material manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004160513A JP2004160513A (en) | 2004-06-10 |
JP3753320B2 true JP3753320B2 (en) | 2006-03-08 |
Family
ID=32808542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002331035A Expired - Lifetime JP3753320B2 (en) | 2002-11-14 | 2002-11-14 | Shield material manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3753320B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007043077A (en) * | 2005-06-28 | 2007-02-15 | Hitachi Metals Ltd | Magnetic shield material and its manufacturing device |
CN108136466B (en) * | 2015-09-29 | 2020-05-19 | 日立金属株式会社 | Slitting device and slitting method for metal strip |
CN113767443A (en) * | 2019-05-21 | 2021-12-07 | 日立金属株式会社 | Method for manufacturing alloy ribbon laminate and apparatus for manufacturing alloy ribbon laminate |
-
2002
- 2002-11-14 JP JP2002331035A patent/JP3753320B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004160513A (en) | 2004-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3974546A1 (en) | Production method for nanocrystalline alloy ribbon having resin film | |
US4782994A (en) | Method and apparatus for continuous in-line annealing of amorphous strip | |
CN102376935A (en) | Battery electrode sheet and manufacturing method therefor | |
JP3753320B2 (en) | Shield material manufacturing method | |
JP6183736B1 (en) | Metal strip slitting apparatus and slitting method | |
JP4775679B2 (en) | Method and apparatus for manufacturing laminated ribbon | |
JP3247702B2 (en) | Composite magnetic core and method of manufacturing the same | |
JP5029956B2 (en) | Magnetic core for antenna, method for manufacturing the same, and antenna | |
JP3329741B2 (en) | Manufacturing method of magnetic ribbon | |
US20230360837A1 (en) | Magnetic sheet, multilayer magnetic sheet, and method for manufacturing magnetic sheet | |
US20230326639A1 (en) | Multilayer magnetic sheet | |
US20230326644A1 (en) | Multilayer magnetic sheet | |
US20230307162A1 (en) | Magnetic sheet, wound magnetic sheet, and multilayer magnetic sheet | |
JP3147290B2 (en) | Processing method of unidirectional silicon steel sheet | |
JP4029543B2 (en) | Final finish annealing method for directional silicon steel strip | |
WO2023190770A1 (en) | Method for producing magnetic sheet | |
JP7424549B1 (en) | Nanocrystalline alloy ribbon and magnetic sheet | |
WO2023190963A1 (en) | Method for manufacturing nanocrystal alloy ribbon, and method for manufacturing magnetic sheet | |
CN219642576U (en) | High-tensile superfine silver-plated alloy wire | |
JP4266244B2 (en) | Band plate multi-layer crimping equipment | |
JP2007043077A (en) | Magnetic shield material and its manufacturing device | |
JPS5857895B2 (en) | Winding core manufacturing method | |
JP6665971B2 (en) | Metal strip slitter | |
JP4636371B2 (en) | Magnetic shield device manufacturing method and magnetic shield sheet | |
CN117393296A (en) | Method and apparatus for manufacturing magnetic sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051208 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3753320 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081222 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091222 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101222 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101222 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131222 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |