Nothing Special   »   [go: up one dir, main page]

JP3749875B2 - Manufacturing method of high precision foamed coaxial cable - Google Patents

Manufacturing method of high precision foamed coaxial cable Download PDF

Info

Publication number
JP3749875B2
JP3749875B2 JP2002114451A JP2002114451A JP3749875B2 JP 3749875 B2 JP3749875 B2 JP 3749875B2 JP 2002114451 A JP2002114451 A JP 2002114451A JP 2002114451 A JP2002114451 A JP 2002114451A JP 3749875 B2 JP3749875 B2 JP 3749875B2
Authority
JP
Japan
Prior art keywords
forming
outer conductor
insulator
conductor
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002114451A
Other languages
Japanese (ja)
Other versions
JP2003308744A (en
Inventor
鐵雄 山口
光男 岩崎
隆雄 石戸
孝秋 草間
光夫 南城
茂 松村
茂 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Hirakawa Hewtech Corp
Original Assignee
Advantest Corp
Hirakawa Hewtech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp, Hirakawa Hewtech Corp filed Critical Advantest Corp
Priority to JP2002114451A priority Critical patent/JP3749875B2/en
Priority to TW092102709A priority patent/TWI264020B/en
Priority to KR1020047012163A priority patent/KR100626245B1/en
Priority to MYPI20030448A priority patent/MY135376A/en
Priority to DE10392260T priority patent/DE10392260T5/en
Priority to CNB038035324A priority patent/CN1300805C/en
Priority to PCT/JP2003/001358 priority patent/WO2003067611A1/en
Priority to US10/503,914 priority patent/US6963032B2/en
Publication of JP2003308744A publication Critical patent/JP2003308744A/en
Application granted granted Critical
Publication of JP3749875B2 publication Critical patent/JP3749875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Landscapes

  • Communication Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内部導体外周の絶縁体を多孔質テープ体により形成し、外部導体を導電細線の編組体により構成した高精度発泡同軸ケーブルの製造方法に関し、特に発泡率を60%以上にして、特性インピーダンス値を±1Ωにするために、絶縁体及び外部導体の厚さと、外径の変動とを少なくして、これらを真円状に形成する高精度発泡同軸ケーブルの製造方法に関する。
【0002】
【従来の技術】
近年の高度情報化社会の進展により、情報通信機器及び、その機器に適用される半導体素子の試験・検査装置等の伝送速度の高速化及び、伝送精度向上の要請が高まっている。この為、その機器及び装置等に適用される同軸ケーブル及び同軸コードにあっても、伝送速度の高速化及び伝送精度の向上が求められる。
【0003】
ここで、同軸ケーブルに要求される代表的な電気的特性を記述すると、以下のようになる。
【0004】
伝搬遅延時間(Td)=√ε/0.3(nS/m)
相対伝送速度(V)=100/√ε(%)
特性インピーダンス(Zo)=60/√ε・LnD/d(Ω)
静電容量(C)=55.63ε/LnD/d(PF/m)
但し、ε:絶縁体の比誘電率、D:絶縁体の外径(外部導体の内径)、d:導体外径(内部導体の外径)とする。
【0005】
このことから同軸ケーブルの伝送特性には、絶縁体の比誘電率、内部導体及び絶縁体の外径が関与し、比誘電率に関しては、その値が小さい程、伝送特性が向上し、内部導体及び絶縁体の外径に関しては、その比率とバラツキが大きく関与することが理解できる。特に、特性インピーダンスと静電容量については、絶縁体の比誘電率が小さく、且つそのバラツキが少ないことと、内部導体と絶縁体の外径(シールド層の内径)等のバラツキが少なく、且つそれらの形状がより真円円筒体状に形成されることが理想であることが理解できる。
【0006】
【発明が解決しようとする課題】
しかし、従来の同軸ケーブルにおいては、次の▲1▼〜▲3▼に記述するような問題があった。
【0007】
▲1▼同軸ケーブルに適用される内部導体は、AWG20〜30の銀メッキ軟銅線又は、それらを撚り合わせした撚り合わせ導体であるが、銀メッキ軟銅線の外径公差は、±3/1000mmであり、撚り合わせ導体においては、例えば、それらの7本の撚り合わせにすると、それらの撚り合わせ外径の公差は±3×3/1000mmとなる。この為、それらの外径の±公差内でケーブル化を図ると、前述した特性インピーダンス、静電容量等において大きな変動要因となる。この影響は、内部導体が細くなるほど大きくなる。
【0008】
▲2▼同軸ケーブルに適用される発泡絶縁体は、ケーブルの伝搬遅延時間をできるだけ小さくして、伝送速度を速めることを目的として、現在では、その気孔率(発泡率)を60%以上として、空隙を多く設けることで、絶縁体の比誘電率(ε)を1.4以下とすることによって、伝送時間の短縮、減衰量の減少等を図っている。気孔率を60%以上とし、比誘電率を1.4以下とした絶縁体材質として、ポリテトラフルオロエチレン(PTFE)の多孔質テープ体(特公昭42−13560号公報、特公昭51−18991号公報などに記載)を内部導体外周に巻回し、巻回時又は巻回後に焼成処理してなるものが適用され、この他の多孔質テープ体として、500万以上の重量平均分子量のポリエチレンテープ体を適用したものがある(特願2000−110643号)。
【0009】
しかし、これらの絶縁体層は、多孔質テープ体の性質上、その厚さ、気孔率のバラツキが大きく、同軸ケーブルの伝送特性の安定度においては、その改善が強く要望されている。特に内部導体サイズをAWG24以上の細径導体とし、特性インピーダンス値を50Ωとした同軸ケーブルでは、厚さ、外径、気孔率、そして焼成等のバラツキにより伝送特性のバラツキを無くして安定化を図る上で大きな障害となっている。
【0010】
また、前記絶縁体層は、内部導体外周に多孔質テープ体を重ねて巻回して構成するので、導体外周のテープ体の重ね部で、空隙部と重ねによる外形の凸凹が生じ、比誘電率及び外径のバラツキが極めて大きくなる。
【0011】
また、この絶縁体層は、機械的強度が極めて小さい多孔質テープ体の巻回で構成するので、テープ体自体の巻回時の伸び、切れをなくす為と、極細内部導体の伸び、断線を無くす為に、テープ体の張力は極めて小さくする必要が有る。このため、巻回後の絶縁体は、外形の凸凹、外径のバラツキが更に大きくなると共に、内部導体との密着度が極めて弱く、比誘電率と外径のバラツキが更に拡大する。
【0012】
更に、この絶縁体層は、ケーブルの伝搬遅延時間をできるだけ小さくして、伝送速度を速めることを主目的として比誘電率を小さくしているので、機械的強度、即ち同軸ケーブルが受ける曲げ、捻り、押圧、摺動等の機械的ストレスにより、同軸ケーブルとしての構造寸法を維持することができにくいといった欠点を含有したままである。最大の欠点は、絶縁体外径を所定外径に維持して、そのバラツキを無くし、更に絶縁体形状を円筒体状に形成することができにくいことである。
【0013】
▲3▼同軸ケーブルの伝送特性に大きく関与する外部導体は、従来のこの種の同軸ケーブルにおいて、片面に銅等の金属層を有するプラスチックテープ体を絶縁体外周に巻回するか又は縦添えして構成したもの、又は、外径公差をJIS規格で±3/1000mmの銀メッキ軟銅線又は錫メッキ軟銅線で編組した編組体で構成したもの、更には、上記のテープ体と上記の編組体との組み合わせによるもの等が適用されてきた。
【0014】
しかし、上記のテープ体を巻回するか縦添えしたものは、ケーブルの柔軟性が不足して、ケーブルに加わる曲げ、捻り等の機械的ストレスにより容易に外部導体が破壊してしまい外部導体の機能が果たせなくなる。銀メッキ軟銅線の編組体では、銀の滑り性が小さいために、銀メッキ軟銅線同志の接触による摩擦力が大きくなり、ケーブルに加わる曲げ、捻り等の機械的ストレスにより編組体を構成する各素線の動きが無くなり、ケーブルの柔軟性が欠如し、絶縁層を変形させて、特性インピーダンス値が変動すると共に、機械的ストレスよる影響を低減することができずケーブル寿命が短くなる等の間題点を内蔵している。
【0015】
錫メッキ軟銅線の編組体では、高温下(80℃以上)で使用した場合、銅が錫メッキ層に拡散し、拡散応力により、錫ウィスカの発生・成長を促進する。このウィスカが大きく成長すると、極薄絶縁体を突き破り内部導体とのショートを起こすことも有った。更に、上記の各外部導体は、上記▲2▼の絶縁体の説明で記述したように、絶縁体外形の凸凹と、外径のバラツキを有したままの絶縁体外周に形成されるので、外部導体の内外部は凸凹で、外径のバラツキが大きいままで、外部導体と絶縁体層間に多くの空隙部を有して比誘電率の変動要因を残したままで有った。
【0016】
本発明は、かかる点に鑑みてなされたものであり、多孔質テープ体を適用した高発泡絶縁体(発泡度60%以上)を有する同軸ケーブルの高発泡絶縁体と外部導体とを二次成形し、それらの厚さと外径を均一化すると共に外形を真円状にして、内部導体と外部導体間の特性インピーダンス値の精度向上を図ることができ、二次成形工程を安定化させることができる高精度発泡同軸ケーブルの製造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
上記課題を解決するために、本発明の高精度発泡同軸ケーブルの製造方法は、内部導体と、この内部導体の外周に形成された発泡絶縁体と、この発泡絶縁体の外周に形成された外部導体とを有する高精度発泡同軸ケーブルの製造方法において、供給部より供給される前記内部導体に、気孔率60%以上の多孔質テープ体を巻回して前記発泡絶縁体を形成する巻回工程と、前記巻回工程で形成された発泡絶縁体を、所定内径を有する一次成形ダイスに挿通して成形する一次成形工程と所定内径を有する二次成形ダイスに挿通して成形する二次成形工程とにより、所定内径を有する成形ダイスに挿通して所定外径と真円状に成形する絶縁体成形工程と、前記絶縁体成形工程で形成された発泡絶縁体の外周に、複数の導電細線を編組して前記外部導体を形成する編組工程と、前記編組工程で形成された外部導体を、所定内径を有する外部導体成形ダイスに挿通して所定外径と真円状に成形する外部導体成形工程とからなることを特徴としている。
【0018】
この構成によれば、内部導体外周に多孔質テープ体を巻回して構成した発泡絶縁体と、発泡絶縁体外周に編組体で構成した外部導体等の厚さ、外径を均一化して真円状に形成して、内部導体と発泡絶縁体、発泡絶縁体と外部導体との密着一体化を向上させることができる。
【0019】
すなわち、絶縁体成形工程は、所定内径を有する一次成形ダイスに挿通して成形する一次成形工程と、所定内径を有する二次成形ダイスに挿通して成形する二次成形工程とからなることを特徴としている。
【0020】
この構成によれば、気孔率60%以上の多孔質テープ体を巻回して形成された発泡絶縁体を成形ダイスにて成形する際、発泡絶縁線心を傷つけず、伸ばさず、断線させずに安定した成形を行うことができる。
【0021】
また、前記絶縁体成形工程により所定外形と真円状に成形された前記発泡絶縁体の外周に、極薄の外形保持層を巻回にて形成する外形保持層工程を有することを特徴としている。
【0022】
この構成によれば、所定外径と真円状に成形された発泡絶縁体の外径及び外形を継続して維持することができる。
【0023】
また、前記外部導体成形工程は、所定内径を有する一次成形ダイスに前記外部導体を挿通して成形する一次成形工程と、所定内径を有する二次成形ダイスに挿通して成形する二次成形工程とからなることを特徴としている。
【0024】
この構成によれば、外部導体を発泡絶縁体に密着させ、その厚さ、外径を均一化し、外形を真円状にする外部導体成形工程での断線、変形、伸び、外傷等を無くして安定化させ、これによって生産性を向上させることができる。
【0025】
また、前記外部導体成形工程は、前記外部導体成形ダイスを所定の回転数で回転させて前記外部導体を成形することを特徴としている。
【0026】
この構成によれば、外部導体成形工程での外部導体成形を安定化せしめ、断線、変形、伸び、外傷等を無くすことができる。
【0027】
また、前記外部導体成形工程は、前記外部導体成形ダイスに超音波振動を印加して所定振動を前記外部導体の外径方向に与えて成形することを特徴としている。
【0028】
この構成によれば、外部導体成形工程での外部導体成形を安定化せしめ、断線、変形、伸び、外傷等を無くすことができる。
【0029】
また、前記外部導体成形工程は、前記編組工程後に設けられるか、前記外部導体外周に形成される外被の外被形成工程の直前に単独で設けられるか、前記編組工程後と前記外被形成工程直前の両方に設けられるかの何れかであることを特徴としている。
【0030】
この構成によれば、外部導体成形の成形精度をより向上させることができる。
【0031】
また、前記外部導体成形工程において、前記一次成形ダイスに挿通される前記外部導体と前記一次成形ダイスとの摩擦力が所定値以上の場合に、前記二次成形ダイスを所定回転数で回転させることを特徴としている。
【0032】
この構成によれば、外部導体成形工程での外部導体の成形をより安定的に行い、更に成形精度を向上させることができる。
【0033】
また、前記外部導体成形工程において、前記一次成形ダイスに挿通される前記外部導体と前記一次成形ダイスとの摩擦力が所定値以上の場合に、前記二次成形ダイスに超音波振動を印加することを特徴としている。
【0034】
この構成によれば、外部導体成形工程での外部導体の成形をより安定的に行い、更に成形精度を向上させることができる。
【0035】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0036】
(実施の形態)
図1は、本発明の実施の形態に係る高精度発泡同軸ケーブルの製造方法を説明するための工程図である。
【0037】
また、この図1の製造工程で形成される高精度発泡同軸ケーブルの構成を図2に示す。この高精度発泡同軸ケーブルは、複数の素線を有する内部導体1に、発泡絶縁体2と、編組体による外部導体3と、外被4とを、この順で被覆して構成されている。但し、外部導体3は、以下の説明において編組体3ともいう。
【0038】
また、図1に示す高精度発泡同軸ケーブルの製造工程は、絶縁体形成工程P1と、外部導体(編組体)形成工程P11と、外被形成工程P21との3つの工程から成る。絶縁体形成工程P1は、内部導体供給工程P2と、テープ巻回工程P3と、絶縁体成形工程P4と、巻取工程P5とから成る。外部導体(編組体)形成工程P11は、絶縁線心供給工程P12と、絶縁体成形工程P13と、編組工程P14と、編組体成形工程P15と、巻取工程P16とから成る。外被形成工程P21は、編組線心供給工程P22と、編組体成形工程P23と、外被被覆工程P24と、巻取工程P25とから成る。
【0039】
本実施の形態の特徴は、絶縁体形成工程P1と外部導体(編組体)形成工程P11とにある。
【0040】
また、絶縁体形成工程P1の絶縁体成形工程P4と、外部導体(編組体)形成工程P11の絶縁体成形工程P13とは同一の内容であり、又、外部導体(編組体)形成工程P11の編組体成形工程P15と、外被形成工程P21の編組体成形工程P23とは同一内容である。従って、絶縁体成形工程P4とP13、編組体成形工程P15とP23は、いずれか一方の工程にて単独で行うか、又は、両工程中で重複して実施しても良いが、両工程で重複して実施すると、絶縁体及び編組体の外径の凸凹、外径の変動精度、真円化の精度は向上し、成形作業も安定する。
【0041】
次に、絶縁体形成工程P1について図3を参照して説明する。
【0042】
まず、内部導体供給工程P2において、図3に示すように、撚り合わせ導体(内部導体)1を、テープ巻き装置の第1、第2、第3のガイドダイス30a,30b,30cと、成形ダイス31a,31bに図示せぬ供給部から供給する。
【0043】
この供給された導体1は、テープ巻回工程P3において、矢印Y1の方向に所定の回転数で回転させられる。この回転する導体1は、所定速度で矢印Y2の方向に送られることにより、第1のガイドダイス30aを通過した後、第2ダイス30bの手前で、テープ体供給部15から供給される気孔率60%以上の多孔質テープ体21が巻回される。これは、多孔質テープ体21を導体1に対して、角度80°、テープ張力300gにして、導体1自体の矢印Y1方向の回転により、導体1の外周に1/2重ねで巻回し、更に、その外周にもう一度テープ体を巻回するものである。
【0044】
このように巻回された多孔質テープ体21は、絶縁体成形工程P4において、第2ダイス30bを通過し、この通過により形成されたテープ巻体10は、第2と第3のガイドダイス30b,30c間に配置された第1と第2の成形ダイス31a,31bに挿通される。この挿通時に、各成形ダイス31a,31bの内径による絞り力によって発泡絶縁体2が形成される。但し、第1の成形ダイス31aは、内径1.13mm、ダイス長3.0mm、第2の成形ダイス31bは、内径1.12mm、ダイス長3.0mmであり、テープ巻体10の通過速度は、10m/minとした。
【0045】
このように形成された発泡絶縁体2の外径は真円円筒体状になり、導体1との密着が良くなり、厚さの不均一、外径の凸凹、外径のバラツキ等が減少される。成形ダイス31a,31bにより成形される多孔質テープ体21によるテープ巻体10の成形をよりスムースに行う場合は、成形ダイス31a,31b等を所定の回転数を持って回転させながら行うこともできる。更にテープ巻きと、テープ体の焼成とを同時に行う場合は、成形ダイス31a,31bを焼成温度に加熱しても良い。また、発泡絶縁体2は巻取工程P5において巻き取られる。
【0046】
次に、外部導体(編組体)形成工程P11について図4を参照して説明する。
【0047】
まず、絶縁線心供給工程P12において、上記の絶縁体形成工程P1にて導体1の外周に多孔質テープ体21を巻回して、所定外径と、所定外径精度に成形されたテープ巻体絶縁線心10は、編組装置40に供給され、編組装置40の第1、第2のガイドダイス41,42と、成形ダイス43に挿通される。
【0048】
絶縁体成形工程P13において、絶縁線心10のガイドを行うと共に、成形ダイスの役割も果たす第1ガイドダイス41により、編組する前の絶縁線心10が所定外径と所定外径精度に成形される。
【0049】
第1ガイドダイス41を通過した絶縁線心10は、編組工程P14において、複数の編組用素線44を有して交互に反対方向に回転する編組装置40の回転により、編組用素線44が編み込まれて第2ガイドダイス42の直前で編組される。
【0050】
この編組後、編組体成形工程P15において、成形ダイスの役割も果たす第2ガイドダイス42を挿通されることによって外周の成形が行われ、さらに成形ダイス43に挿通されることにより編組体3が形成される。但し、成形ダイス43は、内径1.5mm、ダイス長3.0mmであり、編組装置40の稼動時のみ、図示せぬモータで編組速度の略10倍の回転数で回転させ、編組体3を成形するものとする。
【0051】
また、成形ダイス43による編組体3の成形時には、編組体3がその長さ方向に引っ張られて絞られる為に、編組体3自体の空隙部がなくなり編組体3が発泡絶縁体2に、より密着して編組体3と発泡絶縁体2間の空隙部がなくなり編組体3内径が、より発泡絶縁体2外径の値に近くなり、編組体3厚さの不均一、外径の凸凹、外径のバラツキ等を減少させて、真円円筒体状に近づき、特性インピーダンス値の一定化とその変動が少なくなる。編組体(編組体線心)3は巻取工程P16において巻き取られる。
【0052】
この他、編組体成形工程P15において、図5に示すように、編組体3の成形ダイス43に超音波振動を印加して所定振動を編組体3の外径方向に与えて成形してもよい。
【0053】
即ち、絶縁線心10を導電細線である編組用素線44をもって編組した編組体10aを成形ダイス43に挿通して編組体3を形成する際に、成形ダイス43に、超音波発振装置51によって、周波数20〜45KHz、振幅数5μm、出力200〜700Wの超音波振動を印加して外部導体を成形する。この成形により編組体3は発泡絶縁体2と密着一体化して、編組体3の厚さは均一化し、外径の凸凹は無くなり真円状に成形される。
【0054】
ここで、成形ダイス43の出口径52は1.50mm、ダイス43の入口径53は1.7mm、ダイス43の出口径52部分の長さは3.0mmをもってステンレス鋼材等で構成されている。成形ダイス43の外面には、ダイス43に径方向の振動を与える共振円板55が設けられており、さらに、共振円板55の外面には、共振円板55を振動させる振動子56が設けられている。
【0055】
振動子56は、超音波発振装置51により振動して、編組装置40の稼動時のみ発信するよう構成されている。編組装置の回転検知装置57による編組装置40の稼動時のみ発振する超音波発振装置51は、電気振動を振動子56を介して機械的振動に変換することで成形ダイス43を振動させる。
【0056】
成形ダイス43は、上記の振動条件をもって、ダイス43に当接した編組体3を振動とダイス孔径により成形する。編組体3の外径の凸凹、外径変動の大きい所は、編組体3とダイス43の摩擦力を振動により減少させるか、無くす事により編組体3の断線、こすり傷を無くし、更に発泡絶縁体2、内部導体1の断線、伸び、損傷等を無くして成形する。
【0057】
また、編組体成形工程P15は、上記では編組工程P14の後に設けられていたが、この他、外被形成工程P21の直前に単独で設けるか、又は、編組工程P14の後と外被形成工程P21の直前の両方に設けてもよい。
【0058】
また、編組体成形工程P15において、図6に示す制御構成によって編組体3の成形を、より安定的に行っても良い。
【0059】
まず、編組体線心を、成形ダイスの役割も果たす第2ガイドダイス42に挿通し、この挿通により生じる当該ダイス42と編組体線心との接触摩擦力(接触圧力)を摩擦力検知部61で検知する。この検知した接触摩擦力と、予め設定した編組体線心の抗張力(伸び)とを摩擦力比較部62で比較する。この結果、接触摩擦力が大きい場合はモータ制御部63によって、成形ダイス43の回転用のモータ64を回転させる。これによって成形ダイス43が回転すると、成形ダイス43で編組体線心を成形する際の編組体線心に加わる摩擦力(圧力)が減少して、安定した外部導体成形を行うことができる。
【0060】
実際の実施では、第2ガイドダイス42の径を1.60mm、成形ダイス43の径を1.50mmとし、成形ダイス43は、編組速度の約10倍の回転数で回転させ、当該回転は一次成形ダイスと編組体線心の接触摩擦力が、編組体の変形が生じる値である100gf/mm2以上になった場合に回転させた。
【0061】
更に、編組体成形工程P15において、図7に示す制御構成によって編組体3の成形を、より安定的に行っても良い。
【0062】
上記図6を参照して説明したと同様に接触摩擦力と抗張力とを摩擦力比較部62で比較した結果、接触摩擦力が大きい場合は、超音波発振制御部71を介して超音波発振装置51を発信させ、その振動を共振円板55及び振動子56を介して成形ダイス43に伝動させ、成形ダイス43の振動により編組体線心を成形する。成形ダイス43の超音波振動により、編組体線心にかかる接触摩擦力は減少して小さくなり、成形ダイス43で編組体線心を成形する際の編組体線心に加わる摩擦力(圧力)が減少して、安定した外部導体成形を行うことができる。
【0063】
実際の実施では、第2ガイドダイス42の径を1.60mm、成形ダイス43の径を1.50mmとし、成形ダイス43の振動は前述と同様に行い、第2ガイドダイス42と編組体線心の接触摩擦力が編組体3の変形が生じる値である100gf/mm2以上になった場合に振動させた。
【0064】
このような絶縁体形成工程P1並びに外部導体(編組体)形成工程P11を実施した後に、外被形成工程P21を実施することによって、図8(イ)に示すように、内部導体1と、この導体1の外周に多孔質テープ体を巻回して構成された発泡絶縁体2と、発泡絶縁体2の外周に設けられた編組体による外部導体3と、外部導体3の外周に設けられた外被4とから成る高精度発泡同軸ケーブル80が形成される。
【0065】
この他、図8(ロ)に示す高精度発泡同軸ケーブル85のように、発泡絶縁体2の外周に外径保持層86を形成してもよい。外径保持層86は、発泡絶縁体2の外周に、プラスチックテープ体を持って巻回角度80度で重なりを無くして巻回したものである。この外径保持層86は、発泡絶縁体2の外径を例えば±1%以内に成形した後、成形された外径が時間の経過と共に元に戻るのを阻止する為のものであり、厚さ0.025mm、幅7.5mmのポリエチレンテレフタレートテープ等を適用することができる。
【0066】
次に、以上説明した絶縁体形成工程P1を適用して発泡絶縁体を成形した場合の絶縁体外径(mm)の変動を図9に示し、適用しない場合の絶縁体外径(mm)の変動を図10に示し、双方の比較を行った。
【0067】
この結果、発泡絶縁体を成形ダイスで成形することにより、その外径が一定化して、真円化して、その変動も小さい事が明らかになっている。外径の測定は、長さ方向に100mmの間隔で、レーザ式外径測定器(タキカワエンジニアリング社製)を使用して測定した。
【0068】
また、外部導体(編組体)形成工程P11を適用して外部導体(編組体)を成形した場合の外部導体(編組体)外径(mm)の変動を図11に示し、適用しない場合の外部導体(編組体)外径(mm)の変動を図12に示し、双方の比較を行った。
【0069】
この結果、外部導体を成形ダイスで成形することにより、その外径が一定化して、真円化して、その変動も小さくなっていることが示されている。外径の測定は、発泡絶縁体の外径測定と同じ方法で行った。
【0070】
更に、絶縁体形成工程P1及び外部導体(編組体)形成工程P11を適用して発泡絶縁体及び外部導体を成形した場合の特性インピーダンス値(Ω)の実測値を図13に示し、適用しない場合の特性インピーダンス値(Ω)の実測値を図14に示し、双方の比較を行った。
【0071】
この結果、発泡絶縁体及び外部導体を成形した場合は、その特性インピーダンス値が51.0±1Ωに全て余裕をもって示されている。特性インピーダンス値の測定は、TDR法により測定した。
【0072】
【発明の効果】
以上説明したように、本発明によれば、内部導体と、この内部導体の外周に形成された発泡絶縁体と、この発泡絶縁体の外周に形成された外部導体とを有する高精度発泡同軸ケーブルの製造方法において、供給部より供給される内部導体に、気孔率60%以上の多孔質テープ体を巻回して発泡絶縁体を形成する巻回工程と、巻回工程で形成された発泡絶縁体を、所定内径を有する一次成形ダイスに挿通して成形する一次成形工程と所定内径を有する二次成形ダイスに挿通して成形する二次成形工程とにより、所定外径と真円状に成形する絶縁体成形工程と、絶縁体成形工程で形成された発泡絶縁体の外周に、複数の導電細線を編組して外部導体を形成する編組工程と、編組工程で形成された外部導体を、所定内径を有する外部導体成形ダイスに挿通して所定外径と真円状に成形する外部導体成形工程とを備えた。従って、高発泡絶縁体の外径の凸凹、バラツキが無く、真円状に形成され、更に編組体で構成された外部導体の外径の凸凹、バラツキが無く、真円状に安定して成形する事ができ、特性インピーダンス値が±1Ωとなる高精度発泡同軸ケーブルの製造が可能となる。
【0073】
特に、絶縁体成形工程は、所定内径を有する一次成形ダイスに挿通して成形する一次成形工程と、所定内径を有する二次成形ダイスに挿通して成形する二次成形工程とを備えた。従って、厚さと外径の変動が小さく、内部導体に密着した真円状の絶縁体が安定して得られ、絶縁体の成形による断線、伸び等がなくなり安定した高精度発泡同軸ケーブルを得ることができる。
【0074】
また、絶縁体成形工程により所定外形と真円状に成形された発泡絶縁体の外周に、極薄の外形保持層を巻回にて形成する外形保持層工程を有した。従って、高精度発泡同軸ケーブルの絶縁体外径と、その真円状外形が成形工程のまま維持できるので、特性インピーダンス値の変動を少なくすることができる。
【0075】
また、外部導体成形工程は、所定内径を有する一次成形ダイスに外部導体を挿通して成形する一次成形工程と、所定内径を有する二次成形ダイスに挿通して成形する二次成形工程とを備えた。従って、厚さと外径の変動が小さく、絶縁体に密着し、厚さが一定化した真円状の編組体が安定して得られ、編組体の成形による断線、伸び、外傷、メッキ剥がれ等がなくなり安定した成形工程となり、品質と生産性が向上する。
【0076】
また、外部導体成形工程は、外部導体成形ダイスを所定の回転数で回転させて外部導体を成形するようにした。従って、外部導体の外径の凸凹、変動が大きい物でも、成形ダイスの回転により成形ダイス孔の通過圧力を減少させる事ができるので、成形が安定し、生産性が向上する。
【0077】
また、外部導体成形工程は、外部導体成形ダイスに超音波振動を印加して所定振動を外部導体の外径方向に与えて成形するようにした。従って、外部導体の成形が安定化し、成形ダイスとのこすれによる編組体の外傷、メッキの剥がれ等がなくなる。
【0078】
また、外部導体成形工程は、編組工程後に設けられるか、外部導体外周に形成される外被の外被形成工程の直前に単独で設けられるか、編組工程後と外被形成工程直前の両方に設けられるかの何れかであるようにした。従って、外部導体外径・形状の維持ができ、特性インピーダンス値を±1Ωとする高精度発泡同軸ケーブルの製造が可能となる。
【0079】
また、外部導体成形工程において、一次成形ダイスに挿通される外部導体と一次成形ダイスとの摩擦力が所定値以上の場合に、二次成形ダイスを所定回転数で回転させるようにした。従って、外部導体外径の凸凹、変動等が大きいものでも成形可能となり、外部導体の成形を安定化せしめ、成形精度を向上させる事ができる。
【0080】
また、外部導体成形工程において、一次成形ダイスに挿通される外部導体と一次成形ダイスとの摩擦力が所定値以上の場合に、二次成形ダイスに超音波振動を印加するようにした。従って、外部導体成形工程での外部導体のこすれ傷、メッキ層の剥がれ等が無くなり、成形が安定するとともに外部導体の品質を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る高精度発泡同軸ケーブルの製造方法を説明するための工程図である。
【図2】高精度発泡同軸ケーブルの構成を示す斜視図である。
【図3】高精度発泡同軸ケーブルにおける多孔質テープ体の巻回方法を説明するための図である。
【図4】高精度発泡同軸ケーブルにおける外部導体の製造方法を説明するための図である。
【図5】高精度発泡同軸ケーブルにおける外部導体の成形ダイスに超音波振動を与える構成を示す図である。
【図6】高精度発泡同軸ケーブルにおける外部導体の成形ダイスを摩擦力検知に応じて回転させる構成を示す図である。
【図7】高精度発泡同軸ケーブルにおける外部導体の成形ダイスに摩擦力検知に応じて超音波振動を与える構成を示す図である。
【図8】高精度発泡同軸ケーブルにおける発泡絶縁体の外周に外径保持層を形成した状態を示す断面図である。
【図9】本実施の形態の絶縁体形成工程を適用して発泡絶縁体を成形した場合の絶縁体外径の変動を示す図である。
【図10】上記絶縁体形成工程を適用しない場合の絶縁体外径の変動を示す図である。
【図11】本実施の形態の外部導体(編組体)形成工程を適用して外部導体(編組体)を成形した場合の外部導体(編組体)外径の変動を示す図である。
【図12】上記外部導体(編組体)形成工程を適用しない場合の外部導体(編組体)外径の変動を示す図である。
【図13】上記絶縁体形成工程及び外部導体(編組体)形成工程を適用して発泡絶縁体及び外部導体を成形した場合の特性インピーダンス値の実測値を示す図である。
【図14】上記絶縁体形成工程及び外部導体(編組体)形成工程を適用しない場合の特性インピーダンス値の実測値を示す図である。
【符号の説明】
1 内部導体
2 発泡絶縁体
3,10a 外部導体(編組体)
4 外被
10 絶縁線心
15 テープ体供給部
21 多孔質テープ体
30a,30b,30c,41,42 ガイドダイス
31a,31b,43 成形ダイス
40 編組装置
44 編組用素線
51 超音波発振装置
52 成形ダイス43の出口径
53 ダイス43の入口径
55 共振円板
56 振動子
57 編組装置の回転検知装置
61 摩擦力検知部
62 摩擦力比較部
63 モータ制御部
64 モータ
71 超音波発振制御部
80 本実施の形態の高精度発泡同軸ケーブルの断面
85 外径保持層を形成した高精度発泡同軸ケーブルの断面
86 外径保持層
Y1 回転方向
Y2 移動方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-precision foamed coaxial cable in which an insulator on the outer periphery of an inner conductor is formed of a porous tape body, and an outer conductor is formed of a braided body of a conductive thin wire. The present invention relates to a method for manufacturing a high-precision foamed coaxial cable in which the thickness of an insulator and an outer conductor and fluctuations in the outer diameter are reduced in order to make the characteristic impedance value ± 1Ω, and these are formed into a perfect circle.
[0002]
[Prior art]
With the progress of the advanced information society in recent years, there is an increasing demand for an increase in transmission speed and an improvement in transmission accuracy of information communication devices and semiconductor element test / inspection devices applied to the devices. For this reason, even in the case of a coaxial cable and a coaxial cord that are applied to the devices and apparatuses, an increase in transmission speed and an improvement in transmission accuracy are required.
[0003]
Here, typical electrical characteristics required for the coaxial cable are described as follows.
[0004]
Propagation delay time (Td) = √ε / 0.3 (nS / m)
Relative transmission speed (V) = 100 / √ε (%)
Characteristic impedance (Zo) = 60 / √ε · LnD / d (Ω)
Capacitance (C) = 55.63ε / LnD / d (PF / m)
Where ε is the dielectric constant of the insulator, D is the outer diameter of the insulator (the inner diameter of the outer conductor), and d is the outer diameter of the conductor (the outer diameter of the inner conductor).
[0005]
Therefore, the transmission characteristics of the coaxial cable are related to the relative dielectric constant of the insulator, the outer diameter of the inner conductor and the insulator. The smaller the value of the relative dielectric constant, the better the transmission characteristics, and the inner conductor. As for the outer diameter of the insulator, it can be understood that the ratio and variation are largely involved. In particular, with respect to the characteristic impedance and capacitance, the relative dielectric constant of the insulator is small and its variation is small, and there are few variations such as the outer diameter of the inner conductor and the insulator (inner diameter of the shield layer). It can be understood that it is ideal to form the shape of a more perfect circular cylinder.
[0006]
[Problems to be solved by the invention]
However, the conventional coaxial cable has the following problems (1) to (3).
[0007]
(1) The inner conductor applied to the coaxial cable is an AWG 20-30 silver-plated annealed copper wire or a twisted conductor obtained by twisting them, but the outer diameter tolerance of the silver-plated annealed copper wire is ± 3/1000 mm. Yes, in the case of twisted conductors, for example, when these seven twists are twisted, the tolerance of the twisted outer diameter becomes ± 3 × 3/1000 mm. For this reason, if the cable is made within the tolerance of the outer diameter of those, it becomes a large variation factor in the above-mentioned characteristic impedance, capacitance and the like. This effect increases as the inner conductor becomes thinner.
[0008]
(2) The foam insulator applied to the coaxial cable is designed to reduce the propagation delay time of the cable as much as possible and increase the transmission speed. At present, the porosity (foaming rate) is set to 60% or more. By providing a large number of gaps, the dielectric constant (ε) of the insulator is set to 1.4 or less, thereby shortening the transmission time, reducing the attenuation, and the like. As an insulator material having a porosity of 60% or more and a relative dielectric constant of 1.4 or less, a porous tape body of polytetrafluoroethylene (PTFE) (Japanese Patent Publication Nos. 42-13560 and 51-18991) In the outer circumference of the inner conductor and is fired during or after winding. As another porous tape body, a polyethylene tape body having a weight average molecular weight of 5 million or more is applied. Is applied (Japanese Patent Application No. 2000-110443).
[0009]
However, these insulator layers have large variations in thickness and porosity due to the properties of the porous tape body, and there is a strong demand for improvement in the stability of the transmission characteristics of the coaxial cable. In particular, a coaxial cable with an inner conductor size of AWG24 or larger and a characteristic impedance value of 50Ω is stabilized by eliminating variations in transmission characteristics due to variations in thickness, outer diameter, porosity, firing, etc. It is a big obstacle on the top.
[0010]
In addition, since the insulator layer is formed by laminating and winding a porous tape body on the outer periphery of the inner conductor, an irregularity of the outer shape due to the gap portion and the overlap occurs in the overlapping portion of the tape body on the outer periphery of the conductor, and the relative dielectric constant In addition, the variation in the outer diameter becomes extremely large.
[0011]
In addition, since this insulator layer is formed by winding a porous tape body having a very low mechanical strength, in order to eliminate elongation and breakage during winding of the tape body itself, and to extend and break the ultrafine internal conductor. In order to eliminate this, the tension of the tape body needs to be extremely small. For this reason, the insulator after winding is further increased in unevenness in outer shape and variation in outer diameter, is very weak in contact with the inner conductor, and is further expanded in variation in relative permittivity and outer diameter.
[0012]
Furthermore, this insulator layer has a relatively low dielectric constant mainly for the purpose of increasing the transmission speed by minimizing the propagation delay time of the cable, so that the mechanical strength, that is, the bending and twisting that the coaxial cable undergoes. However, it still has the disadvantage that it is difficult to maintain the structural dimensions of the coaxial cable due to mechanical stress such as pressing and sliding. The biggest drawback is that it is difficult to maintain the insulator outer diameter at a predetermined outer diameter to eliminate the variation and to form the insulator in a cylindrical shape.
[0013]
(3) The outer conductor that is largely involved in the transmission characteristics of the coaxial cable is a conventional type of coaxial cable in which a plastic tape body having a metal layer such as copper is wound around the outer periphery of the insulator or vertically attached. Or a braided body braided with silver-plated annealed copper wire or tin-plated annealed copper wire with an outer diameter tolerance of ± 3/1000 mm according to JIS standards, and further, the above tape body and the above braided body A combination of the above and the like has been applied.
[0014]
However, when the tape body is wound or vertically attached, the flexibility of the cable is insufficient, and the external conductor is easily broken due to mechanical stress such as bending or twisting applied to the cable. The function cannot be performed. In the braided body of silver-plated annealed copper wire, since the sliding property of silver is small, the frictional force due to the contact between the silver-plated annealed copper wires increases, and each braided body is configured by mechanical stress such as bending and twisting applied to the cable. There is no movement of the wire, the cable lacks flexibility, the insulation layer is deformed, the characteristic impedance value fluctuates, the influence of mechanical stress cannot be reduced, the cable life is shortened, etc. Built-in topic.
[0015]
In a braided body of tin-plated annealed copper wire, when used at a high temperature (80 ° C. or higher), copper diffuses into the tin-plated layer and promotes the generation and growth of tin whiskers by diffusion stress. When this whisker grows greatly, it may break through the ultrathin insulator and cause a short circuit with the internal conductor. Further, as described in the description of the insulator in (2) above, each of the above outer conductors is formed on the outer periphery of the insulator with the unevenness of the outer shape of the insulator and the variation of the outer diameter. The inside and outside of the conductor was uneven, and the variation in outer diameter remained large, and there were many gaps between the outer conductor and the insulator layer, leaving a factor of variation in the relative permittivity.
[0016]
The present invention has been made in view of the above point, and secondary molding of a high-foam insulator of a coaxial cable having a high-foam insulator (foaming degree of 60% or more) to which a porous tape body is applied and an outer conductor. In addition, the thickness and outer diameter can be made uniform and the outer shape can be made into a perfect circle, improving the accuracy of the characteristic impedance value between the inner conductor and the outer conductor, and stabilizing the secondary molding process. An object of the present invention is to provide a method for producing a highly accurate foamed coaxial cable.
[0017]
[Means for Solving the Problems]
In order to solve the above-described problems, a method for manufacturing a high-precision foamed coaxial cable according to the present invention includes an inner conductor, a foamed insulator formed on the outer periphery of the inner conductor, and an external formed on the outer periphery of the foamed insulator. In a method of manufacturing a high-precision foamed coaxial cable having a conductor, a winding step of forming a foamed insulator by winding a porous tape body having a porosity of 60% or more around the inner conductor supplied from a supply unit; , The foam insulation formed in the winding step, By a primary molding step of inserting and molding a primary molding die having a predetermined inner diameter and a secondary molding step of inserting and molding a secondary molding die having a predetermined inner diameter, An insulator molding process in which a molding die having a predetermined inner diameter is inserted to form a predetermined outer diameter and a perfect circle, and a plurality of conductive thin wires are braided on the outer periphery of the foamed insulator formed in the insulator molding process. A braiding step for forming the outer conductor, and an outer conductor forming step for forming the outer conductor formed in the braiding step into an outer conductor forming die having a predetermined inner diameter and forming a predetermined outer diameter and a perfect circle. It is characterized by that.
[0018]
According to this configuration, the thickness and the outer diameter of the foamed insulator formed by winding the porous tape body around the inner conductor outer periphery and the outer conductor formed of the braided body around the outer periphery of the foamed insulator are made uniform and rounded. It is possible to improve the close integration of the inner conductor and the foamed insulator, and the foamed insulator and the outer conductor.
[0019]
That is, The insulator forming step is characterized by comprising a primary forming step of forming through a primary forming die having a predetermined inner diameter and a secondary forming step of forming through a secondary forming die having a predetermined inner diameter. .
[0020]
According to this configuration, Foam insulator formed by winding a porous tape body having a porosity of 60% or more When forming with a forming die, it is possible to perform stable molding without damaging, stretching, or breaking the foamed insulation core.
[0021]
Further, it has an outer shape holding layer step of forming an extremely thin outer shape holding layer by winding on the outer periphery of the foamed insulator formed into a predetermined outer shape and a perfect circle shape by the insulator forming step. .
[0022]
According to this configuration, it is possible to continuously maintain the outer diameter and outer shape of the foamed insulator formed in a perfect circular shape with a predetermined outer diameter.
[0023]
The outer conductor forming step includes a primary forming step of inserting and forming the outer conductor into a primary forming die having a predetermined inner diameter, and a secondary forming step of inserting and forming a secondary forming die having a predetermined inner diameter. It is characterized by consisting of.
[0024]
According to this configuration, the outer conductor is brought into close contact with the foamed insulator, the thickness and outer diameter thereof are uniformized, and disconnection, deformation, elongation, damage, etc. are eliminated in the outer conductor molding process for making the outer shape a perfect circle. Stabilize and thereby improve productivity.
[0025]
The outer conductor forming step is characterized in that the outer conductor is formed by rotating the outer conductor forming die at a predetermined rotational speed.
[0026]
According to this configuration, the outer conductor molding in the outer conductor molding process can be stabilized, and disconnection, deformation, elongation, damage, etc. can be eliminated.
[0027]
The outer conductor forming step is characterized in that ultrasonic vibration is applied to the outer conductor forming die to give a predetermined vibration in the outer diameter direction of the outer conductor.
[0028]
According to this configuration, the outer conductor molding in the outer conductor molding process can be stabilized, and disconnection, deformation, elongation, damage, etc. can be eliminated.
[0029]
Further, the outer conductor forming step is provided after the braiding step, or is provided alone immediately before the outer sheath forming step of the outer conductor formed on the outer periphery of the outer conductor, or after the braiding step and the outer sheath formation. It is characterized in that it is provided either before or after the process.
[0030]
According to this structure, the shaping | molding precision of an outer conductor shaping | molding can be improved more.
[0031]
Further, in the outer conductor molding step, when the frictional force between the outer conductor inserted through the primary molding die and the primary molding die is a predetermined value or more, the secondary molding die is rotated at a predetermined rotational speed. It is characterized by.
[0032]
According to this configuration, the outer conductor can be more stably molded in the outer conductor molding step, and the molding accuracy can be further improved.
[0033]
Further, in the outer conductor forming step, when a frictional force between the outer conductor inserted through the primary forming die and the primary forming die is a predetermined value or more, ultrasonic vibration is applied to the secondary forming die. It is characterized by.
[0034]
According to this configuration, the outer conductor can be more stably molded in the outer conductor molding step, and the molding accuracy can be further improved.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0036]
(Embodiment)
FIG. 1 is a process diagram for explaining a method of manufacturing a high-precision foamed coaxial cable according to an embodiment of the present invention.
[0037]
FIG. 2 shows the configuration of the high-precision foamed coaxial cable formed in the manufacturing process of FIG. This high-precision foamed coaxial cable is configured by covering an inner conductor 1 having a plurality of strands with a foam insulator 2, an outer conductor 3 made of a braided body, and a jacket 4 in this order. However, the outer conductor 3 is also referred to as a braided body 3 in the following description.
[0038]
Further, the manufacturing process of the high-precision foamed coaxial cable shown in FIG. 1 includes three processes: an insulator forming process P1, an outer conductor (braided body) forming process P11, and an outer jacket forming process P21. The insulator forming process P1 includes an internal conductor supplying process P2, a tape winding process P3, an insulator forming process P4, and a winding process P5. The outer conductor (braided body) forming step P11 includes an insulated wire core supplying step P12, an insulator forming step P13, a braiding step P14, a braided body forming step P15, and a winding step P16. The jacket forming process P21 includes a braided wire core supplying process P22, a braided body forming process P23, a jacket covering process P24, and a winding process P25.
[0039]
The feature of the present embodiment lies in the insulator forming step P1 and the outer conductor (braided body) forming step P11.
[0040]
The insulator forming step P4 in the insulator forming step P1 and the insulator forming step P13 in the outer conductor (braided body) forming step P11 have the same contents, and the outer conductor (braided body) forming step P11 is the same. The braid body forming step P15 and the braid body forming step P23 of the outer jacket forming step P21 have the same contents. Therefore, the insulator forming steps P4 and P13 and the braided body forming steps P15 and P23 may be performed independently in one of the steps, or may be performed in duplicate in both steps. If it is carried out repeatedly, the irregularities of the outer diameter of the insulator and the braided body, the fluctuation accuracy of the outer diameter, the accuracy of rounding are improved, and the molding operation is also stabilized.
[0041]
Next, the insulator formation process P1 will be described with reference to FIG.
[0042]
First, in the internal conductor supply step P2, as shown in FIG. 3, the twisted conductor (internal conductor) 1 is replaced with the first, second, and third guide dies 30a, 30b, and 30c of the tape winding device, and the forming die. 31a and 31b are supplied from a supply unit (not shown).
[0043]
The supplied conductor 1 is rotated at a predetermined rotational speed in the direction of arrow Y1 in the tape winding process P3. The rotating conductor 1 is sent in the direction of the arrow Y2 at a predetermined speed, so that the porosity supplied from the tape body supply unit 15 after passing through the first guide die 30a and before the second die 30b. 60% or more of the porous tape body 21 is wound. This is because the porous tape body 21 is wound around the outer periphery of the conductor 1 in a 1/2 layer by rotating the conductor 1 itself in an arrow Y1 direction at an angle of 80 ° and a tape tension of 300 g with respect to the conductor 1, The tape body is once again wound around the outer periphery.
[0044]
The porous tape body 21 wound in this way passes through the second die 30b in the insulator forming step P4, and the tape wound body 10 formed by this passage passes through the second and third guide dies 30b. , 30c are inserted into first and second molding dies 31a, 31b. At the time of this insertion, the foamed insulator 2 is formed by the drawing force due to the inner diameters of the molding dies 31a and 31b. However, the first molding die 31a has an inner diameter of 1.13 mm and a die length of 3.0 mm, and the second molding die 31b has an inner diameter of 1.12 mm and a die length of 3.0 mm, and the passing speed of the tape roll 10 is 10 m / min.
[0045]
The outer diameter of the foamed insulator 2 formed in this way is a perfect circular cylinder, and the contact with the conductor 1 is improved, and uneven thickness, unevenness of the outer diameter, variation in outer diameter, etc. are reduced. The When the tape winding body 10 is formed more smoothly by the porous tape body 21 formed by the forming dies 31a and 31b, the forming dies 31a and 31b and the like can be rotated while rotating at a predetermined rotational speed. . Furthermore, when performing tape winding and baking of a tape body simultaneously, you may heat the shaping | molding dies 31a and 31b to baking temperature. The foamed insulator 2 is wound up in the winding process P5.
[0046]
Next, the outer conductor (braided body) forming step P11 will be described with reference to FIG.
[0047]
First, in the insulated core supply step P12, the tape tape 21 is formed with a predetermined outer diameter and a predetermined outer diameter accuracy by winding the porous tape body 21 around the conductor 1 in the insulator forming step P1. The insulated wire core 10 is supplied to the braiding device 40 and is inserted into the first and second guide dies 41 and 42 of the braiding device 40 and the forming die 43.
[0048]
In the insulator forming step P13, the insulating wire core 10 is guided with a predetermined outer diameter and a predetermined outer diameter accuracy by the first guide die 41 that also serves as a forming die while guiding the insulating wire core 10. The
[0049]
In the braiding step P14, the insulated wire core 10 that has passed through the first guide die 41 has a plurality of braiding strands 44 and the braiding strands 44 are rotated by the braiding device 40 that rotates alternately in the opposite direction. It is knitted and braided immediately before the second guide die 42.
[0050]
After this braiding, in the braided body forming step P15, the outer periphery is formed by being inserted through the second guide die 42 that also serves as a forming die, and the braided body 3 is formed by being further inserted into the forming die 43. Is done. However, the forming die 43 has an inner diameter of 1.5 mm and a die length of 3.0 mm. Only when the braiding device 40 is in operation, the forming die 43 is rotated by a motor (not shown) at a rotational speed of about 10 times the braiding speed. It shall be molded.
[0051]
Further, when the braided body 3 is molded by the molding die 43, the braided body 3 is pulled and drawn in the length direction thereof, so that the gap of the braided body 3 itself disappears and the braided body 3 becomes more of the foamed insulator 2. The gap between the braided body 3 and the foamed insulator 2 disappears and the inner diameter of the braided body 3 becomes closer to the value of the outer diameter of the foamed insulator 2, the thickness of the braided body 3 is uneven, the irregularities of the outer diameter, The variation in outer diameter and the like are reduced to approach the shape of a perfect circular cylinder, and the characteristic impedance value becomes constant and its fluctuation is reduced. The braided body (braided body core) 3 is wound in the winding process P16.
[0052]
In addition, in the braided body forming step P15, as shown in FIG. 5, ultrasonic vibration may be applied to the forming die 43 of the braided body 3 so that predetermined vibration is applied in the outer diameter direction of the braided body 3 for forming. .
[0053]
That is, when forming the braided body 3 by inserting the braided body 10a braided with the braiding element wire 44, which is a conductive thin wire, into the forming die 43 to form the braided body 3, the ultrasonic oscillating apparatus 51 The outer conductor is formed by applying ultrasonic vibration having a frequency of 20 to 45 KHz, an amplitude of 5 μm, and an output of 200 to 700 W. By this molding, the braided body 3 is tightly integrated with the foamed insulator 2, the thickness of the braided body 3 is made uniform, and the outer diameter unevenness is eliminated and the braided body 3 is molded into a perfect circle.
[0054]
Here, the outlet diameter 52 of the forming die 43 is 1.50 mm, the inlet diameter 53 of the die 43 is 1.7 mm, and the length of the outlet diameter 52 portion of the die 43 is 3.0 mm, and is made of a stainless steel material or the like. A resonance disk 55 that applies radial vibration to the die 43 is provided on the outer surface of the molding die 43, and a vibrator 56 that vibrates the resonance disk 55 is provided on the outer surface of the resonance disk 55. It has been.
[0055]
The vibrator 56 is configured to vibrate by the ultrasonic oscillation device 51 and transmit only when the braiding device 40 is in operation. The ultrasonic oscillation device 51 that oscillates only when the braiding device 40 is operated by the rotation detection device 57 of the braiding device vibrates the forming die 43 by converting electrical vibration into mechanical vibration through the vibrator 56.
[0056]
The forming die 43 forms the braided body 3 in contact with the die 43 by vibration and the die hole diameter under the above-described vibration conditions. Where the outer diameter of the braided body 3 is uneven and the fluctuation of the outer diameter is large, the frictional force between the braided body 3 and the die 43 is reduced by vibration or eliminated to eliminate the disconnection and scratches of the braided body 3, and further foam insulation. The body 2 and the internal conductor 1 are molded without disconnection, elongation, damage or the like.
[0057]
In addition, the braided body forming step P15 is provided after the braided step P14 in the above description. Alternatively, the braided body forming step P15 is provided alone immediately before the outer cover forming step P21, or after the braided step P14 and the outer cover forming step. You may provide in both immediately before P21.
[0058]
In the braid body forming step P15, the braid body 3 may be more stably formed by the control configuration shown in FIG.
[0059]
First, the braided body core is inserted into the second guide die 42 that also serves as a forming die, and the contact friction force (contact pressure) between the die 42 and the braided body core generated by this insertion is detected by the frictional force detector 61. Detect with. The detected frictional force is compared with a preset tensile strength (elongation) of the braided body core by the frictional force comparison unit 62. As a result, when the contact friction force is large, the motor control unit 63 rotates the motor 64 for rotating the forming die 43. Thus, when the forming die 43 rotates, the frictional force (pressure) applied to the braided body core when the forming die 43 forms the braided body core decreases, and stable outer conductor molding can be performed.
[0060]
In actual implementation, the diameter of the second guide die 42 is 1.60 mm, the diameter of the forming die 43 is 1.50 mm, and the forming die 43 is rotated at a rotational speed that is about 10 times the braiding speed. The contact frictional force between the forming die and the braided body core is a value at which the braided body is deformed. 100 gf / mm 2 When it became above, it was rotated.
[0061]
Furthermore, in the braid body forming step P15, the braid body 3 may be more stably formed by the control configuration shown in FIG.
[0062]
As described with reference to FIG. 6 above, when the contact friction force and the tensile force are compared by the friction force comparison unit 62 and the contact friction force is large, the ultrasonic oscillation device is connected via the ultrasonic oscillation control unit 71. 51 is transmitted, the vibration is transmitted to the forming die 43 via the resonance disk 55 and the vibrator 56, and the braided body core is formed by the vibration of the forming die 43. Due to the ultrasonic vibration of the forming die 43, the contact frictional force applied to the braided wire core decreases and decreases, and the frictional force (pressure) applied to the braided wire core when forming the braided wire core with the forming die 43 is reduced. As a result, the outer conductor can be stably molded.
[0063]
In actual implementation, the diameter of the second guide die 42 is 1.60 mm, the diameter of the molding die 43 is 1.50 mm, and the molding die 43 is vibrated in the same manner as described above, and the second guide die 42 and the braided body core The contact friction force of 100 gf / mm is a value at which the braided body 3 is deformed. 2 When it became above, it was vibrated.
[0064]
After performing the insulator forming step P1 and the outer conductor (braided body) forming step P11, the outer coat forming step P21 is performed, so that as shown in FIG. A foamed insulator 2 formed by winding a porous tape body around the outer periphery of the conductor 1, an external conductor 3 formed of a braid provided on the outer periphery of the foamed insulator 2, and an external provided on the outer periphery of the external conductor 3 A high-precision foamed coaxial cable 80 composed of the cover 4 is formed.
[0065]
In addition, an outer diameter holding layer 86 may be formed on the outer periphery of the foamed insulator 2 as in the high-precision foamed coaxial cable 85 shown in FIG. The outer diameter holding layer 86 is formed by holding a plastic tape body on the outer periphery of the foamed insulator 2 with a winding angle of 80 degrees without overlapping. This outer diameter holding layer 86 is for preventing the outer diameter of the foamed insulator 2 from returning to the original with the passage of time after the outer diameter of the foamed insulator 2 is molded within ± 1%, for example. A polyethylene terephthalate tape having a thickness of 0.025 mm and a width of 7.5 mm can be applied.
[0066]
Next, FIG. 9 shows the fluctuation of the insulator outer diameter (mm) when the foamed insulator is formed by applying the insulator formation step P1 described above, and shows the fluctuation of the insulator outer diameter (mm) when not applied. As shown in FIG. 10, both were compared.
[0067]
As a result, it has been clarified that when the foamed insulator is molded with a molding die, the outer diameter thereof becomes constant and becomes a perfect circle, and the variation thereof is small. The outer diameter was measured using a laser type outer diameter measuring instrument (manufactured by Takikawa Engineering Co., Ltd.) at intervals of 100 mm in the length direction.
[0068]
Moreover, the fluctuation | variation of the outer diameter (mm) of an external conductor (braided body) at the time of shape | molding an external conductor (braided body) by applying the external conductor (braided body) formation process P11 is shown in FIG. The fluctuation of the outer diameter (mm) of the conductor (braid) is shown in FIG. 12, and both were compared.
[0069]
As a result, it is shown that by forming the outer conductor with a forming die, the outer diameter becomes constant and becomes a perfect circle, and the variation thereof is also reduced. The outer diameter was measured by the same method as the outer diameter measurement of the foamed insulator.
[0070]
Further, FIG. 13 shows measured values of characteristic impedance values (Ω) when foamed insulators and outer conductors are molded by applying the insulator forming step P1 and the outer conductor (braided body) forming step P11. The measured value of the characteristic impedance value (Ω) is shown in FIG. 14, and both were compared.
[0071]
As a result, when the foamed insulator and the outer conductor are molded, the characteristic impedance values are all shown as 51.0 ± 1Ω with a margin. The characteristic impedance value was measured by the TDR method.
[0072]
【The invention's effect】
As described above, according to the present invention, a high-precision foamed coaxial cable having an inner conductor, a foamed insulator formed on the outer periphery of the inner conductor, and an outer conductor formed on the outer periphery of the foamed insulator. In the manufacturing method, a winding step of forming a foamed insulator by winding a porous tape body having a porosity of 60% or more around an internal conductor supplied from a supply unit, and a foamed insulator formed by the winding step The By a primary molding step of inserting and molding a primary molding die having a predetermined inner diameter and a secondary molding step of inserting and molding a secondary molding die having a predetermined inner diameter, Insulator molding process for forming a circular shape with a predetermined outer diameter, a braiding process for forming an external conductor by braiding a plurality of conductive thin wires on the outer periphery of the foamed insulator formed in the insulator molding process, and a braiding process The outer conductor formed in step (b) was inserted into an outer conductor molding die having a predetermined inner diameter, and the outer conductor was molded into a predetermined outer diameter and a perfect circle. Therefore, the outer diameter of the high-foamed insulator is not round and uneven, and it is formed in a perfect circle, and the outer conductor of the braided body has no irregularity and variation in outer diameter, and is stably molded into a perfect circle. This makes it possible to manufacture a highly accurate foamed coaxial cable having a characteristic impedance value of ± 1Ω.
[0073]
In particular The insulator forming step includes a primary forming step for forming by inserting through a primary forming die having a predetermined inner diameter, and a secondary forming step for forming by inserting through a secondary forming die having a predetermined inner diameter. Therefore, it is possible to stably obtain a perfect circular insulator with small variations in thickness and outer diameter, in close contact with the inner conductor, and to obtain a stable high-precision foamed coaxial cable that eliminates disconnection and elongation due to molding of the insulator. Can do.
[0074]
In addition, an outer shape holding layer step of forming an extremely thin outer shape holding layer by winding on the outer periphery of the foamed insulator formed in a perfect circle shape with a predetermined outer shape by the insulator forming step was provided. Therefore, since the outer diameter of the insulator of the high-precision foamed coaxial cable and its perfect circular outer shape can be maintained in the molding process, fluctuations in the characteristic impedance value can be reduced.
[0075]
Further, the outer conductor forming step includes a primary forming step in which an outer conductor is inserted into a primary forming die having a predetermined inner diameter and a secondary forming step in which the outer conductor is formed through a secondary forming die having a predetermined inner diameter. It was. Therefore, a perfect circular braided body with a small thickness and outer diameter variation, intimate contact with the insulator, and a constant thickness can be stably obtained. Wire breakage, elongation, damage, peeling of plating, etc. This eliminates the need for stable molding processes and improves quality and productivity.
[0076]
In the outer conductor forming step, the outer conductor is formed by rotating the outer conductor forming die at a predetermined rotational speed. Therefore, even if the outer conductor has a large or uneven outer diameter, the pressure passing through the molding die hole can be reduced by the rotation of the molding die, so that the molding is stabilized and the productivity is improved.
[0077]
In the outer conductor molding step, ultrasonic vibration is applied to the outer conductor molding die so that predetermined vibration is applied in the outer diameter direction of the outer conductor. Therefore, the molding of the outer conductor is stabilized, and there is no damage to the braided body due to rubbing with the molding die and peeling of the plating.
[0078]
In addition, the outer conductor forming step is provided after the braiding step, is provided alone immediately before the outer sheath forming step of the outer sheath formed on the outer periphery of the outer conductor, or both after the braiding step and immediately before the outer sheath forming step. One of them was provided. Therefore, the outer diameter and shape of the outer conductor can be maintained, and a highly accurate foamed coaxial cable having a characteristic impedance value of ± 1Ω can be manufactured.
[0079]
Further, in the outer conductor forming step, when the frictional force between the outer conductor inserted into the primary forming die and the primary forming die is a predetermined value or more, the secondary forming die is rotated at a predetermined number of rotations. Accordingly, it is possible to mold even the outer conductor having a large or uneven outer diameter, variation, and the like, and the molding of the outer conductor can be stabilized and the molding accuracy can be improved.
[0080]
Further, in the outer conductor molding step, ultrasonic vibration is applied to the secondary molding die when the friction force between the outer conductor inserted into the primary molding die and the primary molding die is a predetermined value or more. Accordingly, there are no scratches on the outer conductor in the outer conductor molding step, peeling of the plating layer, and the like, so that molding can be stabilized and the quality of the outer conductor can be improved.
[Brief description of the drawings]
FIG. 1 is a process diagram for explaining a manufacturing method of a high-precision foamed coaxial cable according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a configuration of a high-precision foamed coaxial cable.
FIG. 3 is a view for explaining a method of winding a porous tape body in a high-precision foamed coaxial cable.
FIG. 4 is a view for explaining a method of manufacturing an outer conductor in a high-precision foamed coaxial cable.
FIG. 5 is a view showing a configuration in which ultrasonic vibration is applied to a forming die for an outer conductor in a high-precision foamed coaxial cable.
FIG. 6 is a diagram showing a configuration in which a forming die for an outer conductor in a high-precision foamed coaxial cable is rotated in accordance with frictional force detection.
FIG. 7 is a diagram showing a configuration in which ultrasonic vibration is applied to a forming die of an outer conductor in a high-precision foamed coaxial cable according to frictional force detection.
FIG. 8 is a cross-sectional view showing a state in which an outer diameter holding layer is formed on the outer periphery of the foamed insulator in the high-precision foamed coaxial cable.
FIG. 9 is a diagram showing fluctuations in the outer diameter of the insulator when a foamed insulator is molded by applying the insulator forming step of the present embodiment.
FIG. 10 is a diagram showing fluctuations in the outer diameter of the insulator when the insulator forming step is not applied.
FIG. 11 is a diagram showing fluctuations in the outer diameter of the outer conductor (braid) when the outer conductor (braid) is formed by applying the outer conductor (braid) forming step of the present embodiment.
FIG. 12 is a diagram showing fluctuations in the outer diameter of the outer conductor (braided body) when the outer conductor (braided body) forming step is not applied.
FIG. 13 is a diagram showing measured values of characteristic impedance values when a foamed insulator and an outer conductor are molded by applying the insulator forming step and the outer conductor (braided body) forming step.
FIG. 14 is a diagram showing measured values of characteristic impedance values when the insulator forming step and the outer conductor (braided body) forming step are not applied.
[Explanation of symbols]
1 Inner conductor
2 Foam insulator
3,10a Outer conductor (braided body)
4 Jacket
10 Insulated wire core
15 Tape body supply unit
21 Porous tape body
30a, 30b, 30c, 41, 42 Guide dice
31a, 31b, 43 Molding dies
40 Braiding device
44 Wire for braiding
51 Ultrasonic oscillator
52 Outlet diameter of forming die 43
53 Entrance diameter of die 43
55 Resonant disk
56 vibrator
57 Rotation detection device for braiding device
61 Friction force detector
62 Friction force comparison part
63 Motor controller
64 motor
71 Ultrasonic oscillation controller
80 Cross section of high-precision foamed coaxial cable of this embodiment
85 Cross section of high precision foamed coaxial cable with outer diameter retaining layer
86 Outer diameter retention layer
Y1 direction of rotation
Y2 moving direction

Claims (8)

内部導体と、この内部導体の外周に形成された発泡絶縁体と、この発泡絶縁体の外周に形成された外部導体とを有する高精度発泡同軸ケーブルの製造方法において、
供給部より供給される前記内部導体に、気孔率60%以上の多孔質テープ体を巻回して前記発泡絶縁体を形成する巻回工程と、
前記巻回工程で形成された発泡絶縁体を、所定内径を有する一次成形ダイスに挿通して成形する一次成形工程と所定内径を有する二次成形ダイスに挿通して成形する二次成形工程とにより、所定外径と真円状に成形する絶縁体成形工程と、
前記絶縁体成形工程で形成された発泡絶縁体の外周に、複数の導電細線を編組して前記外部導体を形成する編組工程と、
前記編組工程で形成された外部導体を、所定内径を有する外部導体成形ダイスに挿通して所定外径と真円状に成形する外部導体成形工程とからなることを特徴とする高精度発泡同軸ケーブルの製造方法。
In a method for producing a high precision foamed coaxial cable having an inner conductor, a foamed insulator formed on the outer periphery of the inner conductor, and an outer conductor formed on the outer periphery of the foamed insulator,
A winding step of forming a foamed insulator by winding a porous tape body having a porosity of 60% or more around the inner conductor supplied from a supply unit;
A primary forming step of forming the foamed insulator formed in the winding step through a primary forming die having a predetermined inner diameter and a secondary forming step of forming through a secondary forming die having a predetermined inner diameter. , An insulator forming step for forming a predetermined outer diameter and a perfect circle,
A braiding step of forming the outer conductor by braiding a plurality of conductive thin wires on the outer periphery of the foamed insulator formed in the insulator molding step;
A high-precision foamed coaxial cable comprising an outer conductor forming step of forming the outer conductor formed in the braiding step into an outer conductor forming die having a predetermined inner diameter and forming the outer conductor into a predetermined outer diameter and a perfect circle. Manufacturing method.
前記絶縁体成形工程により所定外形と真円状に成形された前記発泡絶縁体の外周に、極薄の外形保持層を巻回にて形成する外形保持層工程を有することを特徴とする請求項1に記載の高精度発泡同軸ケーブルの製造方法。  The outer shape holding layer step of forming an ultrathin shape outer shape holding layer by winding on the outer periphery of the foamed insulator formed into a predetermined outer shape and a perfect circle shape by the insulator forming step. A method for producing a high-precision foamed coaxial cable according to 1. 前記外部導体成形工程は、所定内径を有する一次成形ダイスに前記外部導体を挿通して成形する一次成形工程と、所定内径を有する二次成形ダイスに挿通して成形する二次成形工程とからなることを特徴とする請求項1または2に記載の高精度発泡同軸ケーブルの製造方法。The outer conductor forming step includes a primary forming step of forming the outer conductor through a primary forming die having a predetermined inner diameter, and a secondary forming step of forming through a secondary forming die having a predetermined inner diameter. The method for producing a high precision foamed coaxial cable according to claim 1 or 2 . 前記外部導体成形工程は、前記外部導体成形ダイスを所定の回転数で回転させて前記外部導体を成形することを特徴とする請求項1またはに記載の高精度発泡同軸ケーブルの製造方法。It said outer conductor forming step, high-precision foamed coaxial cable manufacturing method according to claim 1 or 3, characterized in that shaping is rotated by the outer conductor of the outer conductor forming die at a predetermined rotational speed. 前記外部導体成形工程は、前記外部導体成形ダイスに超音波振動を印加して所定振動を前記外部導体の外径方向に与えて成形することを特徴とする請求項1に記載の高精度発泡同軸ケーブルの製造方法。  2. The high-precision foamed coaxial according to claim 1, wherein in the outer conductor forming step, an ultrasonic vibration is applied to the outer conductor forming die to apply a predetermined vibration in an outer diameter direction of the outer conductor. Cable manufacturing method. 前記外部導体成形工程は、前記編組工程後に設けられるか、前記外部導体外周に形成される外被の外被形成工程の直前に単独で設けられるか、前記編組工程後と前記外被形成工程直前の両方に設けられるかの何れかであることを特徴とする請求項1、3、4、5のいずれかに記載の高精度発泡同軸ケーブルの製造方法。The outer conductor forming step is provided after the braiding step, or is provided alone immediately before the outer shell forming step of the outer conductor formed on the outer periphery of the outer conductor, or after the braiding step and immediately before the outer jacket forming step. The method for manufacturing a high-precision foamed coaxial cable according to any one of claims 1, 3 , 4 , and 5 , wherein: 前記外部導体成形工程において、前記一次成形ダイスに挿通される前記外部導体と前記一次成形ダイスとの摩擦力が所定値以上の場合に、前記二次成形ダイスを所定回転数で回転させることを特徴とする請求項に記載の高精度発泡同軸ケーブルの製造方法。In the outer conductor forming step, when the frictional force between the outer conductor inserted through the primary forming die and the primary forming die is a predetermined value or more, the secondary forming die is rotated at a predetermined number of rotations. The manufacturing method of the highly accurate foaming coaxial cable of Claim 3 . 前記外部導体成形工程において、前記一次成形ダイスに挿通される前記外部導体と前記一次成形ダイスとの摩擦力が所定値以上の場合に、前記二次成形ダイスに超音波振動を印加することを特徴とする請求項に記載の高精度発泡同軸ケーブルの製造方法。In the outer conductor molding step, ultrasonic vibration is applied to the secondary molding die when a frictional force between the outer conductor inserted into the primary molding die and the primary molding die is a predetermined value or more. The manufacturing method of the highly accurate foaming coaxial cable of Claim 3 .
JP2002114451A 2002-02-08 2002-04-17 Manufacturing method of high precision foamed coaxial cable Expired - Fee Related JP3749875B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002114451A JP3749875B2 (en) 2002-04-17 2002-04-17 Manufacturing method of high precision foamed coaxial cable
TW092102709A TWI264020B (en) 2002-02-08 2003-02-07 Foamed coaxial cable with high precision and method of fabricating same
MYPI20030448A MY135376A (en) 2002-02-08 2003-02-10 Foamed coaxial cable with high precision and method of fabricating same
DE10392260T DE10392260T5 (en) 2002-02-08 2003-02-10 High precision foamed coaxial cable and method of making same
KR1020047012163A KR100626245B1 (en) 2002-02-08 2003-02-10 High accuracy foamed coaxial cable and method for manufacturing the same
CNB038035324A CN1300805C (en) 2002-02-08 2003-02-10 High accuracy foamed coaxial cable and method for manufacturing the same
PCT/JP2003/001358 WO2003067611A1 (en) 2002-02-08 2003-02-10 High accuracy foamed coaxial cable and method for manufacturing the same
US10/503,914 US6963032B2 (en) 2002-02-08 2003-02-10 High accuracy foamed coaxial cable and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002114451A JP3749875B2 (en) 2002-04-17 2002-04-17 Manufacturing method of high precision foamed coaxial cable

Publications (2)

Publication Number Publication Date
JP2003308744A JP2003308744A (en) 2003-10-31
JP3749875B2 true JP3749875B2 (en) 2006-03-01

Family

ID=29396255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002114451A Expired - Fee Related JP3749875B2 (en) 2002-02-08 2002-04-17 Manufacturing method of high precision foamed coaxial cable

Country Status (1)

Country Link
JP (1) JP3749875B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339818A (en) * 2004-05-24 2005-12-08 Hirakawa Hewtech Corp High-precision foamed coaxial cable
JP2006032073A (en) * 2004-07-15 2006-02-02 Hitachi Cable Ltd Thin diameter coaxial cable
JP5803253B2 (en) * 2011-05-10 2015-11-04 住友電装株式会社 Capstan equipment
TWI689123B (en) * 2016-01-07 2020-03-21 南韓商Lg化學股份有限公司 Apparatus and method for manufacturing cable-type secondary battery and cable-type secondary battery manufactured by the same

Also Published As

Publication number Publication date
JP2003308744A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
KR100626245B1 (en) High accuracy foamed coaxial cable and method for manufacturing the same
JP4493595B2 (en) Foamed coaxial cable and manufacturing method thereof
WO2009119339A1 (en) Method for producing hollow core body of coaxial cable, hollow core body of coaxial cable, and coaxial cable
JP2003036740A (en) Double laterally wound two-core parallel extra-fine coaxial cable
JP5255529B2 (en) Hollow core body for transmission cable, manufacturing method thereof, and signal transmission cable
JP2013152789A (en) Multi-conductor cable and method of manufacturing the same
WO2015145537A1 (en) Transmission line
JP3900864B2 (en) 2-core parallel micro coaxial cable
US2585484A (en) Method of making high-frequency transmission line
JP3749875B2 (en) Manufacturing method of high precision foamed coaxial cable
JP4111764B2 (en) Thin coaxial cable and manufacturing method thereof
JP2006049067A (en) Coaxial cable and its manufacturing method
JP2005276785A (en) Coaxial cable and manufacturing method of the same
JP2011034906A (en) Manufacturing method of coaxial cable, and coaxial cable
JP3957522B2 (en) High precision foamed coaxial cable
JP2013214517A (en) Apparatus for manufacturing hollow core for coaxial cable
JPH03219505A (en) Coaxial cable
JP4262555B2 (en) Thin coaxial cable and manufacturing method thereof
JP2011198644A (en) Coaxial cable and multi-core cable using the same
JP2004087189A (en) Transmission cable and manufacturing method of the same
JP2005116380A (en) Thin coaxial cable and its manufacturing method
JP3635558B2 (en) Fine coaxial cable
JP2005339818A (en) High-precision foamed coaxial cable
JP7243499B2 (en) High-frequency signal transmission cable and its manufacturing method
JP2023141617A (en) coaxial cable

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees