Nothing Special   »   [go: up one dir, main page]

JP3746793B2 - Semiconductor manufacturing method and semiconductor manufacturing apparatus - Google Patents

Semiconductor manufacturing method and semiconductor manufacturing apparatus Download PDF

Info

Publication number
JP3746793B2
JP3746793B2 JP17729293A JP17729293A JP3746793B2 JP 3746793 B2 JP3746793 B2 JP 3746793B2 JP 17729293 A JP17729293 A JP 17729293A JP 17729293 A JP17729293 A JP 17729293A JP 3746793 B2 JP3746793 B2 JP 3746793B2
Authority
JP
Japan
Prior art keywords
boat
wafer
furnace
semiconductor manufacturing
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17729293A
Other languages
Japanese (ja)
Other versions
JPH0786193A (en
Inventor
道夫 佐藤
武敏 佐藤
博信 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP17729293A priority Critical patent/JP3746793B2/en
Publication of JPH0786193A publication Critical patent/JPH0786193A/en
Application granted granted Critical
Publication of JP3746793B2 publication Critical patent/JP3746793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
半導体製造方法及び半導体製造装置、特にウェーハを保持するボートを反応炉内へボートを装入引出しする際のボート装入引出しに関するものである。
【0002】
【従来の技術】
半導体を製造する工程として、ウェーハへの気相成長反応による膜の堆積や、燐或は硼素等の不純物拡散、その他ウェーハを加熱処理する工程があり、これらウェーハの処理では、ウェーハをボートにより所要数保持し、このボートを反応室内に装入、引出す。
【0003】
図2に於いて半導体製造装置、特に縦型炉を有する半導体製造装置の概略を説明する。
【0004】
1は半導体製造装置前側に位置するカセットローダ、2はカセットストッカ、3はバッファカセットストッカ、4はウェーハ移載機、5はボートエレベータ、6は反応炉を示す。
【0005】
ウェーハの搬送はウェーハカセットに装填された状態で行われ、ウェーハカセットは前記カセットローダ1のカセット挿脱機7に載置され、該カセット挿脱機7が昇降し、前記カセットストッカ2、バッファカセットストッカ3の所要の位置にウェーハカセットの装脱を行う。
【0006】
前記ウェーハ移載機4は昇降可能、回転可能、水平方向に移動可能なチャッキグヘッド8を有し、又前記ボートエレベータ5はボートキャップ11を介してボート9を受載し、該ボート9を昇降させ、前記反応炉6に装入する。前記ウェーハ移載機4はボート9の下降状態で、前記チャッキングヘッド8によりカセットストッカ2のウェーハカセットからボート9へウェーハ10を移載する。
【0007】
前記ボートエレベータ5によりボート9を前記反応炉6に装入し、反応炉6内でウェーハ10を加熱し、ウェーハ10が反応温度になる様に一定の時間をおいて反応炉6内を真空引し、所定の真空度に制御し、前記反応炉6内に反応ガスを導入して所要の処理を行う。加熱処理後、反応炉6内を不活性ガスに置換し、前記ボートエレベータ5によりボート9を降下させ反応炉6より引出す。ボート9、ウェーハ10を炉外で冷却し、該ボート9の降下状態で、前記ウェーハ移載機4によりボート9からカセットストッカ2のウェーハカセットへウェーハ10の移載を行う。
【0008】
更に、次に処理されるウェーハ10が前記ウェーハ移載機4によりボート9に移載され、ウェーハの処理が繰返し行われる。
【0009】
【発明が解決しようとする課題】
前記した様に、ウェーハの処理に伴いボート9の炉内への装入引出しが行われるが、従来の半導体製造方法ではウェーハの処理が終り、次のウェーハの処理迄ボート9は炉外で待機している。この為、処理間隔が空いた場合は以下に述べる不具合がある。
【0010】
正常に保たれたクリーン室内でもパーティクルその他の汚染物質(Na、Al、Cu他の金属物質)が微量ではあるが浮遊している。これらパーティクルその他の汚染物質は、半導体製造工程中にウェーハ10に付着すると製作する半導体素子の断線、電気的特性の劣化等を引起こす。
【0011】
前記パーティクルその他の汚染物質は作業者の衣服から発生し、又作業者の吐く息、汗に含まれており、更に又自動ロボットに用いられるグリース、或はオイルの蒸発等、様々な理由により発生し、汚染物質の浮遊は避けることはできない。
【0012】
従って、前記ボート9を炉外に引出した状態にしておくと、ボート9或は該ボート9に装填されているダミーウェーハ等に前記汚染物質が付着する機会が多くなる。ボート9、ダミーウェーハに付着した汚染物質は処理ウェーハを汚染する可能性があり、ウェーハの処理品質に大きな影響を与える。実際、処理後にウェーハをパーティクルカウンタにより、パーティクル数を計測するとボート9が炉外で待機している時間が長い程、パーティクルが増加しているということが分かっている。
【0013】
又、拡散装置に於いてウェーハ表面に酸化膜を成膜する場合、ウェーハ表面に金属物質等の汚染物質がある場合、汚染部分のみ酸化速度が速くなり、局所的に膜厚が厚くなってしまうと共に膜質にも影響を与えてしまうという問題がある。
【0014】
更に、気相成長反応によりウェーハ10上に窒化膜(組成:Si3 4 )を堆積する装置では、ウェーハ10の加熱処理後にボート9を下げ、長時間放置しておくと、ボート9、ボートキャップ11、ダミーウェーハが冷えて付着した反応副生成物が剥がれ易くなり、次処理工程に於いて、ボート9を炉内に装入し炉内を真空にすると、ボートキャップ11等に付着した反応副生成物がパーティクルとして散乱し、ウェーハ10上に付着し、膜の異常成長が見られ、ウェーハ10上に夜空の星を鏤めたようにみえる突起(スター)が生成する。
【0015】
又、CVD法による膜の堆積や、拡散、他各種ウェーハ10の加熱処理に於いて、各バッチ毎にボート9を炉外に引出すが、次の処理工程の時に処理用ウェーハ10をボート9に装填し、ボート9を炉内に入れる迄の時間が一定でない。その為、ボートキャップ11、ボート9、ダミーウェーハ等の温度降下にばらつきがあり、ボート9を炉内に入れてから炉内温度が安定し、処理用ウェーハが反応室温度に近づく時間に差が生じる。図3中曲線Aはボートを炉外に2時間以上放置し、曲線Bは30分〜1時間放置した場合のウェーハの昇温曲線を示している。
【0016】
処理用ウェーハ10が反応室内温度に近づくのに充分長い時間を取れば、各バッチ毎に於ける処理用ウェーハ10の温度差が無くなり反応室温度に充分近づくが、各処理工程に於ける処理時間の短縮を図らなければならないという要求に反する。処理ウェーハ10に不純物(燐や硼素等)がドープされている膜を形成している時には、該膜中の不純物の拡散が進行してしまい、昇温時間の長短で処理ウェーハ10の熱履歴が変わってしまうという問題も生じる。従って、バッチ間の待機時間が異なる場合は、処理ウェーハ10の反応時の温度に差が生じ、膜形成や不純物拡散等のウェーハ処理の差が生じてしまうという不具合があった。
【0017】
本発明は斯かる実情に鑑み、ボートの炉外でのパーティクル等汚染物質による汚染防止、バッチ間でのウェーハ処理温度のバラツキをなくし、処理品質を向上させようとするものである。
【0018】
【課題を解決するための手段】
本発明は、反応炉内にボートに保持されたウェーハを装入しウェーハを処理する半導体製造方法に於いて、ウェーハの処理後ボートを引出して前記ウェーハを前記ボートから取出し、次に処理するウェーハを前記ボートに装填する迄のボート待機中に、前記ボートを炉内に装入しておく半導体製造方法に係り、又ウェーハを処理する反応炉と、該反応炉内でウェーハを保持するボートと、ウェーハの処理後ウェーハをボートから取出し、次のウェーハをボートに装填する迄のボート待機中は、該ボートを前記反応炉内に装入しておくボートエレベータとを具備する半導体製造装置に係り、更に又反応炉にボートに保持されたウェーハを装入しウェーハを処理した後、前記ボートを前記反応炉から引出した後に、ウェーハを前記ボートより取出し、その後、前記反応炉で次に処理するウェーハを前記ボートに載置し、再び該ボートを前記反応炉内に装入する半導体製造方法に於いて、前記ボートを反応炉から出してから次に処理するウェーハをボートに載置して前記反応炉に装入する迄の時間をボートが完全に冷却されない時間とし、一定に保つ半導体製造方法に係るものである。
【0019】
【作用】
ボートを必要な時に限り炉外に出しておくので、ボート、ダミーウェーハが汚染物質に汚染されることが抑制され、又ボート等の温度降下のバッチ毎のバラツキが防止され、製品品質の向上が図れる。
【0020】
【実施例】
以下、図面を参照しつつ本発明の一実施例を説明する。
【0021】
図1は、本実施例が実施される半導体製造装置の要部を示す説明図である。
【0022】
尚、図1中、図2中に示したものと同一のものには同符号を付してある。
【0023】
反応炉6は外部反応管12と内部反応管13から成り、前記外部反応管12の周囲を覆う様にヒータ14が設けられている。又、前記内部反応管13の内部に反応室18が画成され、該反応室に反応ガス導入管15が連通し、前記外部反応管12と内部反応管13とのシリンダ状の空間に排気管16が連通している。
【0024】
図中、17はボート9が降下した状態で炉口部を閉塞するシャッタである。又、前記ボート9の上部、下部には所要枚数のダミーウェーハ10aが装填され、処理用のウェーハ10bは前記ダミーウェーハ10aの間に装填されている。
【0025】
本実施例は、前記半導体製造装置に於いてボートの待機中はボートを炉内に装入しておくというボート装入引出し方法であり、又ボートを炉外に引出しておく時間を一定にし、引出し中のボート、ボートキャップ等の温度降下を一定にするボート装入引出し方法である。
【0026】
更に詳述すると、ボート9にウェーハ10を移載する場合のみボート9を反応室18外に引出し、それ以外の時はボート9を反応室18内に装入しておく。このことからボート9等が反応室18外に露出している時間が短くなり、反応室18へのパーティクルの浸入、ボート9、ボートキャップ11、ダミーウェーハ10a等へのパーティクルや汚染物質の付着を防止できる。而して処理ウェーハ10bへのパーティクルの付着を抑えることができ、拡散装置での酸化処理をする場合に、酸化膜が局所的に厚くなるということを抑制できる。
【0027】
又、減圧CVD装置のSi3 4 膜の生成装置では、ボート9を反応室外に出している時間を最小限に抑え且一定にできるので、ボート9、ボートキャップ11等の温度降下を抑えることによりボートキャップ11等からの反応副生成物の剥離を抑止でき、処理用ウェーハ10bにSi3 4 膜を堆積させた時の膜上の異常突起(スター)発生を防止する。
【0028】
ウェーハ処理を行う工程では、同一装置に於いて同一レシピを実行させ、ウェーハ処理(CVD、拡散処理)を行った際に、各バッチ内での平均膜厚を比べて、膜厚に対して0.5〜2%程度の誤差しか許されず、数オングストロームから数十オングストローム程度に膜厚を制御する必要がある。前述した様に、本実施例ではウェーハの移載時のみボートを引出し、待機時にはボート9を反応炉6内に装入する様にしたので、バッチ間の時間差に拘らず温度の降下を一定に保持することができ、処理温度の差に起因する処理品質のバラツキを防止することができる。
【0029】
尚、上記実施例は縦型反応炉を具備した半導体製造装置に関して説明したが、横型反応炉を具備した半導体製造装置に関しても同様に実施可能であることは言う迄もない。
【0030】
【発明の効果】
以上述べた如く本発明によれば、ボートの待機状態は炉内に装入してあるので、パーティクル等汚染物質によるボート等の汚染、待機時間の長短に基づく反応温度の差を防止し得、ボートを介した汚染物質のウェーハへの付着を防止してウェーハの処理品質の向上、バッチ間での処理品質の均質化を図ることができる。
【図面の簡単な説明】
【図1】本発明が実施される半導体製造装置の要部を示す説明図である。
【図2】半導体製造装置の概要を示す斜視図である。
【図3】ボートを炉外に出した時間の相違に基づく処理用ウェーハの炉内での温度上昇曲線を示す線図である。
【符号の説明】
5 ボートエレベータ
6 反応炉
8 チャッキングヘッド
9 ボート
10 ウェーハ
11 ボートキャップ
[0001]
[Industrial application fields]
Semiconductor manufacturing method and a semiconductor manufacturing device, in particular relates to and boat loading drawer when loading drawer boat boats to hold the wafer into the reaction furnace.
[0002]
[Prior art]
Semiconductor manufacturing processes include film deposition by vapor phase growth reaction on wafers, diffusion of impurities such as phosphorus or boron, and other processes for heat treatment of wafers. Hold the number, and load and withdraw this boat into the reaction chamber.
[0003]
An outline of a semiconductor manufacturing apparatus, particularly a semiconductor manufacturing apparatus having a vertical furnace will be described with reference to FIG.
[0004]
1 is a cassette loader located on the front side of the semiconductor manufacturing apparatus, 2 is a cassette stocker, 3 is a buffer cassette stocker, 4 is a wafer transfer machine, 5 is a boat elevator, and 6 is a reactor.
[0005]
Wafers are transported in a state in which they are loaded in a wafer cassette, and the wafer cassette is placed on a cassette insertion / removal machine 7 of the cassette loader 1. The wafer cassette is loaded and unloaded at a required position of the stocker 3.
[0006]
The wafer transfer device 4 has a chucking head 8 that can move up and down, rotate, and move in the horizontal direction. The boat elevator 5 receives a boat 9 via a boat cap 11, and It is moved up and down and charged into the reactor 6. The wafer transfer device 4 transfers the wafer 10 from the wafer cassette of the cassette stocker 2 to the boat 9 by the chucking head 8 while the boat 9 is lowered.
[0007]
The boat elevator 5 is loaded with the boat 9 into the reaction furnace 6, the wafer 10 is heated in the reaction furnace 6, and the reaction furnace 6 is evacuated after a certain time so that the wafer 10 reaches the reaction temperature. Then, a predetermined degree of vacuum is controlled, and a reaction gas is introduced into the reaction furnace 6 to perform a required process. After the heat treatment, the inside of the reaction furnace 6 is replaced with an inert gas, and the boat 9 is lowered by the boat elevator 5 and pulled out from the reaction furnace 6. The boat 9 and the wafer 10 are cooled outside the furnace, and the wafer 10 is transferred from the boat 9 to the wafer cassette of the cassette stocker 2 by the wafer transfer device 4 while the boat 9 is lowered.
[0008]
Further, the wafer 10 to be processed next is transferred to the boat 9 by the wafer transfer device 4, and the wafer processing is repeated.
[0009]
[Problems to be solved by the invention]
As described above, the boat 9 is loaded into and pulled out of the furnace in accordance with the wafer processing. However, in the conventional semiconductor manufacturing method, the wafer processing is completed, and the boat 9 waits outside the furnace until the next wafer processing. is doing. For this reason, there is a problem described below when the processing interval is large.
[0010]
Even in a clean room maintained normally, particles and other contaminants (Na, Al, Cu, and other metal substances) are floating in a small amount. When these particles and other contaminants adhere to the wafer 10 during the semiconductor manufacturing process, they cause disconnection of a semiconductor element to be manufactured, deterioration of electrical characteristics, and the like.
[0011]
The particles and other contaminants are generated from the clothes of the worker, and are contained in the breath and sweat of the worker, and are also generated for various reasons such as the evaporation of grease or oil used in automatic robots. However, floating contaminants cannot be avoided.
[0012]
Accordingly, when the boat 9 is pulled out of the furnace, the chance of the contaminants adhering to the boat 9 or dummy wafers loaded in the boat 9 increases. Contaminants adhering to the boat 9 and the dummy wafer may contaminate the processing wafer, which greatly affects the processing quality of the wafer. Actually, when the number of particles is measured with a particle counter after processing the wafer, it is known that the number of particles increases as the time that the boat 9 is waiting outside the furnace is longer.
[0013]
In addition, when an oxide film is formed on the wafer surface in a diffusion device, if there is a contaminant such as a metal substance on the wafer surface, the oxidation rate increases only at the contaminated part, and the film thickness locally increases. At the same time, there is a problem of affecting the film quality.
[0014]
Further, in an apparatus for depositing a nitride film (composition: Si 3 N 4 ) on the wafer 10 by a vapor phase growth reaction, the boat 9 is lowered after the heat treatment of the wafer 10 and left for a long time. The reaction by-product attached to the cap 11 and the dummy wafer after cooling becomes easy to peel off. In the next processing step, when the boat 9 is charged into the furnace and the inside of the furnace is evacuated, the reaction attached to the boat cap 11 and the like. By-products are scattered as particles, adhere to the wafer 10, and abnormal film growth is observed. Protrusions (stars) that appear to give up stars in the night sky are formed on the wafer 10.
[0015]
In addition, in the deposition, diffusion and other heat treatment of various wafers 10 by CVD, the boat 9 is pulled out of the furnace for each batch, but the processing wafer 10 is put into the boat 9 in the next processing step. The time from loading to loading the boat 9 into the furnace is not constant. Therefore, the temperature drop of the boat cap 11, boat 9, dummy wafer, etc. varies, the furnace temperature stabilizes after the boat 9 is placed in the furnace, and there is a difference in the time when the processing wafer approaches the reaction chamber temperature. Arise. Curve A in FIG. 3 shows the temperature rise curve of the wafer when the boat is left outside the furnace for 2 hours or more and curve B is left for 30 minutes to 1 hour.
[0016]
If a sufficiently long time is taken for the processing wafer 10 to approach the reaction chamber temperature, the temperature difference of the processing wafer 10 in each batch disappears and the reaction chamber temperature approaches sufficiently, but the processing time in each processing step Contrary to the requirement to shorten When a film doped with impurities (phosphorus, boron, etc.) is formed on the processed wafer 10, the diffusion of the impurities in the film proceeds, and the thermal history of the processed wafer 10 increases with the length of the temperature rise time. There is also the problem of changing. Therefore, when the waiting time between batches is different, a difference occurs in the temperature during the reaction of the processed wafer 10, resulting in a difference in wafer processing such as film formation and impurity diffusion.
[0017]
In view of such circumstances, the present invention is intended to improve the processing quality by preventing contamination by contaminants such as particles outside the boat furnace and eliminating variations in wafer processing temperatures between batches.
[0018]
[Means for Solving the Problems]
The present invention relates to a semiconductor manufacturing method in which a wafer held in a boat is loaded into a reaction furnace and the wafer is processed, and after the wafer is processed, the boat is pulled out and the wafer is taken out from the boat and then processed. up in boat waiting until loaded into the boat, Ri relates to a semiconductor manufacturing process to be charged with the boat in a furnace, for holding a reaction furnace for processing Matau Eha, a wafer in the reaction furnace A semiconductor manufacturing apparatus comprising a boat and a boat elevator for taking out the wafer from the boat after processing the wafer and loading the boat into the reaction furnace during standby until the next wafer is loaded into the boat the engagement is, after processing the charged the wafer held on a further in or boat to the reactor wafer, the boat after drawn from the reactor, the wafer unloading from the boat Then, in a semiconductor manufacturing method in which a wafer to be processed next in the reaction furnace is placed on the boat, and the boat is again inserted into the reaction furnace, the boat is taken out of the reaction furnace and then The present invention relates to a semiconductor manufacturing method in which the time until a wafer to be processed is placed on a boat and loaded into the reaction furnace is a time during which the boat is not completely cooled, and is kept constant.
[0019]
[Action]
Since the boat is taken out of the furnace only when necessary, the contamination of the boat and the dummy wafer with the contaminant is suppressed, and the variation in the temperature drop of the boat or the like is prevented from batch to batch, thereby improving the product quality. I can plan.
[0020]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0021]
FIG. 1 is an explanatory view showing a main part of a semiconductor manufacturing apparatus in which the present embodiment is implemented.
[0022]
In FIG. 1, the same components as those shown in FIG. 2 are denoted by the same reference numerals.
[0023]
The reaction furnace 6 comprises an external reaction tube 12 and an internal reaction tube 13, and a heater 14 is provided so as to cover the periphery of the external reaction tube 12. A reaction chamber 18 is defined inside the internal reaction tube 13, a reaction gas introduction tube 15 communicates with the reaction chamber, and an exhaust pipe is formed in a cylindrical space between the external reaction tube 12 and the internal reaction tube 13. 16 communicates.
[0024]
In the figure, reference numeral 17 denotes a shutter that closes the furnace port portion when the boat 9 is lowered. The upper and lower portions of the boat 9 are loaded with a required number of dummy wafers 10a, and the processing wafers 10b are loaded between the dummy wafers 10a.
[0025]
This embodiment is a boat loading and unloading method in which the boat is loaded into the furnace while waiting for the boat in the semiconductor manufacturing apparatus, and the time for the boat to be pulled out of the furnace is made constant, This is a boat loading / unloading method in which the temperature drop of the boat being pulled out, the boat cap, etc. is kept constant.
[0026]
More specifically, the boat 9 is pulled out of the reaction chamber 18 only when the wafer 10 is transferred to the boat 9, and the boat 9 is loaded into the reaction chamber 18 at other times. As a result, the time during which the boat 9 and the like are exposed to the reaction chamber 18 is shortened, and particles enter the reaction chamber 18 and particles and contaminants adhere to the boat 9, the boat cap 11, the dummy wafer 10a, and the like. Can be prevented. Thus, the adhesion of particles to the processed wafer 10b can be suppressed, and when the oxidation process is performed by the diffusion device, it is possible to suppress the local increase in the thickness of the oxide film.
[0027]
In addition, in the Si 3 N 4 film generation apparatus of the low pressure CVD apparatus, the time during which the boat 9 is taken out of the reaction chamber can be minimized and kept constant, so that the temperature drop of the boat 9 and the boat cap 11 can be suppressed. Can suppress the separation of reaction by-products from the boat cap 11 and the like, and prevents the occurrence of abnormal protrusions (stars) on the film when the Si 3 N 4 film is deposited on the processing wafer 10b.
[0028]
In the process of performing wafer processing, when the same recipe is executed in the same apparatus and wafer processing (CVD, diffusion processing) is performed, the average film thickness in each batch is compared, and the film thickness is 0. Only an error of about 5 to 2% is allowed, and it is necessary to control the film thickness from several angstroms to several tens of angstroms. As described above, in this embodiment, the boat is pulled out only at the time of wafer transfer, and the boat 9 is loaded into the reactor 6 during standby, so that the temperature drop is kept constant regardless of the time difference between batches. Thus, it is possible to prevent variation in processing quality due to a difference in processing temperature.
[0029]
In addition, although the said Example demonstrated the semiconductor manufacturing apparatus provided with the vertical reactor, it cannot be overemphasized that it can implement similarly also about the semiconductor manufacturing apparatus provided with the horizontal reactor.
[0030]
【The invention's effect】
As described above, according to the present invention, since the waiting state of the boat is charged in the furnace, it is possible to prevent the difference in the reaction temperature based on the contamination of the boat and the like by pollutants such as particles, the length of the waiting time, It is possible to improve the processing quality of the wafer and to make the processing quality uniform between batches by preventing the contaminants from adhering to the wafer via the boat.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a main part of a semiconductor manufacturing apparatus in which the present invention is implemented.
FIG. 2 is a perspective view showing an outline of a semiconductor manufacturing apparatus.
FIG. 3 is a diagram showing a temperature rise curve in a furnace of a processing wafer based on a difference in time when the boat is taken out of the furnace.
[Explanation of symbols]
5 Boat elevator 6 Reactor 8 Chucking head 9 Boat 10 Wafer 11 Boat cap

Claims (3)

反応炉内にボートに保持されたウェーハを装入しウェーハを処理する半導体製造方法に於いて、ウェーハの処理後ボートを引出して前記ウェーハを前記ボートから取出し、次に処理するウェーハを前記ボートに装填する迄のボート待機中に、前記ボートを炉内に装入しておくことを特徴とする半導体製造方法。  In a semiconductor manufacturing method in which a wafer held in a boat is loaded into a reaction furnace and a wafer is processed, the wafer is pulled out after the wafer is processed, the wafer is taken out from the boat, and a wafer to be processed next is transferred to the boat. A semiconductor manufacturing method, wherein the boat is charged in a furnace while waiting for the boat to be loaded. ウェーハを処理する反応炉と、該反応炉内でウェーハを保持するボートと、ウェーハの処理後ウェーハをボートから取出し、次のウェーハをボートに装填する迄のボート待機中は、該ボートを前記反応炉内に装入しておくボートエレベータとを具備することを特徴とする半導体製造装置。  A reaction furnace for processing wafers, a boat for holding wafers in the reaction furnace, and after waiting for a boat to be taken out from the boat after the wafer has been processed, A semiconductor manufacturing apparatus comprising a boat elevator charged in a furnace. 反応炉にボートに保持されたウェーハを装入しウェーハを処理した後、前記ボートを前記反応炉から引出した後に、ウェーハを前記ボートより取出し、その後、前記反応炉で次に処理するウェーハを前記ボートに載置し、再び該ボートを前記反応炉内に装入する半導体製造方法に於いて、前記ボートを反応炉から出してから次に処理するウェーハをボートに載置して前記反応炉に装入する迄の時間をボートが完全に冷却されない時間とし、一定に保つことを特徴とする半導体製造方法。  After the wafer held in the boat is loaded into the reactor and the wafer is processed, the boat is pulled out of the reactor, and then the wafer is taken out of the boat, and then the wafer to be processed next in the reactor is In the semiconductor manufacturing method of placing the boat in the reactor again, the wafer to be processed next is placed on the boat after the boat is taken out of the reactor. A method for manufacturing a semiconductor, characterized in that the time until charging is set as a time during which the boat is not completely cooled and is kept constant.
JP17729293A 1993-06-24 1993-06-24 Semiconductor manufacturing method and semiconductor manufacturing apparatus Expired - Lifetime JP3746793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17729293A JP3746793B2 (en) 1993-06-24 1993-06-24 Semiconductor manufacturing method and semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17729293A JP3746793B2 (en) 1993-06-24 1993-06-24 Semiconductor manufacturing method and semiconductor manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH0786193A JPH0786193A (en) 1995-03-31
JP3746793B2 true JP3746793B2 (en) 2006-02-15

Family

ID=16028476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17729293A Expired - Lifetime JP3746793B2 (en) 1993-06-24 1993-06-24 Semiconductor manufacturing method and semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3746793B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333090A (en) 2004-05-21 2005-12-02 Sumco Corp P-type silicon wafer and method for heat-treatment thereof

Also Published As

Publication number Publication date
JPH0786193A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
US6277194B1 (en) Method for in-situ cleaning of surfaces in a substrate processing chamber
KR0149442B1 (en) Method for depositing layer on substrate and processing system therefor
US7223702B2 (en) Method of and apparatus for performing sequential processes requiring different amounts of time in the manufacturing of semiconductor devices
JP3578402B2 (en) Wafer processing system and wafer processing method
US6780251B2 (en) Substrate processing apparatus and method for fabricating semiconductor device
US8821643B2 (en) In-situ chamber cleaning for an RTP chamber
US7939441B2 (en) P-type silicon wafer and method for heat-treating the same
US20020182892A1 (en) Wafer transfer method performed with vapor thin film growth system and wafer support member used for this method
WO2002003445A1 (en) Method and apparatus for forming a silicon wafer with a denuded zone
JP3746793B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
US6704496B2 (en) High temperature drop-off of a substrate
JP2696265B2 (en) Semiconductor device manufacturing equipment
JP3274602B2 (en) Semiconductor element manufacturing method and substrate processing apparatus
JP2909481B2 (en) Processing method of object to be processed in vertical processing apparatus
JP2907095B2 (en) Method for manufacturing semiconductor device
US7231141B2 (en) High temperature drop-off of a substrate
JP2736127B2 (en) Object boat and vertical heat treatment apparatus using the same
WO2008042590A2 (en) Batch reaction chamber employing separate zones for radiant heating and resistive heating
JP3063116B2 (en) Chemical vapor deposition method
JP2683673B2 (en) Vertical heat treatment equipment
JP6538894B2 (en) How to bond substrates together
JP5010884B2 (en) Substrate processing apparatus, substrate transport method, and semiconductor integrated circuit device manufacturing method
JP3362420B2 (en) Method for manufacturing semiconductor device
JP2008078179A (en) Method of cleaning member
JP2011176320A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

EXPY Cancellation because of completion of term