Nothing Special   »   [go: up one dir, main page]

JP3745177B2 - Surface-cured amorphous alloy molded article and method for producing the same - Google Patents

Surface-cured amorphous alloy molded article and method for producing the same Download PDF

Info

Publication number
JP3745177B2
JP3745177B2 JP32787499A JP32787499A JP3745177B2 JP 3745177 B2 JP3745177 B2 JP 3745177B2 JP 32787499 A JP32787499 A JP 32787499A JP 32787499 A JP32787499 A JP 32787499A JP 3745177 B2 JP3745177 B2 JP 3745177B2
Authority
JP
Japan
Prior art keywords
group
element selected
amorphous alloy
formula
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32787499A
Other languages
Japanese (ja)
Other versions
JP2001140047A (en
Inventor
仁 大船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP32787499A priority Critical patent/JP3745177B2/en
Priority to TW089123009A priority patent/TWI221485B/en
Priority to US09/702,746 priority patent/US6530998B1/en
Priority to DE60037715T priority patent/DE60037715T2/en
Priority to EP00124243A priority patent/EP1111082B1/en
Priority to KR10-2000-0068117A priority patent/KR100391054B1/en
Priority to CNB001285408A priority patent/CN1309858C/en
Publication of JP2001140047A publication Critical patent/JP2001140047A/en
Priority to HK01107403A priority patent/HK1036487A1/en
Application granted granted Critical
Publication of JP3745177B2 publication Critical patent/JP3745177B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0466Heads wood-type
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/047Heads iron-type
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/08Amorphous alloys with aluminium as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3854Ferrules characterised by materials
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0416Heads having an impact surface provided by a face insert
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0445Details of grooves or the like on the impact surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3874Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Golf Clubs (AREA)
  • Continuous Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面硬化した非晶質合金製成形品及びその製造方法に関し、さらに詳しくは、非晶質合金製成形品、特に光コネクタ構成部品(キャピラリー、フェルール、スリーブ、V溝基板等)やゴルフクラブヘッド構成部品(フェース、クラウン、ソール等)などの部品や製品の表面にセラミック系硬質層を形成する表面硬化技術に関する。
【0002】
【従来の技術】
金属材料から作製された成形品は、セラミックス製成形品に比べ、加工が不要であるか容易な加工で済むことが多い。金属材料の中でも、非晶質合金(金属ガラス)は、溶湯からの金型鋳造によっても、またガラス遷移領域を利用した粘性流動による成形加工によっても、金型形状及び寸法を極めて忠実に再現し、その後の加工を行なわなくても非常に精度の良い成形品を低コストで製造できるという利点を有する。また、非晶質合金は機械的強度や化学的性質に優れるため、様々な部品や製品に応用されており、例えば特開平10−186176号、特開平10−311923号には非晶質合金製のフェルール、キャピラリー、スリーブ等の光コネクタ構成部品が、また特開平11−104281号公報には少なくともフェース部が非晶質合金から作製されたゴルフクラブヘッドが開示されている。
【0003】
【発明が解決しようとする課題】
頻繁に着脱が行なわれる光コネクタや、他の物品(ゴルフボール等)との衝突が繰り返し行なわれるゴルフクラブヘッドなどの製品においては、本質的に耐摩耗性に優れることが要求されるが、従来、非晶質合金製の成形品に特別なコーティングや表面硬化が行なわれた例は知られていない。これは、非晶質合金は一般の金属に比べて高強度、高硬度であるためと考えられ、また一般の表面硬化法では硬化処理自体も困難である。しかしながら、例えば非晶質合金の硬度が約500Hvであるのに対してジルコニアのそれは約1200Hvであり、セラミックスを相手材として摩耗試験を行なうと、その硬度差から磨耗粉が生じることがある。従って、特にジルコニア等のセラミックス材料から作製されることが多く、しかも相手方コネクタとの着脱が頻繁に行なわれる光コネクタの構成部品や、ショットによって小石等と衝突する機会の多いゴルフクラブヘッド等においては、より一層の耐摩耗性の向上が望まれる。
【0004】
一般に表面硬化法としては、基材表面にスパッタ法やイオンプレーティング法等によりTiC、TiN等の硬質膜をコーティングする方法が知られているが、このような表面硬化法では、基材と硬質膜の熱膨張率の差により、膜厚によっては硬質膜が剥離するという問題がある。また、コーティングするためにスパッタ装置やイオンプレーティング装置等の高価な装置が必要である。さらに、熱膨張率の差を解消するために、中間膜のコーティング等の余分な処理も必要となる。しかも、処理温度が高温のため、非晶質合金では結晶化してしまうので適用はできない。
【0005】
一方、光コネクタに関しては、結晶化ガラス製のもので行なわれているようなイオン交換処理により表面強化しているが、上記の場合と同様、イオン交換処理装置は高価であるといった問題がある。
【0006】
さらに、鋼材では一般に浸炭、窒化、火炎焼き入れ等により表面硬化が行なわれているが、このような表面硬化法には高価な特別な装置が必要である。しかも、処理温度が高温のため、非晶質合金では結晶化してしまうので適用困難である。
【0007】
従って、本発明の基本的な目的は、非晶質合金本来の優れた特性に加えて耐摩耗性が著しく改善された非晶質合金製成形品及びそのための表面硬化技術を提供することにある。
さらに本発明の目的は、母材のアモルファス構造を変えることなく、また寸法変化を伴わずに、従来の表面硬化法に比べて低い処理コストで成形品の表面部のみを硬化処理できる方法を提供することにある。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明によれば、後述する一般式(1)〜(6)のいずれか1つで示される組成を有し、少なくとも体積率50%以上の非晶質相を含む実質的に非晶質の合金からなる成形品を、酸素又は/及び窒素を含む雰囲気下にてその材料の等温変態曲線(TTT曲線)のアモルファス領域内の温度及び時間で熱処理を施し、上記成形品表面に、母材自体の少なくとも1種の構成元素のセラミック化により形成された酸化物又は/及び窒化物からなるセラミック成分を主体とするセラミック系硬質層を形成することを特徴とする表面硬化した非晶質合金製成形品の製造方法が提供される。
【0009】
より具体的な好適な態様においては、前記熱処理を1ppm以上の酸素又は/及び窒素を含む雰囲気下又は大気雰囲気下で行ない、また、母材自体の少なくとも1種の構成元素の酸化反応又は窒化反応の最低温度以上の温度で行なう。より好ましくは、前記熱処理を、(1)処理温度350℃−処理時間10分、(2)処理温度350℃−処理時間120分、(3)処理温度420℃−処理時間120分、(4)処理温度450℃−処理時間10分の(1)〜(4)により囲まれる範囲内で行なう。
このような熱処理により、10μm以下の表面粗さ変化量及び/又はサイズ変化量で、母材自体の少なくとも1種の構成元素の酸化物又は/及び窒化物を含む硬質層を、酸化物又は/及び窒化物の含有割合が表面から母材に向う深さ方向に漸次減少するように形成することができる。
【0010】
さらに本発明によれば、前記したような表面硬化法により、後述する一般式(1)〜(6)のいずれか1つで示される組成を有し、少なくとも体積率50%以上の非晶質相を含む実質的に非晶質の合金からなる成形品の表面に、母材自体の少なくとも1種の構成元素のセラミック化により形成された酸化物又は/及び窒化物からなるセラミック成分を主体とするセラミック系硬質層を有することを特徴とする非晶質合金製成形品が提供される。
より具体的な好適な態様によれば、前記セラミック系硬質層は、表面に向ってセラミック成分の含有割合が連続的又は段階的に増加するように構造傾斜している。
このような非晶質合金製成形品は、様々な分野の部品や製品として適用可能であるが、優れた機械的強度や化学的性質に加えて耐摩耗性に優れるため、特に光コネクタ構成部品(キャピラリー、フェルール、スリーブ、V溝基板等)やゴルフクラブヘッド構成部品(フェース、クラウン、ソール等)として適している。
【0011】
【発明の実施の形態】
前記のように、本発明の方法は、前記特定の非晶質合金製成形品を、酸素又は/及び窒素を含む雰囲気下にてその材料の等温変態曲線(TTT曲線)のアモルファス領域内の温度及び時間で熱処理し、上記成形品表面に、母材自体の少なくとも1種の構成元素のセラミック化により形成された酸化物又は/及び窒化物からなるセラミック成分を主体とするセラミック系硬質層を形成するものである。すなわち、基本的には熱処理法であるため、簡易な装置を用い、低コストで母材表面に一体的な強固なセラミック系硬質層を生成できる。また、熱処理であるため、被処理物を固定していても均一なセラミック系硬質層を容易に生成でき、従来の硬質膜のコーティングのように被コーティング物を回転させたりしなくてもよく、処理装置も複雑でなく、簡単な構成とすることができる。通常、硬質膜のコーティングでは膜の剥離が大きな問題となるが、本発明の方法では母材自体の少なくとも1種の構成元素のセラミック化、すなわち酸化反応や窒化反応により酸化物や窒化物が生成し、しかもこれらのセラミック微粒子の生成割合、従って母材中での含有割合が処理雰囲気と接する表面程高く、深さ方向に漸次減少する構造傾斜したセラミック系硬質膜を形成するため、母材と一体的な強固な硬質層であり、コーティング膜のような剥離が問題となることはなく、また表面粗さ変化やサイズ変化を生じることも殆どない。特に酸化処理の場合、大気中で行なえるため、高価な真空装置を必要とせず、より経済的な表面硬化法といえる。また、処理操作も、従来の鋼の酸化処理や窒化処理技術よりも簡単に行なうことができる。
【0012】
本発明による非晶質合金製成形品の表面硬化処理に用いられる反応性ガスとしては、酸素、空気、窒素、アンモニア等が用いられる。酸素や窒素は、酸化や窒化を生じる濃度で、一般に各々1ppm以上含む雰囲気、例えばAr等の不活性ガス雰囲気又は真空雰囲気として利用できる。なお、反応を促進させるためにHを混入することもできる。空気を利用する場合、大気中で熱処理すれば容易に非晶質合金製成形品表面を酸化させることができる。熱処理の条件は、母材自体の少なくとも1種の構成元素の酸化反応や窒化反応を生じる温度及び時間以上で、母材自体が結晶化しない条件、即ちその材料の等温変態曲線(TTT曲線)のアモルファス領域内にあることが必要である。成形品表面に形成されるセラミック系硬質層の厚さ(深さ)や構造傾斜度は、熱処理の温度や時間を変えることによって変化するが、反応性ガスの濃度(分圧)を変えることによっても、セラミック成分の含有割合が表面に向って連続的に又は段階的に増加して構造傾斜したセラミック系硬質層を形成できる。このようなセラミック系硬質層を形成しても、表面粗さ変化やサイズ変化は殆ど生じることはなく、後述する実施例から明らかなように、10μm以下である。
【0013】
本発明を適用する成形品は、少なくとも体積率50%以上の非晶質相を含む実質的に非晶質の合金から作製されている成形品であり、下記一般式(1)〜(6)のいずれか1つで示される組成を有する非晶質合金製成形品に好適に適用できる。
一般式(1):M Ln
但し、MはZr及びHfから選ばれる1種又は2種の元素、MはNi、Cu、Fe、Co、Mn、Nb、Ti、V、Cr、Zn、Al及びGaよりなる群から選ばれる少なくとも1種の元素、LnはY、La、Ce、Nd、Sm、Gd、Tb、Dy、Ho、Yb及びMm(希土類元素の集合体であるミッシュメタル)よりなる群から選ばれる少なくとも1種の元素、MはBe、B、C、N及びOよりなる群から選ばれる少なくとも1種の元素、MはTa、W及びMoよりなる群から選ばれる少なくとも1種の元素、MはAu、Pt、Pd及びAgよりなる群から選ばれる少なくとも1種の元素、a、b、c、d、e及びfはそれぞれ原子%で、25≦a≦85、15≦b≦75、0≦c≦30、0≦d≦30、0≦e≦15、0≦f≦15である。
【0014】
上記非晶質合金は、下記一般式(1−a)〜(1−p)の非晶質合金を含む。
一般式(1−a):M
この非晶質合金は、M元素がZr又はHfと共存するために、混合エンタルピーが負で大きく、アモルファス形成能が良い。
一般式(1−b):M Ln
この非晶質合金のように、上記一般式(1−a)の合金に希土類元素を添加することによりアモルファスの熱的安定性が向上する。
【0015】
一般式(1−c):M
一般式(1−d):M Ln
これらの非晶質合金のように、原子半径の小さな元素M(Be,B,C,N,O)でアモルファス構造中の隙間を埋めることによって、その構造が安定化し、アモルファス形成能が向上する。
【0016】
一般式(1−e):M
一般式(1−f):M Ln
一般式(1−g):M
一般式(1−h):M Ln
これらの非晶質合金のように、高融点金属M(Ta,W,Mo)を添加した場合、アモルファス形成能に影響を与えずに耐熱性、耐食性が向上する。
【0017】
一般式(1−i):M
一般式(1−j):M Ln
一般式(1−k):M
一般式(1−l):M Ln
一般式(1−m):M
一般式(1−n):M Ln
一般式(1−o):M
一般式(1−p):M Ln
これらの貴金属M(Au,Pt,Pd,Ag)を含んだ非晶質合金の場合、結晶化が起きても脆くならない。
【0018】
一般式(2):Al100−g−h−iLn
但し、LnはY、La、Ce、Nd、Sm、Gd、Tb、Dy、Ho、Yb及びMmよりなる群から選ばれる少なくとも1種の元素、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Hf、Ta及びWよりなる群から選ばれる少なくとも1種の元素、MはBe、B、C、N及びOよりなる群から選ばれる少なくとも1種の元素、g、h及びiはそれぞれ原子%で、30≦g≦90、0<h≦55、0≦i≦10である。
【0019】
上記非晶質合金は、下記一般式(2−a)及び(2−b)の非晶質合金を含む。
一般式(2−a):Al100−g−hLn
この非晶質合金は、混合エンタルピーが負で大きく、アモルファス形成能が良い。
一般式(2−b):Al100−g−h−iLn
この非晶質合金においては、原子半径の小さな元素M(Be,B,C,N,O)でアモルファス構造中の隙間を埋めることによって、その構造が安定化し、アモルファス形成能が向上する。
【0020】
一般式(3):Mg100−p
但し、MはCu、Ni、Sn及びZnよりなる群から選ばれる少なくとも1種の元素、pは原子%で5≦p≦60である。
この非晶質合金は、混合エンタルピーが負で大きく、アモルファス形成能が良い。
【0021】
一般式(4):Mg100−q−r
但し、MはCu、Ni、Sn及びZnよりなる群から選ばれる少なくとも1種の元素、MはAl、Si及びCaよりなる群から選ばれる少なくとも1種の元素、q及びrはそれぞれ原子%で、1≦q≦35、1≦r≦25である。
この非晶質合金のように、前記一般式(3)の合金において原子半径の小さな元素M(Al,Si,Ca)でアモルファス構造中の隙間を埋めることによって、その構造が安定化し、アモルファス形成能が向上する。
【0022】
一般式(5):Mg100−q−s
一般式(6):Mg100−q−r−s
但し、MはCu、Ni、Sn及びZnよりなる群から選ばれる少なくとも1種の元素、MはAl、Si及びCaよりなる群から選ばれる少なくとも1種の元素、MはY、La、Ce、Nd、Sm及びMmよりなる群から選ばれる少なくとも1種の元素、q、r及びsはそれぞれ原子%で、1≦q≦35、1≦r≦25、3≦s≦25である。
これらの非晶質合金のように、前記一般式(3)及び(4)の合金に希土類元素を添加することによりアモルファスの熱的安定性が向上する。
【0023】
前記した非晶質合金の中でも、ガラス遷移温度(Tg)と結晶化温度(Tx)の温度差が極めて広いZr−TM−Al系及びHf−TM−Al系(TM:遷移金属)非晶質合金は、高強度、高耐食性であると共に、過冷却液体領域(ガラス遷移領域)ΔTx=Tx−Tgが30K以上、特にZr−TM−Al系非晶質合金は60K以上と極めて広く、この温度領域では粘性流動により数10MPa以下の低応力でも非常に良好な加工性を示す。また、冷却速度が数10K/s程度の鋳造法によっても非晶質バルク材が得られるなど、非常に安定で製造し易い特徴を持っている。これらの合金は、溶湯からの金型鋳造によっても、またガラス遷移領域を利用した粘性流動による成形加工によっても、非晶質材料ができると同時に、金型形状及び寸法を極めて忠実に再現する。
【0024】
本発明に利用されるこれらのZr−TM−Al系及びHf−TM−Al系非晶質合金は、合金組成、測定法によっても異なるが、非常に大きなΔTxの範囲を持っている。例えばZr60Al15Co2.5Ni7.5Cu15合金(Tg:652K、Tx:768K)のΔTxは116Kと極めて広い。硬度は室温からTg付近までビッカース硬度(Hv)で460(DPN)、引張強度は1,600MPa、曲げ強度は3,000MPaに達する。熱膨張率αは室温からTg付近まで1×10−5/Kと小さく、ヤング率は91GPa、圧縮時の弾性限界は4〜5%を超える。さらに靭性も高く、シャルピー衝撃値で60〜70kJ/mを示す。このように非常に高強度の特性を示しながら、ガラス遷移領域まで加熱されると、流動応力は10MPa程度まで低下する。このため極めて加工が容易で、低応力で複雑な形状の微小部品や高精度部品に成形できるのが本合金の特徴である。しかも、いわゆるガラス(非晶質)としての特性から加工(変形)表面は極めて平滑性が高く、結晶合金を変形させたときのように滑り帯が表面に現われるステップなどは実質的に発生しない特徴を持っている。
【0025】
一般に、非晶質合金はガラス遷移領域まで加熱すると長時間の保持によって結晶化が始まるが、本合金のようにΔTxが広い合金は非晶質相が安定であり、ΔTx内の温度を適当に選べば2時間程度までは結晶が発生せず、通常の成形加工においては結晶化を懸念する必要はない。
また、本合金は溶湯からの凝固においてもこの特性を如何なく発揮する。一般に非晶質合金の製造には急速な冷却が必要とされるが、本合金は冷却速度10K/s程度の冷却で溶湯から容易に非晶質単相からなるバルク材を得ることができる。その凝固表面はやはり極めて平滑であり、金型表面のミクロンオーダーの研磨傷でさえも忠実に再現する転写性を持っている。
従って、鋳造材料として本合金を適用すれば、金型表面が成形品の要求特性を満たす表面品質を持っておれば、鋳造材においても金型の表面特性をそのまま再現し、従来の金型鋳造法においても寸法調整、表面粗さ調整の工程を省略又は短縮することができる。
【0026】
以上のように、比較的低い硬度、高い引張強度及び高い曲げ強度、比較的低いヤング率、高弾性限界、高耐衝撃性、高耐磨耗性、表面の平滑性、高精度の鋳造又は加工性を併せ持った特徴は、光コネクタのフェルールやスリーブなど、種々の分野の成形品の材料として適している。また、非晶質合金は、高精度の鋳造性及び加工性を有し、かつ金型のキャビティ形状を忠実に再現できる優れた転写性を有するため、金型を適切に作製することにより、金型鋳造法によって所定の形状、寸法精度、及び表面品質を満足する成形品を単一のプロセスで量産性良く製造できる。
【0027】
本発明の表面硬化法は、種々の非晶質合金製成形品に適用できるが、特に光コネクタ構成部品(キャピラリー、フェルール、スリーブ、V溝基板等)やゴルフクラブヘッド構成部品に好適に適用できる。
図1及び図2は、共に非晶質合金製の光コネクタ用フェルールとスリーブ及びそれらの使用状態を示しており、フェルール1はキャピラリー部2とフランジ部3が一体型のものである。
すなわち、フェルール1は、光ファイバ8(もしくは光ファイバ素線)を挿入するための小径の貫通孔4が中心軸線に沿って形成されたキャピラリー部2と、中心軸線に沿って光ファイバ心線7(光ファイバの外周に外被9が被着されたもの)挿通用の大径の貫通孔5が形成されたフランジ部3とからなり、小径の貫通孔4と大径の貫通孔5はテーパ径部6を介して接続されている。
一方、スリーブ10は、円筒体11の内周面の3箇所にその長手方向の一端から他端に至る断面半円形の凸条12が形成されていると共に、長手方向に全長に亘ってスリット13が形成されている。
【0028】
一対の光ファイバ8,8の接続は、図1に示すように、それらが挿入・接合された各フェルール1,1をスリーブ10の両端から挿入し、フェルール1,1同士の端面を突き合わせることにより行なわれ、これによって光ファイバ8,8の軸線が整列した状態で先端部が突き合わせ接続される。
なお、前記した態様においては、スリーブ10には長手方向に全長に亘ってスリット13が形成されているが、このようなスリットを設けない精密スリーブあるいはさらに凸条を設けない精密スリーブであってもよい。
【0029】
図3は、共に非晶質合金製の光コネクタ用フェルール1aとスリーブ10及びそれらの使用状態の他の実施形態を示しており、フェルール1aとしてキャピラリー部とフランジ部が別体のものが用いられている。
すなわち、このフェルール1aは、光ファイバ8を挿入するための小径の貫通孔4aが中心軸線に沿って形成されたキャピラリー2aと中心軸線に沿って光ファイバ心線7挿通用の大径の貫通孔5aが形成されたフランジ3aとからなる。キャピラリー2aのテーパ孔部6aが形成された端部を、フランジ3aの前端穴部15に締り嵌め又は接着等により固着することにより組み立てられる。スリーブ10とフェルール1a,1aの取付態様は、前記図1及び図2に示す形態と同様である。
【0030】
図4は、嵌合型光コネクタに用いられる非晶質合金製V溝基板の一形態の外観を示している。このV溝基板20の上面には、平行に列設された4本の光ファイバ用V溝21と、その両側にガイドピン用V溝22が形成されており、多芯光コネクタのV溝基板として適している。
図5は、図4に示すV溝基板20を用いた多芯(図示の例では4芯)光コネクタ30aを示している。多芯光コネクタ30aの本体は、基本的に、図4に示すようなV溝基板20と、該V溝基板20上に接着剤を介して結合した押え基板31によって構成されている。V溝基板20と押え基板31の接合により、それらの接合部内部の光ファイバ用V溝21及びガイドピン用V溝22によりそれぞれ光ファイバ穴及びガイドピン穴が形成される。この光ファイバ穴に光ファイバ8を挿入、接着して端面を研磨することにより、多芯光コネクタが作製される。同様に、複数の光ファイバ穴が形成され、そこに光ファイバが挿入、接着されているが、上記ガイドピン用V溝に対応する位置にガイドピン32が突設された他方の多芯光コネクタ30bを用い、上記ガイドピン穴にガイドピン32を挿入することによって、光コネクタ相互の結合を行なう。符号33はファイバテープである。
【0031】
図6は、フェース部41と、クラウン部42と、ソール部43とを組合せて構成してなる中空ゴルフクラブヘッド40である。図中、符号44はシャフト(図示せず)の取付部としてのホーゼル部、45はバランスウエイトである。これら各部を接着、溶接、加締め、ボルト締めなどの手段により一体的に接合してヘッドを形成する。あるいは、フェース部41とホーゼル部44は一体成形される。また、クラウン部42とソール部43をフェース部41と一体的に鋳造し、これにフェース面部材を一体的に接合したものでもよい。
図7及び図8はアイアン型のゴルフクラブヘッド40aの例で、フェース部46を中実の本体部47に埋め込んでなるものである。
【0032】
前記のようなゴルフクラブヘッドの各部、あるいは少なくともフェース部やソール部、クラウン部を非晶質合金から作製することにより、素材のもつ高強度、高硬度でありながら弾性率が低い特徴を生かし、高強度ゆえに薄肉化が可能で、よって軽量化できると共に、ヘッドを大型化することできる。そのため、シャフトを長くしてボールをより遠くへ飛ばすための慣性モーメントを大きくすることができる。また、軽量に作ることができるため、ヘッド周辺への適正な重量配分が可能となり、スイートエリアを広げることが可能となって、打球の方向性、飛距離等が安定化する。さらに、強度が大きいにも拘わらず弾性率が低いということは、ボールを打ったとき、反発性、衝撃効率がよく、ボールの飛距離が大きくなる。それに加えて、本発明に従って表面硬化処理することにより、耐摩耗性、耐久性がより一層大きくなるという利点が得られる。
【0033】
【実施例】
以下、本発明の効果を具体的に確認した幾つかの実施例を示す。
図9は、本発明による熱処理条件をZr基非晶質合金(Zr55NiAl10Cu30)を例に示したものである。この合金のTTT曲線は図9に示すようであるので、図中(1)及び(2)のアモルファス領域の条件(但し、180℃以上(一般にいわれているZrの酸化最低温度)、1分以上)で大気中熱処理をすれば、非晶質合金表面を容易に酸化できる。窒化処理の場合、ZrとNの反応温度が400℃以上であるため、図9の(2)の領域で処理する。
【0034】
このような条件で熱処理を行なうことにより、耐摩耗性の高い強固なセラミック系硬質層が非晶質合金表面に生成する。この際、非晶質合金を構成する元素の酸化物及び窒化物の生成自由エネルギーの低いものが優先的に変化するので、硬質層の組成はそれに対応したものとなる。前記Zr基非晶質合金の場合、大気中での熱処理により、図10に示すように、非晶質合金(母材)50の表面にZrOを主とする酸化物を含有するセラミック系硬質層51が生成し、かつ酸化物の含有割合は表面から深さ方向に漸次減少するように傾斜している。
【0035】
次に、前記Zr基非晶質合金製鋳造サンプルについて、図11に示す種々の条件A〜Kで大気中熱処理して得られた各サンプル及び比較のための未処理サンプルの硬度(ヌープ硬さ)、表面粗さ変化量、サイズ変化量及び摩耗試験結果を表1に示す。なお、摩耗試験は、サンプル表面を超硬合金製ピン(φ1.6mm)により面圧約4GPaで擦ることにより行なった。
【表1】

Figure 0003745177
【0036】
表1に示すサンプルA、B、E及び未処理サンプルの結果から、熱処理によって表面のヌープ硬さは高くなり、また処理温度が高くなる程ヌープ硬さは高くなり、耐摩耗性が向上していることがわかる。なお、硬質層の層厚が薄ければ薄い程、圧子が母材の影響を受けて柔らかい値になるため、ヌープ硬さは層厚に相当するものといえる。また、サンプルC〜Iの結果から、同じ熱処理温度でも処理時間が増す程、ヌープ硬さは高くなることがわかる。但し、過剰に長時間の熱処理を行なった場合(サンプルG、H、I)、層厚が厚くなり、耐摩耗性には優れるが、表面粗さが急激に悪化するため、サブミクロンオーダーの表面粗度が必要な成形品には適用困難である。サンプルJ、Kの場合、結晶化領域での熱処理のため非晶質合金サンプルが完全に結晶化し、サイズ変化、表面粗さ変化が著しい。
非晶質合金製成形品の表面硬化を効果的に行なうための好ましい処理温度と処理時間は、図11に斜線で囲まれている領域、すなわち(1)処理温度350℃−処理時間10分、(2)処理温度350℃−処理時間120分、(3)処理温度420℃−処理時間120分、(4)処理温度450℃−処理時間10分の(1)〜(4)により囲まれる範囲内である。
【0037】
【発明の効果】
以上のように、本発明によれば、簡易な装置を用い、低コストで非晶質合金製成形品の表面に一体的な強固なセラミック系硬質層を形成できる。また、熱処理による表面硬化法であるため、被処理物を固定していても均一なセラミック系硬質層を容易に生成でき、従来の硬質膜のコーティングのように被コーティング物を回転させたりしなくてもよく、処理装置も複雑でなく、簡単な構成とすることができる。さらに、本発明の方法では母材自体の少なくとも1種の元素のセラミック化、すなわち酸化反応や窒化反応により酸化物や窒化物が生成し、しかもこれらのセラミック微粒子の生成割合、従って母材中での含有割合が処理雰囲気と接する表面程高く、深さ方向に漸次減少する構造傾斜したセラミック系硬質層を形成するため、母材と一体的な強固な硬質層であり、コーティング膜のような剥離が問題となることはない。特に酸化処理の場合、大気中で行なえるため、高価な真空装置を必要とせず、より経済的に表面硬化を行なうことができる。
【図面の簡単な説明】
【図1】 本発明を適用する光コネクタ用フェルールとスリーブの一実施形態を示す部分断面図である。
【図2】 図1のII−II線断面図である。
【図3】 本発明を適用する光コネクタ用フェルールとスリーブの他の実施形態を示す部分断面図である。
【図4】 本発明を適用する多芯光コネクタ用V溝基板の斜視図である。
【図5】 図4に示すV溝基板を用いた多芯光コネクタの斜視図である。
【図6】 本発明を適用する中空ゴルフクラブヘッドの分解斜視図である。
【図7】 本発明を適用するアイアン型ゴルフクラブヘッドの斜視図である。
【図8】 図7のVIII−VIII線断面図である。
【図9】 Zr基非晶質合金(Zr55NiAl10Cu30)のTTT曲線と熱処理条件を示すグラフである。
【図10】 本発明による表面硬化処理後のZr基非晶質合金の表面状態を示す概略部分断面図である。
【図11】 Zr基非晶質合金(Zr55NiAl10Cu30)のTTT曲線と好ましい熱処理条件を示すグラフである。
【符号の説明】
1,1a フェルール
2 キャピラリー部
2a キャピラリー
3 フランジ部
3a フランジ
8 光ファイバ
10 スリーブ
13 スリット
20 V溝基板
21 光ファイバ用V溝
22 ガイドピン用V溝
30a,30b 多芯光コネクタ
31 押え基板
32 ガイドピン
40 中空ゴルフクラブヘッド
40a アイアン型ゴルフクラブヘッド
41,46 フェース部
42 クラウン部
43 ソール部
47 本体部
50 非晶質合金(母材)
51 セラミック系硬質層[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a surface-cured amorphous alloy molded article and a method for producing the same, and more particularly, to an amorphous alloy molded article, particularly an optical connector component (capillary, ferrule, sleeve, V-groove substrate, etc.) The present invention relates to a surface hardening technique for forming a ceramic hard layer on the surface of a component such as a golf club head component (face, crown, sole, etc.) or a product.
[0002]
[Prior art]
  In many cases, a molded product made of a metal material is unnecessary or easy to process, compared to a ceramic molded product. Among metal materials, amorphous alloys (metallic glass) reproduce the shape and dimensions of the mold very faithfully, both by mold casting from molten metal and by molding by viscous flow using the glass transition region. Further, there is an advantage that a highly accurate molded product can be manufactured at a low cost without performing subsequent processing. In addition, since amorphous alloys are excellent in mechanical strength and chemical properties, they are applied to various parts and products. For example, Japanese Patent Application Laid-Open No. 10-186176 and Japanese Patent Application Laid-Open No. 10-311923 are made of amorphous alloys. Japanese Patent Application Laid-Open No. 11-104281 discloses a golf club head in which at least a face portion is made of an amorphous alloy, such as ferrules, capillaries, and sleeves.
[0003]
[Problems to be solved by the invention]
  Products such as optical connectors that are frequently attached and detached and golf club heads that repeatedly collide with other articles (such as golf balls) are required to have essentially high wear resistance. There is no known example in which a special coating or surface hardening is performed on a molded article made of an amorphous alloy. This is presumably because amorphous alloys have higher strength and higher hardness than ordinary metals, and the curing treatment itself is difficult with a general surface hardening method. However, for example, the hardness of an amorphous alloy is about 500 Hv, whereas that of zirconia is about 1200 Hv. When a wear test is performed using ceramics as a counterpart material, wear powder may be generated due to the hardness difference. Therefore, it is often made from ceramic materials such as zirconia, and is often used for components of optical connectors that are frequently attached and detached from the mating connector, golf club heads that have many opportunities to collide with pebbles, etc. Therefore, further improvement in wear resistance is desired.
[0004]
  In general, as a surface hardening method, a method of coating a hard film such as TiC or TiN on the surface of a base material by a sputtering method or an ion plating method is known. Due to the difference in thermal expansion coefficient of the film, there is a problem that the hard film peels depending on the film thickness. In addition, an expensive apparatus such as a sputtering apparatus or an ion plating apparatus is required for coating. Furthermore, in order to eliminate the difference in thermal expansion coefficient, extra processing such as coating of an intermediate film is also required. In addition, since the processing temperature is high, the amorphous alloy is crystallized and cannot be applied.
[0005]
  On the other hand, the surface of the optical connector is reinforced by an ion exchange treatment as is done with crystallized glass, but there is a problem that the ion exchange treatment apparatus is expensive as in the above case.
[0006]
  Furthermore, steel materials are generally surface hardened by carburizing, nitriding, flame quenching, and the like, but such surface hardening methods require expensive special equipment. Moreover, since the processing temperature is high, the amorphous alloy is crystallized, so that it is difficult to apply.
[0007]
  Accordingly, a basic object of the present invention is to provide an amorphous alloy molded article having a significantly improved wear resistance in addition to the excellent properties inherent in an amorphous alloy, and a surface hardening technique therefor. .
  Furthermore, an object of the present invention is to provide a method capable of curing only the surface portion of a molded product at a lower processing cost than the conventional surface curing method without changing the amorphous structure of the base material and without accompanying a dimensional change. There is to do.
[0008]
[Means for Solving the Problems]
  In order to achieve the above object, according to the present invention, an amorphous phase having a composition represented by any one of the following general formulas (1) to (6) and having a volume ratio of 50% or more is used. A molded article comprising a substantially amorphous alloy,Oxygen or / and nitrogenThe material is heat treated at a temperature and time within the amorphous region of the isothermal transformation curve (TTT curve) of the material in an atmosphere containing the material, and formed on the surface of the molded product by ceramization of at least one constituent element of the base material itself WasMade of oxide or / and nitrideThere is provided a method for producing a surface-cured amorphous alloy molded product, characterized by forming a ceramic hard layer mainly composed of a ceramic component.
[0009]
  In a more specific preferred embodiment, the heat treatment is performed in an atmosphere containing 1 ppm or more of oxygen or / and nitrogen or in an air atmosphere, and an oxidation reaction or nitridation reaction of at least one constituent element of the base material itself Perform at a temperature above the minimum temperature. More preferably, the heat treatment is performed by (1) treatment temperature 350 ° C.—treatment time 10 minutes, (2) treatment temperature 350 ° C.—treatment time 120 minutes, (3) treatment temperature 420 ° C.—treatment time 120 minutes, (4) The treatment temperature is 450 ° C. and the treatment time is 10 minutes (1) to (4).
  By such heat treatment, the hard layer containing an oxide or / and nitride of at least one constituent element of the base material itself with a surface roughness variation and / or a size variation of 10 μm or less is converted into an oxide or / In addition, the nitride content can be gradually decreased in the depth direction from the surface toward the base material.
[0010]
  Furthermore, according to the present invention, an amorphous material having a composition represented by any one of the following general formulas (1) to (6) and having a volume ratio of 50% or more by the surface hardening method as described above. Formed on the surface of a molded article made of a substantially amorphous alloy containing a phase by ceramization of at least one constituent element of the base material itselfMade of oxide or / and nitrideAn amorphous alloy molded article having a ceramic hard layer mainly composed of a ceramic component is provided.
  According to a more specific preferred embodiment, the ceramic hard layerThe tableThe structure is inclined so that the content of the ceramic component increases continuously or stepwise toward the surface.
  Such amorphous alloy molded products can be applied as parts and products in various fields, but they have excellent wear resistance in addition to excellent mechanical strength and chemical properties. (Capillary, ferrule, sleeve, V-groove substrate, etc.) and golf club head components (face, crown, sole, etc.).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
  As described above, the method of the present invention is characterized in that the specific amorphous alloy molded article isOxygen or / and nitrogenThe material is heat-treated at a temperature and time in an amorphous region of an isothermal transformation curve (TTT curve) of the material under an atmosphere containing the material, and formed on the surface of the molded product by ceramization of at least one constituent element of the base material itself. TheMade of oxide or / and nitrideA ceramic hard layer mainly composed of a ceramic component is formed. That is, since it is basically a heat treatment method, it is possible to produce a strong ceramic hard layer integrated on the surface of the base material at a low cost using a simple apparatus. In addition, because it is a heat treatment, it is possible to easily generate a uniform ceramic hard layer even if the object to be processed is fixed, and it is not necessary to rotate the object to be coated like a conventional hard film coating. The processing apparatus is not complicated and can have a simple configuration. Usually, in the coating of a hard film, peeling of the film is a big problem, but in the method of the present invention, at least one constituent element of the base material itself is made into ceramic,IeOxidation and nitridation produce oxides and nitrides, and the proportion of these ceramic fine particles produced, and hence the content in the base material, is higher on the surface in contact with the processing atmosphere and gradually decreases in the depth direction. In order to form a ceramic hard film, it is a strong hard layer that is integral with the base material, and there is no problem of peeling like a coating film, and there is almost no change in surface roughness or size. Absent. In particular, in the case of oxidation treatment, since it can be performed in the atmosphere, an expensive vacuum apparatus is not required, and it can be said that it is a more economical surface hardening method. Also, the processing operation can be performed more easily than the conventional steel oxidation and nitriding techniques.
[0012]
  As the reactive gas used for the surface hardening treatment of the amorphous alloy molded article according to the present invention, oxygen, air, nitrogen, ammonia or the like is used. Oxygen and nitrogen are concentrations that cause oxidation and nitridation, and can be used as an atmosphere containing 1 ppm or more of each, for example, an inert gas atmosphere such as Ar or a vacuum atmosphere. In order to promote the reaction, H2Can also be mixed. When air is used, the surface of the amorphous alloy molded article can be easily oxidized by heat treatment in the atmosphere. The conditions for the heat treatment are the conditions at which the base material itself does not crystallize at the temperature and time at which the oxidation reaction or nitridation reaction of at least one constituent element of the base material itself occurs, that is, the isothermal transformation curve (TTT curve) of the material. It must be in an amorphous region. The thickness (depth) and the structural gradient of the ceramic hard layer formed on the surface of the molded product change by changing the temperature and time of the heat treatment, but by changing the concentration (partial pressure) of the reactive gas. However, the ceramic hard layer having a structure gradient can be formed by increasing the content of the ceramic component continuously or stepwise toward the surface. Even when such a ceramic hard layer is formed, the surface roughness and the size hardly change, and as is apparent from the examples described later, the thickness is 10 μm or less.
[0013]
  A molded product to which the present invention is applied is a molded product made of a substantially amorphous alloy containing an amorphous phase of at least 50% by volume. The following general formulas (1) to (6) It can be suitably applied to an amorphous alloy molded product having a composition represented by any one of the above.
  General formula (1): M1 aM2 bLncM3 dM4 eM5 f
  However, M1Is one or two elements selected from Zr and Hf, M2Is at least one element selected from the group consisting of Ni, Cu, Fe, Co, Mn, Nb, Ti, V, Cr, Zn, Al and Ga, Ln is Y, La, Ce, Nd, Sm, Gd, At least one element selected from the group consisting of Tb, Dy, Ho, Yb and Mm (Misch metal which is an aggregate of rare earth elements), M3Is at least one element selected from the group consisting of Be, B, C, N and O, M4Is at least one element selected from the group consisting of Ta, W and Mo, M5Is at least one element selected from the group consisting of Au, Pt, Pd and Ag, a, b, c, d, e and f are atomic%, 25 ≦ a ≦ 85, 15 ≦ b ≦ 75, 0 ≦ c ≦ 30, 0 ≦ d ≦ 30, 0 ≦ e ≦ 15, 0 ≦ f ≦ 15.
[0014]
  The amorphous alloy includes amorphous alloys represented by the following general formulas (1-a) to (1-p).
  Formula (1-a): M1 aM2 b
  This amorphous alloy is M2Since the element coexists with Zr or Hf, the mixing enthalpy is negative and large, and the amorphous forming ability is good.
  Formula (1-b): M1 aM2 bLnc
  Like this amorphous alloy, the thermal stability of amorphous is improved by adding a rare earth element to the alloy of the general formula (1-a).
[0015]
  Formula (1-c): M1 aM2 bM3 d
  Formula (1-d): M1 aM2 bLncM3 d
  Like these amorphous alloys, element M with a small atomic radius3By filling the gaps in the amorphous structure with (Be, B, C, N, O), the structure is stabilized and the amorphous forming ability is improved.
[0016]
  Formula (1-e): M1 aM2 bM4 e
  Formula (1-f): M1 aM2 bLncM4 e
  Formula (1-g): M1 aM2 bM3 dM4 e
  Formula (1-h): M1 aM2 bLncM3 dM4 e
  Like these amorphous alloys, refractory metal M4When (Ta, W, Mo) is added, the heat resistance and corrosion resistance are improved without affecting the amorphous forming ability.
[0017]
  Formula (1-i): M1 aM2 bM5 f
  Formula (1-j): M1 aM2 bLncM5 f
  Formula (1-k): M1 aM2 bM3 dM5 f
  Formula (1-l): M1 aM2 bLncM3 dM5 f
  Formula (1-m): M1 aM2 bM4 eM5 f
  Formula (1-n): M1 aM2 bLncM4 eM5 f
  Formula (1-o): M1 aM2 bM3 dM4 eM5 f
  Formula (1-p): M1 aM2 bLncM3 dM4 eM5 f
  These precious metals M5In the case of an amorphous alloy containing (Au, Pt, Pd, Ag), it does not become brittle even if crystallization occurs.
[0018]
  General formula (2): Al100-g-h-iLngM6 hM3 i
  However, Ln is at least one element selected from the group consisting of Y, La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, Yb and Mm, M6Is at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta and W, M3Is at least one element selected from the group consisting of Be, B, C, N and O, g, h and i are atomic%, 30 ≦ g ≦ 90, 0 <h ≦ 55, 0 ≦ i ≦ 10, respectively. It is.
[0019]
  The amorphous alloy includes amorphous alloys of the following general formulas (2-a) and (2-b).
  Formula (2-a): Al100-g-hLngM6 h
  This amorphous alloy has a large mixed enthalpy and a large amorphous forming ability.
  Formula (2-b): Al100-g-h-iLngM6 hM3 i
  In this amorphous alloy, the element M having a small atomic radius.3By filling the gaps in the amorphous structure with (Be, B, C, N, O), the structure is stabilized and the amorphous forming ability is improved.
[0020]
  General formula (3): Mg100-pM7 p
  However, M7Is at least one element selected from the group consisting of Cu, Ni, Sn and Zn, and p is atomic% and 5 ≦ p ≦ 60.
  This amorphous alloy has a large mixed enthalpy and a large amorphous forming ability.
[0021]
  Formula (4): Mg100-q-rM7 qM8 r
  However, M7Is at least one element selected from the group consisting of Cu, Ni, Sn and Zn, M8Is at least one element selected from the group consisting of Al, Si and Ca, q and r are atomic%, respectively, 1 ≦ q ≦ 35 and 1 ≦ r ≦ 25.
  Like this amorphous alloy, the element M having a small atomic radius in the alloy of the general formula (3)8By filling the gaps in the amorphous structure with (Al, Si, Ca), the structure is stabilized and the amorphous forming ability is improved.
[0022]
  Formula (5): Mg100-q-sM7 qM9 s
  Formula (6): Mg100-qrsM7 qM8 rM9 s
  However, M7Is at least one element selected from the group consisting of Cu, Ni, Sn and Zn, M8Is at least one element selected from the group consisting of Al, Si and Ca, M9Is at least one element selected from the group consisting of Y, La, Ce, Nd, Sm and Mm, q, r and s are atomic%, respectively 1 ≦ q ≦ 35, 1 ≦ r ≦ 25, 3 ≦ s ≦ 25.
  Like these amorphous alloys, the amorphous thermal stability is improved by adding rare earth elements to the alloys of the general formulas (3) and (4).
[0023]
  Among the amorphous alloys described above, Zr-TM-Al-based and Hf-TM-Al-based (TM: transition metal) amorphous where the temperature difference between the glass transition temperature (Tg) and the crystallization temperature (Tx) is extremely wide The alloy has high strength and high corrosion resistance, and the supercooled liquid region (glass transition region) ΔTx = Tx-Tg is 30K or more, particularly Zr-TM-Al based amorphous alloy is 60K or more, and this temperature In the region, very good workability is exhibited even at a low stress of several tens of MPa or less due to viscous flow. In addition, the amorphous bulk material can be obtained even by a casting method with a cooling rate of about several tens of K / s. These alloys can form amorphous materials both at the same time by casting from a molten metal and by forming by viscous flow using a glass transition region, and at the same time reproduce the mold shape and dimensions very faithfully.
[0024]
  These Zr-TM-Al-based and Hf-TM-Al-based amorphous alloys used in the present invention have a very large ΔTx range, although they differ depending on the alloy composition and measurement method. For example, Zr60Al15Co2.5Ni7.5Cu15ΔTx of the alloy (Tg: 652K, Tx: 768K) is as extremely wide as 116K. The hardness is 460 (DPN) in Vickers hardness (Hv) from room temperature to around Tg, the tensile strength reaches 1,600 MPa, and the bending strength reaches 3,000 MPa. The coefficient of thermal expansion α is 1 × 10 from room temperature to around Tg.-5/ K is small, Young's modulus is 91 GPa, and the elastic limit during compression exceeds 4 to 5%. Furthermore, the toughness is high, and the Charpy impact value is 60 to 70 kJ / m.2Indicates. As described above, when the glass transition region is heated while exhibiting very high strength characteristics, the flow stress is reduced to about 10 MPa. For this reason, it is extremely easy to process, and it is a feature of this alloy that it can be formed into a minute part having a complicated shape and a high precision part with low stress. In addition, because of the properties of so-called glass (amorphous), the processed (deformed) surface is extremely smooth, and there is virtually no occurrence of a step where a slip band appears on the surface like when a crystalline alloy is deformed. have.
[0025]
  In general, when an amorphous alloy is heated to the glass transition region, crystallization starts by holding for a long time. However, an alloy having a wide ΔTx like this alloy has a stable amorphous phase, and the temperature in ΔTx is appropriately set. If selected, crystals are not generated for up to about 2 hours, and there is no need to worry about crystallization in a normal molding process.
  In addition, this alloy exhibits this characteristic even when solidified from the molten metal. In general, rapid cooling is required for the production of an amorphous alloy, but this alloy can easily obtain a bulk material composed of an amorphous single phase from a molten metal by cooling at a cooling rate of about 10 K / s. The solidified surface is still very smooth, and has a transfer property that faithfully reproduces even micron-order polishing scratches on the mold surface.
  Therefore, if this alloy is applied as a casting material, if the mold surface has surface quality that meets the required characteristics of the molded product, the surface characteristics of the mold can be reproduced as is in the cast material, and conventional mold casting Also in the method, the steps of dimension adjustment and surface roughness adjustment can be omitted or shortened.
[0026]
  As described above, relatively low hardness, high tensile strength and high bending strength, relatively low Young's modulus, high elastic limit, high impact resistance, high wear resistance, surface smoothness, high precision casting or processing The feature having the characteristics is suitable as a material for molded products in various fields such as ferrules and sleeves of optical connectors. In addition, amorphous alloys have high precision castability and workability, and excellent transferability that can faithfully reproduce the cavity shape of the mold. A molded product satisfying a predetermined shape, dimensional accuracy, and surface quality can be manufactured with a single process with high productivity by the die casting method.
[0027]
  The surface hardening method of the present invention can be applied to various amorphous alloy molded products, but can be suitably applied particularly to optical connector components (capillaries, ferrules, sleeves, V-groove substrates, etc.) and golf club head components. .
  FIG. 1 and FIG. 2 both show an optical connector ferrule and sleeve made of an amorphous alloy and their use state. The ferrule 1 has a capillary part 2 and a flange part 3 integrated.
  That is, the ferrule 1 includes a capillary portion 2 in which a small-diameter through-hole 4 for inserting an optical fiber 8 (or an optical fiber strand) is formed along the central axis, and an optical fiber core wire 7 along the central axis. (The outer periphery of the optical fiber is covered with a jacket 9) The flange portion 3 is formed with a large-diameter through-hole 5 for insertion. The small-diameter through-hole 4 and the large-diameter through-hole 5 are tapered. It is connected via the diameter part 6.
  On the other hand, the sleeve 10 is provided with a semicircular ridge 12 having a semicircular cross section extending from one end to the other end in the longitudinal direction at three locations on the inner peripheral surface of the cylindrical body 11 and a slit 13 extending over the entire length in the longitudinal direction. Is formed.
[0028]
  As shown in FIG. 1, the pair of optical fibers 8 and 8 are connected by inserting the ferrules 1 and 1 into which they are inserted / joined from both ends of the sleeve 10 and butting the end surfaces of the ferrules 1 and 1 together. As a result, the tip ends are butt-connected with the axes of the optical fibers 8 and 8 being aligned.
  In the above-described embodiment, the slit 10 is formed in the sleeve 10 over the entire length in the longitudinal direction. However, a precision sleeve not provided with such a slit or a precision sleeve further provided with no ridges may be used. Good.
[0029]
  FIG. 3 shows another embodiment of the ferrule 1a and sleeve 10 for an optical connector both made of an amorphous alloy and their use state. As the ferrule 1a, a capillary part and a flange part are used separately. ing.
  That is, the ferrule 1a includes a capillary 2a in which a small-diameter through hole 4a for inserting the optical fiber 8 is formed along the central axis, and a large-diameter through hole for insertion of the optical fiber core 7 along the central axis. 5a is formed with a flange 3a. The capillary 2a is assembled by fixing the end portion where the tapered hole portion 6a is formed to the front end hole portion 15 of the flange 3a by an interference fit or adhesion. The attachment mode of the sleeve 10 and the ferrules 1a and 1a is the same as that shown in FIGS.
[0030]
  FIG. 4 shows the appearance of one embodiment of an amorphous alloy V-groove substrate used in the fitting type optical connector. On the upper surface of the V-groove substrate 20, four optical fiber V-grooves 21 arranged in parallel and guide pin V-grooves 22 are formed on both sides thereof. Suitable as
  FIG. 5 shows a multi-core (four-core in the illustrated example) optical connector 30a using the V-groove substrate 20 shown in FIG. The main body of the multi-core optical connector 30a is basically composed of a V-groove substrate 20 as shown in FIG. 4 and a presser substrate 31 coupled to the V-groove substrate 20 via an adhesive. By joining the V-groove substrate 20 and the presser substrate 31, an optical fiber hole and a guide pin hole are formed by the optical fiber V-groove 21 and the guide pin V-groove 22, respectively. The optical fiber 8 is inserted into this optical fiber hole, bonded, and the end face is polished to produce a multi-core optical connector. Similarly, a plurality of optical fiber holes are formed, and optical fibers are inserted and bonded thereto, but the other multi-core optical connector in which the guide pins 32 project from the positions corresponding to the guide pin V-grooves. The optical connectors are coupled to each other by inserting guide pins 32 into the guide pin holes using 30b. Reference numeral 33 denotes a fiber tape.
[0031]
  FIG. 6 shows a hollow golf club head 40 configured by combining a face portion 41, a crown portion 42, and a sole portion 43. In the figure, reference numeral 44 denotes a hosel portion as a mounting portion of a shaft (not shown), and 45 denotes a balance weight. These parts are integrally joined by means such as bonding, welding, caulking, and bolting to form a head. Alternatively, the face portion 41 and the hosel portion 44 are integrally formed. Alternatively, the crown portion 42 and the sole portion 43 may be integrally cast with the face portion 41, and a face surface member may be integrally joined thereto.
  7 and 8 show an example of an iron-type golf club head 40a, in which a face portion 46 is embedded in a solid main body portion 47. FIG.
[0032]
  By making each part of the golf club head as described above, or at least the face part, the sole part, and the crown part from an amorphous alloy, taking advantage of the low elastic modulus of the material while having high strength and high hardness, Due to the high strength, it is possible to reduce the thickness, thereby reducing the weight and increasing the size of the head. Therefore, it is possible to increase the moment of inertia for elongating the shaft to fly the ball further. Moreover, since it can be made lightweight, appropriate weight distribution to the periphery of the head is possible, the sweet area can be expanded, and the directionality of the hit ball, the flight distance, and the like are stabilized. Furthermore, the fact that the elastic modulus is low although the strength is high means that when the ball is hit, the resilience and impact efficiency are good and the flight distance of the ball increases. In addition, the surface hardening treatment according to the present invention provides the advantage that the wear resistance and durability are further increased.
[0033]
【Example】
  Hereinafter, some examples that specifically confirm the effects of the present invention will be described.
  FIG. 9 shows the heat treatment conditions according to the present invention with a Zr-based amorphous alloy (Zr55Ni5Al10Cu30) As an example. Since the TTT curve of this alloy is as shown in FIG. 9, the conditions of the amorphous regions (1) and (2) in the figure (however, 180 ° C. or higher (generally referred to as the lowest oxidation temperature of Zr), 1 minute or longer) ), The amorphous alloy surface can be easily oxidized. In the case of nitriding, since the reaction temperature of Zr and N is 400 ° C. or higher, the processing is performed in the region (2) of FIG.
[0034]
  By performing the heat treatment under such conditions, a strong ceramic hard layer with high wear resistance is formed on the amorphous alloy surface. At this time, since the oxides and nitrides having low formation free energy of the elements constituting the amorphous alloy change preferentially, the composition of the hard layer corresponds to that. In the case of the Zr-based amorphous alloy, ZrO is formed on the surface of the amorphous alloy (base material) 50 by heat treatment in the atmosphere as shown in FIG.2The ceramic hard layer 51 containing an oxide mainly composed of is produced, and the content of the oxide is inclined so as to gradually decrease in the depth direction from the surface.
[0035]
  Next, for the Zr-based amorphous alloy cast sample, the hardness (Knoop hardness) of each sample obtained by heat treatment in the atmosphere under various conditions A to K shown in FIG. 11 and an untreated sample for comparison. ), Surface roughness variation, size variation and wear test results are shown in Table 1. The abrasion test was conducted by rubbing the sample surface with a cemented carbide pin (φ1.6 mm) at a surface pressure of about 4 GPa.
[Table 1]
Figure 0003745177
[0036]
  From the results of samples A, B, E and untreated samples shown in Table 1, the Knoop hardness of the surface is increased by heat treatment, and the Knoop hardness is increased as the processing temperature is increased, and the wear resistance is improved. I understand that. The thinner the hard layer, the softer the indenter is affected by the base material, and the Knoop hardness can be said to correspond to the layer thickness. Moreover, from the results of samples C to I, it can be seen that the Knoop hardness increases as the treatment time increases even at the same heat treatment temperature. However, when heat treatment is performed for an excessively long time (samples G, H, and I), the layer thickness is increased and the wear resistance is excellent. It is difficult to apply to molded products that require roughness. In the case of samples J and K, the amorphous alloy sample was completely crystallized due to the heat treatment in the crystallization region, and the size change and the surface roughness change were remarkable.
  The preferable processing temperature and processing time for effectively performing the surface hardening of the amorphous alloy molded product are shown in the region surrounded by hatching in FIG. 11, that is, (1) processing temperature 350 ° C.-processing time 10 minutes, (2) Treatment temperature 350 ° C.—treatment time 120 minutes, (3) Treatment temperature 420 ° C.—treatment time 120 minutes, (4) Treatment temperature 450 ° C.—treatment time 10 minutes (1) to (4) Is within.
[0037]
【The invention's effect】
  As described above, according to the present invention, a simple ceramic hard layer can be formed integrally on the surface of an amorphous alloy molded product at a low cost using a simple apparatus. In addition, since it is a surface hardening method by heat treatment, a uniform ceramic hard layer can be easily generated even if the object to be processed is fixed, and the object to be coated does not rotate like the conventional hard film coating. In addition, the processing apparatus is not complicated and can have a simple configuration. Further, in the method of the present invention, the ceramization of at least one element of the base material itself,IeOxidation and nitridation produce oxides and nitrides, and the proportion of these ceramic fine particles produced, and hence the content in the base material, is higher on the surface in contact with the processing atmosphere and gradually decreases in the depth direction. Since the ceramic hard layer is formed, it is a strong hard layer integrated with the base material, and peeling like a coating film does not cause a problem. In particular, in the case of oxidation treatment, since it can be performed in the atmosphere, an expensive vacuum apparatus is not required, and surface hardening can be performed more economically.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing an embodiment of a ferrule and sleeve for an optical connector to which the present invention is applied.
FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a partial cross-sectional view showing another embodiment of the ferrule and sleeve for an optical connector to which the present invention is applied.
FIG. 4 is a perspective view of a V-groove substrate for a multi-core optical connector to which the present invention is applied.
5 is a perspective view of a multi-core optical connector using the V-groove substrate shown in FIG.
FIG. 6 is an exploded perspective view of a hollow golf club head to which the present invention is applied.
FIG. 7 is a perspective view of an iron type golf club head to which the present invention is applied.
8 is a cross-sectional view taken along line VIII-VIII in FIG.
FIG. 9: Zr-based amorphous alloy (Zr55Ni5Al10Cu30Is a graph showing a TTT curve and heat treatment conditions.
FIG. 10 is a schematic partial cross-sectional view showing the surface state of the Zr-based amorphous alloy after the surface hardening treatment according to the present invention.
FIG. 11 Zr-based amorphous alloy (Zr55Ni5Al10Cu30) And a preferable heat treatment condition.
[Explanation of symbols]
  1,1a Ferrule
  2 Capillary part
  2a Capillary
  3 Flange
  3a Flange
  8 Optical fiber
  10 sleeve
  13 Slit
  20 V-groove substrate
  21 V-groove for optical fiber
  22 V groove for guide pin
  30a, 30b Multi-core optical connector
  31 Presser board
  32 guide pins
  40 hollow golf club head
  40a Iron type golf club head
  41, 46 Face part
  42 Crown
  43 Sole
  47 Body
  50 Amorphous alloy (base material)
  51 Ceramic hard layer

Claims (12)

下記一般式(1)〜(6)のいずれか1つで示される組成を有し、少なくとも体積率50%以上の非晶質相を含む実質的に非晶質の合金からなる成形品を、酸素又は/及び窒素を含む雰囲気下にてその材料の等温変態曲線(TTT曲線)のアモルファス領域内の温度及び時間で熱処理を施し、上記成形品表面に、母材自体の少なくとも1種の構成元素のセラミック化により形成された酸化物又は/及び窒化物からなるセラミック成分を主体とするセラミック系硬質層を形成することを特徴とする表面硬化した非晶質合金製成形品の製造方法。
一般式(1):M Ln
但し、MはZr及びHfから選ばれる1種又は2種の元素、MはNi、Cu、Fe、Co、Mn、Nb、Ti、V、Cr、Zn、Al及びGaよりなる群から選ばれる少なくとも1種の元素、LnはY、La、Ce、Nd、Sm、Gd、Tb、Dy、Ho、Yb及びMm(希土類元素の集合体であるミッシュメタル)よりなる群から選ばれる少なくとも1種の元素、MはBe、B、C、N及びOよりなる群から選ばれる少なくとも1種の元素、MはTa、W及びMoよりなる群から選ばれる少なくとも1種の元素、MはAu、Pt、Pd及びAgよりなる群から選ばれる少なくとも1種の元素、a、b、c、d、e及びfはそれぞれ原子%で、25≦a≦85、15≦b≦75、0≦c≦30、0≦d≦30、0≦e≦15、0≦f≦15である。
一般式(2):Al100−g−h−iLn
但し、LnはY、La、Ce、Nd、Sm、Gd、Tb、Dy、Ho、Yb及びMmよりなる群から選ばれる少なくとも1種の元素、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Hf、Ta及びWよりなる群から選ばれる少なくとも1種の元素、MはBe、B、C、N及びOよりなる群から選ばれる少なくとも1種の元素、g、h及びiはそれぞれ原子%で、30≦g≦90、0<h≦55、0≦i≦10である。
一般式(3):Mg100−p
但し、MはCu、Ni、Sn及びZnよりなる群から選ばれる少なくとも1種の元素、pは原子%で5≦p≦60である。
一般式(4):Mg100−q−r
但し、MはCu、Ni、Sn及びZnよりなる群から選ばれる少なくとも1種の元素、MはAl、Si及びCaよりなる群から選ばれる少なくとも1種の元素、q及びrはそれぞれ原子%で、1≦q≦35、1≦r≦25である。
一般式(5):Mg100−q−s
但し、MはCu、Ni、Sn及びZnよりなる群から選ばれる少なくとも1種の元素、MはY、La、Ce、Nd、Sm及びMmよりなる群から選ばれる少なくとも1種の元素、q及びsはそれぞれ原子%で、1≦q≦35、3≦s≦25である。
一般式(6):Mg100−q−r−s
但し、MはCu、Ni、Sn及びZnよりなる群から選ばれる少なくとも1種の元素、MはAl、Si及びCaよりなる群から選ばれる少なくとも1種の元素、MはY、La、Ce、Nd、Sm及びMmよりなる群から選ばれる少なくとも1種の元素、q、r及びsはそれぞれ原子%で、1≦q≦35、1≦r≦25、3≦s≦25である。
A molded article having a composition represented by any one of the following general formulas (1) to (6) and comprising a substantially amorphous alloy containing an amorphous phase of at least 50% by volume, Heat treatment is performed at a temperature and time within the amorphous region of the isothermal transformation curve (TTT curve) of the material in an atmosphere containing oxygen or / and nitrogen , and at least one constituent element of the base material itself is formed on the surface of the molded product. A method for producing a surface-hardened amorphous alloy molded article, characterized in that a ceramic hard layer mainly comprising a ceramic component made of oxide or / and nitride formed by ceramization is formed.
Formula (1): M 1 a M 2 b Ln c M 3 d M 4 e M 5 f
Where M 1 is one or two elements selected from Zr and Hf, and M 2 is selected from the group consisting of Ni, Cu, Fe, Co, Mn, Nb, Ti, V, Cr, Zn, Al, and Ga. Ln is at least one selected from the group consisting of Y, La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, Yb and Mm (Misch metal which is an aggregate of rare earth elements). M 3 is at least one element selected from the group consisting of Be, B, C, N and O, M 4 is at least one element selected from the group consisting of Ta, W and Mo, and M 5 is At least one element selected from the group consisting of Au, Pt, Pd and Ag, a, b, c, d, e and f are atomic%, respectively, 25 ≦ a ≦ 85, 15 ≦ b ≦ 75, 0 ≦ c ≦ 30, 0 ≦ d ≦ 30, 0 ≦ e ≦ 15, ≦ a f ≦ 15.
Formula (2): Al 100-g -h-i Ln g M 6 h M 3 i
However, Ln is Y, La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, at least one element selected from the group consisting of Yb and Mm, M 6 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, at least one at least one element selected from the group consisting of Ta and W, M 3 is that be, B, C, selected from the group consisting of N and O The elements g, h and i are atomic%, and 30 ≦ g ≦ 90, 0 <h ≦ 55, and 0 ≦ i ≦ 10.
General formula (3): Mg 100-p M 7 p
However, M 7 represents at least one element selected Cu, Ni, from the group consisting of Sn and Zn, p is 5 ≦ p ≦ 60 at%.
Formula (4): Mg 100-q -r M 7 q M 8 r
M 7 is at least one element selected from the group consisting of Cu, Ni, Sn and Zn, M 8 is at least one element selected from the group consisting of Al, Si and Ca, and q and r are atoms, respectively. %, 1 ≦ q ≦ 35 and 1 ≦ r ≦ 25.
General formula (5): Mg 100-q-s M 7 q M 9 s
Provided that at least one element M 7 is that Cu, Ni, at least one element selected from the group consisting of Sn and Zn, M 9 is the Y, La, Ce, Nd, selected from the group consisting of Sm and Mm, q and s are atomic%, respectively, and 1 ≦ q ≦ 35 and 3 ≦ s ≦ 25.
Formula (6): Mg 100-q -r-s M 7 q M 8 r M 9 s
However, M 7 is Cu, Ni, at least one element of at least one element selected from the group consisting of Sn and Zn, M 8 is Al, selected from the group consisting of Si and Ca, M 9 is Y, La , Ce, Nd, Sm, and Mm, at least one element selected from the group consisting of q, r, and s is atomic%, and 1 ≦ q ≦ 35, 1 ≦ r ≦ 25, and 3 ≦ s ≦ 25 .
前記熱処理を、1ppm以上の酸素又は/及び窒素を含む雰囲気下又は大気雰囲気下で行なうことを特徴とする請求項1に記載の方法。  The method according to claim 1, wherein the heat treatment is performed in an atmosphere containing 1 ppm or more of oxygen and / or nitrogen or in an air atmosphere. 前記熱処理を、母材自体の少なくとも1種の構成元素の酸化反応又は窒化反応の最低温度以上の温度で行なうことを特徴とする請求項2に記載の方法。  The method according to claim 2, wherein the heat treatment is performed at a temperature equal to or higher than a minimum temperature of an oxidation reaction or a nitridation reaction of at least one constituent element of the base material itself. 前記熱処理を、(1)処理温度350℃−処理時間10分、(2)処理温度350℃−処理時間120分、(3)処理温度420℃−処理時間120分、(4)処理温度450℃−処理時間10分の(1)〜(4)により囲まれる範囲内で行なうことを特徴とする請求項1乃至3のいずれか一項に記載の方法。  The heat treatment includes (1) treatment temperature 350 ° C.—treatment time 10 minutes, (2) treatment temperature 350 ° C.—treatment time 120 minutes, (3) treatment temperature 420 ° C.—treatment time 120 minutes, and (4) treatment temperature 450 ° C. The method according to any one of claims 1 to 3, wherein the method is performed within a range surrounded by (1) to (4) of a processing time of 10 minutes. 前記熱処理により、2μm未満の表面粗さ変化量及び/又はサイズ変化量でセラミック系硬質層を形成することを特徴とする請求項1乃至4のいずれか一項に記載の方法。  5. The method according to claim 1, wherein the ceramic hard layer is formed with a surface roughness change amount and / or a size change amount of less than 2 μm by the heat treatment. 前記熱処理により、0.1μm未満の表面粗さ変化量及び/又はサイズ変化量でセラミック系硬質層を形成することを特徴とする請求項1乃至4のいずれか一項に記載の方法。  The method according to any one of claims 1 to 4, wherein the ceramic hard layer is formed by the heat treatment with a surface roughness change and / or a size change of less than 0.1 µm. 前記熱処理により、母材自体の少なくとも1種の構成元素の酸化物又は/及び窒化物を含む硬質層を、酸化物又は/及び窒化物の含有割合が表面から母材に向う深さ方向に漸次減少するように形成することを特徴とする請求項2乃至5のいずれか一項に記載の方法。  By the heat treatment, the hard layer containing the oxide or / and nitride of at least one constituent element of the base material itself is gradually increased in the depth direction in which the content ratio of the oxide or / and nitride is from the surface toward the base material. 6. The method according to claim 2, wherein the method is formed so as to decrease. 下記一般式(1)〜(6)のいずれか1つで示される組成を有し、少なくとも体積率50%以上の非晶質相を含む実質的に非晶質の合金からなる成形品の表面に、母材自体の少なくとも1種の構成元素のセラミック化により形成された酸化物又は/及び窒化物からなるセラミック成分を主体とするセラミック系硬質層を有することを特徴とする非晶質合金製成形品。
一般式(1):M Ln
但し、MはZr及びHfから選ばれる1種又は2種の元素、MはNi、Cu、Fe、Co、Mn、Nb、Ti、V、Cr、Zn、Al及びGaよりなる群から選ばれる少なくとも1種の元素、LnはY、La、Ce、Nd、Sm、Gd、Tb、Dy、Ho、Yb及びMm(希土類元素の集合体であるミッシュメタル)よりなる群から選ばれる少なくとも1種の元素、MはBe、B、C、N及びOよりなる群から選ばれる少なくとも1種の元素、MはTa、W及びMoよりなる群から選ばれる少なくとも1種の元素、MはAu、Pt、Pd及びAgよりなる群から選ばれる少なくとも1種の元素、a、b、c、d、e及びfはそれぞれ原子%で、25≦a≦85、15≦b≦75、0≦c≦30、0≦d≦30、0≦e≦15、0≦f≦15である。
一般式(2):Al100−g−h−iLn
但し、LnはY、La、Ce、Nd、Sm、Gd、Tb、Dy、Ho、Yb及びMmよりなる群から選ばれる少なくとも1種の元素、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Hf、Ta及びWよりなる群から選ばれる少なくとも1種の元素、MはBe、B、C、N及びOよりなる群から選ばれる少なくとも1種の元素、g、h及びiはそれぞれ原子%で、30≦g≦90、0<h≦55、0≦i≦10である。
一般式(3):Mg100−p
但し、MはCu、Ni、Sn及びZnよりなる群から選ばれる少なくとも1種の元素、pは原子%で5≦p≦60である。
一般式(4):Mg100−q−r
但し、MはCu、Ni、Sn及びZnよりなる群から選ばれる少なくとも1種の元素、MはAl、Si及びCaよりなる群から選ばれる少なくとも1種の元素、q及びrはそれぞれ原子%で、1≦q≦35、1≦r≦25である。
一般式(5):Mg100−q−s
但し、MはCu、Ni、Sn及びZnよりなる群から選ばれる少なくとも1種の元素、MはY、La、Ce、Nd、Sm及びMmよりなる群から選ばれる少なくとも1種の元素、q及びsはそれぞれ原子%で、1≦q≦35、3≦s≦25である。
一般式(6):Mg100−q−r−s
但し、MはCu、Ni、Sn及びZnよりなる群から選ばれる少なくとも1種の元素、MはAl、Si及びCaよりなる群から選ばれる少なくとも1種の元素、MはY、La、Ce、Nd、Sm及びMmよりなる群から選ばれる少なくとも1種の元素、q、r及びsはそれぞれ原子%で、1≦q≦35、1≦r≦25、3≦s≦25である。
The surface of a molded article having a composition represented by any one of the following general formulas (1) to (6) and comprising a substantially amorphous alloy containing an amorphous phase of at least 50% by volume And an amorphous alloy having a ceramic hard layer mainly composed of an oxide or / and a nitride formed by ceramization of at least one constituent element of the base material itself. Molding.
Formula (1): M 1 a M 2 b Ln c M 3 d M 4 e M 5 f
Where M 1 is one or two elements selected from Zr and Hf, and M 2 is selected from the group consisting of Ni, Cu, Fe, Co, Mn, Nb, Ti, V, Cr, Zn, Al, and Ga. Ln is at least one selected from the group consisting of Y, La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, Yb and Mm (Misch metal which is an aggregate of rare earth elements). M 3 is at least one element selected from the group consisting of Be, B, C, N and O, M 4 is at least one element selected from the group consisting of Ta, W and Mo, and M 5 is At least one element selected from the group consisting of Au, Pt, Pd and Ag, a, b, c, d, e and f are atomic%, respectively, 25 ≦ a ≦ 85, 15 ≦ b ≦ 75, 0 ≦ c ≦ 30, 0 ≦ d ≦ 30, 0 ≦ e ≦ 15, ≦ a f ≦ 15.
Formula (2): Al 100-g -h-i Ln g M 6 h M 3 i
However, Ln is Y, La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, at least one element selected from the group consisting of Yb and Mm, M 6 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, at least one at least one element selected from the group consisting of Ta and W, M 3 is that be, B, C, selected from the group consisting of N and O The elements g, h and i are atomic%, and 30 ≦ g ≦ 90, 0 <h ≦ 55, and 0 ≦ i ≦ 10.
General formula (3): Mg 100-p M 7 p
However, M 7 represents at least one element selected Cu, Ni, from the group consisting of Sn and Zn, p is 5 ≦ p ≦ 60 at%.
Formula (4): Mg 100-q -r M 7 q M 8 r
M 7 is at least one element selected from the group consisting of Cu, Ni, Sn and Zn, M 8 is at least one element selected from the group consisting of Al, Si and Ca, and q and r are atoms, respectively. %, 1 ≦ q ≦ 35 and 1 ≦ r ≦ 25.
General formula (5): Mg 100-q-s M 7 q M 9 s
Provided that at least one element M 7 is that Cu, Ni, at least one element selected from the group consisting of Sn and Zn, M 9 is the Y, La, Ce, Nd, selected from the group consisting of Sm and Mm, q and s are atomic%, respectively, and 1 ≦ q ≦ 35 and 3 ≦ s ≦ 25.
Formula (6): Mg 100-q -r-s M 7 q M 8 r M 9 s
However, M 7 is Cu, Ni, at least one element of at least one element selected from the group consisting of Sn and Zn, M 8 is Al, selected from the group consisting of Si and Ca, M 9 is Y, La , Ce, Nd, Sm, and Mm, at least one element selected from the group consisting of q, r, and s is atomic%, and 1 ≦ q ≦ 35, 1 ≦ r ≦ 25, and 3 ≦ s ≦ 25 .
前記セラミック系硬質層が、表面に向ってセラミック成分の含有割合が連続的又は段階的に増加するように構造傾斜していることを特徴とする請求項に記載の非晶質合金製成形品。9. The amorphous alloy molded product according to claim 8 , wherein the ceramic hard layer is structurally inclined so that the content of the ceramic component increases continuously or stepwise toward the surface. . 前記セラミック系硬質層が、請求項1乃至7のいずれか一項に記載の方法により形成されたものであることを特徴とする請求項8又は9に記載の非晶質合金製成形品。The molded article made of an amorphous alloy according to claim 8 or 9 , wherein the ceramic hard layer is formed by the method according to any one of claims 1 to 7. 前記成形品が光コネクタ構成部品である請求項8乃至10のいずれか一項に記載の非晶質合金製成形品。The amorphous alloy molded product according to any one of claims 8 to 10 , wherein the molded product is an optical connector component. 前記成形品がゴルフクラブヘッド構成部品である請求項8乃至10のいずれか一項に記載の非晶質合金製成形品。The amorphous alloy molded product according to any one of claims 8 to 10 , wherein the molded product is a golf club head component.
JP32787499A 1999-11-18 1999-11-18 Surface-cured amorphous alloy molded article and method for producing the same Expired - Lifetime JP3745177B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP32787499A JP3745177B2 (en) 1999-11-18 1999-11-18 Surface-cured amorphous alloy molded article and method for producing the same
US09/702,746 US6530998B1 (en) 1999-11-18 2000-11-01 Formed article of amorphous alloy having hardened surface and method for production thereof
TW089123009A TWI221485B (en) 1999-11-18 2000-11-01 Formed article of amorphous alloy having hardened surface and method for production thereof
EP00124243A EP1111082B1 (en) 1999-11-18 2000-11-10 Formed article of amorphous alloy having hardened surface and method for production thereof
DE60037715T DE60037715T2 (en) 1999-11-18 2000-11-10 An amorphous alloy molded article having a hardened surface and a method of making the same
KR10-2000-0068117A KR100391054B1 (en) 1999-11-18 2000-11-16 Formed article of amorphous alloy having hardened surface and method for production thereof
CNB001285408A CN1309858C (en) 1999-11-18 2000-11-17 Non-crystal alloy formed workpieces with hardened surface and production thereof
HK01107403A HK1036487A1 (en) 1999-11-18 2001-10-24 Formed article of amorphous alloy having hardened surface and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32787499A JP3745177B2 (en) 1999-11-18 1999-11-18 Surface-cured amorphous alloy molded article and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001140047A JP2001140047A (en) 2001-05-22
JP3745177B2 true JP3745177B2 (en) 2006-02-15

Family

ID=18203954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32787499A Expired - Lifetime JP3745177B2 (en) 1999-11-18 1999-11-18 Surface-cured amorphous alloy molded article and method for producing the same

Country Status (8)

Country Link
US (1) US6530998B1 (en)
EP (1) EP1111082B1 (en)
JP (1) JP3745177B2 (en)
KR (1) KR100391054B1 (en)
CN (1) CN1309858C (en)
DE (1) DE60037715T2 (en)
HK (1) HK1036487A1 (en)
TW (1) TWI221485B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1309928B1 (en) * 1999-12-01 2002-02-05 Bundy S P A PIPE FOR PRESSURE FLUID SUPPLY SYSTEMS, IN PARTICULAR FOR FUEL SUPPLY IN DIESEL ENGINES,
JP2006000335A (en) * 2004-06-17 2006-01-05 Bridgestone Sports Co Ltd Club head
US8685501B2 (en) * 2004-10-07 2014-04-01 Lockheed Martin Corporation Co-continuous metal-metal matrix composite material using timed deposition processing
US8389072B2 (en) * 2004-10-28 2013-03-05 Lockheed Martin Corporation System, method, and apparatus for variable hardness gradient armor alloys
JP5170992B2 (en) * 2006-07-24 2013-03-27 ブリヂストンスポーツ株式会社 Golf club head
JP4848912B2 (en) 2006-09-28 2011-12-28 富士ゼロックス株式会社 Authenticity determination apparatus, authenticity determination method, authenticity determination program, and method for producing amorphous alloy member
TW200819171A (en) * 2006-10-25 2008-05-01 Fu Sheng Ind Co Ltd Golf club head and method of fabricating striking plate
TW200821019A (en) * 2006-11-07 2008-05-16 Fu Sheng Ind Co Ltd Golf club head and method of fabricating striking plate
CN101970198B (en) 2008-03-19 2013-05-29 柯尼卡美能达精密光学株式会社 Method for producing wafer lens
CN101970220B (en) 2008-03-19 2014-10-29 柯尼卡美能达精密光学株式会社 Method for producing molded body or wafer lens
RU2533982C2 (en) * 2009-04-30 2014-11-27 Шеврон Ю.Эс.Эй.Инк. Processing of amorphous coating surface
US8075420B2 (en) * 2009-06-24 2011-12-13 Acushnet Company Hardened golf club head
KR102100291B1 (en) 2011-11-11 2020-04-13 삼성전자주식회사 Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US20130333920A1 (en) * 2012-06-13 2013-12-19 Industry-Academic Cooperation Foundation, Yonsei University Metallic glass, article, and conductive paste
TWI468531B (en) * 2013-09-30 2015-01-11 Advanced Int Multitech Co Ltd The golf club head is made of stainless steel alloy
US10605387B2 (en) 2013-12-10 2020-03-31 Parker-Hannifin Corporation Multiple layer hardness ferrule and method
US20150160416A1 (en) * 2013-12-10 2015-06-11 Parker-Hannifin Corporation Multiple layer hardness ferrule
CN103861686A (en) * 2014-03-19 2014-06-18 江苏新亚特钢锻造有限公司 Grinding roller with bionic and wear-resistant composite coating and preparation technology of grinding roller
CN103938129B (en) * 2014-05-12 2015-10-21 济南济钢铁合金厂 A kind of production method of justifying base non-crystaline amorphous metal mother metal
CN105132834B (en) * 2015-09-10 2017-08-25 深圳市锆安材料科技有限公司 A kind of high intensity non-crystaline amorphous metal and preparation method thereof
CN105220085A (en) * 2015-10-21 2016-01-06 东莞宜安科技股份有限公司 A kind of high strength non-crystaline amorphous metal and its preparation method and application
CN105296861A (en) * 2015-11-11 2016-02-03 杨秋香 Surface-graphene-reinforced novel engine valve material
CN105401103B (en) * 2015-11-13 2017-07-28 东莞宜安科技股份有限公司 A kind of amorphous composite material of high tenacity and its preparation method and application
CN108504969B (en) * 2018-05-04 2020-04-17 深圳市锆安材料科技有限公司 Corrosion-resistant zirconium-based amorphous alloy and preparation method thereof
CN108754403B (en) * 2018-06-01 2019-10-15 天津大学 Method for preparing Zr-Al-O ternary amorphous oxide layer
CN108905114A (en) * 2018-08-27 2018-11-30 南京佑天金属科技有限公司 A kind of glof club head
CN109622978B (en) * 2019-01-08 2022-02-11 深圳市辰越科技有限公司 Amorphous alloy powder and preparation method and application thereof
CN113122784A (en) * 2021-04-19 2021-07-16 西南大学 Molybdenum-based bulk amorphous alloy and preparation method thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0087823B1 (en) * 1980-11-21 1984-09-19 Gallaher Limited Diaphragm for a diaphragm pump or motor
CA1205725A (en) 1982-09-06 1986-06-10 Emiko Higashinakagawa Corrosion-resistant and wear-resistant amorphous alloy and a method for preparing the same
JPS5943882A (en) * 1982-09-06 1984-03-12 Toshiba Corp Corrosion and wear resistant amorphous alloy and its manufacture
JPS5945621A (en) 1982-09-07 1984-03-14 Toshiba Corp Magnetic head of amorphous alloy and its manufacture
JPH079057B2 (en) 1985-04-26 1995-02-01 株式会社東芝 Amorphous alloy magnetic core manufacturing method
JPH081184B2 (en) * 1987-09-30 1996-01-10 株式会社日立製作所 Compressor
JPH02111866A (en) 1987-12-15 1990-04-24 Masanobu Nunogaki Pretreatment of aluminum material by ion implantation before surface nitriding
JPH07122119B2 (en) 1989-07-04 1995-12-25 健 増本 Amorphous alloy with excellent mechanical strength, corrosion resistance and workability
US5316594A (en) 1990-01-18 1994-05-31 Fike Corporation Process for surface hardening of refractory metal workpieces
JPH0499244A (en) 1990-08-09 1992-03-31 Yoshida Kogyo Kk <Ykk> High strength magnesium base alloy
JPH04336083A (en) * 1991-05-10 1992-11-24 I N R Kenkyusho:Kk Golf club head
JP2696015B2 (en) * 1991-09-13 1998-01-14 健 増本 Functionally graded thin film
CN1095764A (en) * 1993-05-25 1994-11-30 中国科学院金属研究所 A kind of preparation method of bulk amorphous material
JP3210776B2 (en) 1993-06-15 2001-09-17 松下電工株式会社 Magnetic material using amorphous magnetic alloy, method for producing magnetic material
JP3326087B2 (en) * 1996-12-26 2002-09-17 明久 井上 Ferrule for optical fiber connector and method of manufacturing the same
JPH10265917A (en) * 1997-03-25 1998-10-06 Akihisa Inoue High hardness glassy alloy, and high hardness tool using same
JP3400296B2 (en) * 1997-05-12 2003-04-28 ワイケイケイ株式会社 Sleeve for optical connector ferrule and method of manufacturing the same
JPH11104281A (en) 1997-10-01 1999-04-20 Takeshi Masumoto Golf club head
JP3479444B2 (en) 1997-12-25 2003-12-15 住友ゴム工業株式会社 Zirconium-based amorphous alloy
JPH11302823A (en) 1998-04-17 1999-11-02 Nippon Steel Corp Manufacture of iron-base amorphous alloy foil
JP3500062B2 (en) 1998-04-17 2004-02-23 新日本製鐵株式会社 Fe-based amorphous alloy ribbon with ultra-thin oxide layer

Also Published As

Publication number Publication date
EP1111082A1 (en) 2001-06-27
HK1036487A1 (en) 2002-01-04
CN1309858C (en) 2007-04-11
DE60037715D1 (en) 2008-02-21
KR20010051742A (en) 2001-06-25
CN1300872A (en) 2001-06-27
KR100391054B1 (en) 2003-07-12
JP2001140047A (en) 2001-05-22
TWI221485B (en) 2004-10-01
DE60037715T2 (en) 2008-12-24
EP1111082B1 (en) 2008-01-09
US6530998B1 (en) 2003-03-11

Similar Documents

Publication Publication Date Title
JP3745177B2 (en) Surface-cured amorphous alloy molded article and method for producing the same
US6374899B1 (en) Method and apparatus for production of cast article having small hole
EP0878723B1 (en) Sleeve for optical connector ferrules and method for production thereof
KR100307896B1 (en) Ferrule for Fiber Optic Connector and Manufacturing Method
US6435731B1 (en) Ferrule having optical fiber incorporated therein as an integral part thereof and method for production thereof
JP3808354B2 (en) Toning method for zirconium-based amorphous alloys
JP2000343205A (en) Manufacture of amorphous alloy formed stock
JP3792471B2 (en) Mold and apparatus for continuous injection molding to wire
US6627008B1 (en) Grooved substrates for multifiber optical connectors and for alignment of multiple optical fibers and method for production thereof
JP2000102845A (en) Manufacture of amorphous alloy molding piece
JP2001239550A (en) Method and apparatus for manufacturing injection- molded article having pores
JP2002055257A (en) Ceramic pipe integrated type ferrule and its manufacturing method
JP2001108866A (en) Ferrule integrated with metallic pipe and its manufacturing method
JP2001033657A (en) Optical connector member made of magnesium-based amorphous alloy
JP2001033652A (en) Optical connector member made of rare earth-based amorphous alloy
JP2001249250A (en) Method and device for producing optical fiber integrated ferrule
JPH11344639A (en) Ferrule for optical connector and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051116

R150 Certificate of patent or registration of utility model

Ref document number: 3745177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term