Nothing Special   »   [go: up one dir, main page]

JP3742650B2 - 多重列検出器配列体を有する螺旋走査計算機式断層撮影装置用の再構成法 - Google Patents

多重列検出器配列体を有する螺旋走査計算機式断層撮影装置用の再構成法 Download PDF

Info

Publication number
JP3742650B2
JP3742650B2 JP51318095A JP51318095A JP3742650B2 JP 3742650 B2 JP3742650 B2 JP 3742650B2 JP 51318095 A JP51318095 A JP 51318095A JP 51318095 A JP51318095 A JP 51318095A JP 3742650 B2 JP3742650 B2 JP 3742650B2
Authority
JP
Japan
Prior art keywords
axis
row
along
ray
translation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP51318095A
Other languages
English (en)
Other versions
JPH08505309A (ja
Inventor
ヒュー,ヒュイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/926,987 external-priority patent/US5291402A/en
Application filed by General Electric Co filed Critical General Electric Co
Priority claimed from US08/151,456 external-priority patent/US5469486A/en
Publication of JPH08505309A publication Critical patent/JPH08505309A/ja
Application granted granted Critical
Publication of JP3742650B2 publication Critical patent/JP3742650B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4085Cone-beams
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pulmonology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Description

発明の背景
本願は、1992年8月7日出願の米国特許出願番号第07/926,987号、発名の名称「多重列検出器配列体を有する螺旋走査計算機式断層撮影装置」に関連する。
本発明は、走査の間に患者が連続的に動かされる様な計算機式断層撮影(CT)装置、更に特定して云えば、患者の移動軸線に沿って配列した多重列の検出器素子を用いたCT装置に関する。
[扇形ビーム計算機式断層撮影法]
第1図について説明すると、従来の扇形ビームX線計算機式断層撮影装置では、X線源10からのX線をコリメートして、ビーム軸線13に沿って全体的に平面状の扇形ビーム12を形成する。扇形ビームは、「イメージング平面(imaging plane)」と呼ばれる直交座標系のX−Y平面内にある様な向きになっており、イメージング平面内ではビーム軸線13の周りに定められた扇形ビーム角γで発散している。
扇形ビーム12が被検体14を通って、やはりイメージング平面内にあるX線検出器配列体16に投射される。検出器配列体16は多数の隣接した検出器素子18で構成されていて、各々の検出器素子が、X線源10とこの特定の検出器素子18の間を通る別々の射線に沿った透過X線の強度を測定する。検出器素子18は円弧に沿って配置して、扇形ビーム12の異なる射線に沿ったX線源10からのX線を遮る様にすることが出来る。
X線源10及び検出器配列体16は、普通は被検体14内にある回転軸線15の周りに、イメージング平面内でガントリー20上で回転させることが出来、こうして扇形ビーム12が被検体14に相異なるガントリー角度βで当たる様にすることが出来る。ガントリー角度増分ずつ相隔たる多数のガントリー角度βで、投影(projection)を収集する。各々の投影は、各々の検出器素子18からの強度信号で構成される。強度信号は、各々の射線に沿った扇形ビーム12の被検体14による減衰量の関数、従って、該射線に沿って存在する被検体14内の要素の密度の関数である。その後、ガントリー20を新しい角度βへ回転し、この過程を繰り返して、相異なる角度βでの多数の投影を集め、断層撮影投影の集合を形成する。
収集された断層撮影投影の集合は、典型的には数値形式で記録され、「フィルタ補正逆投影法」の名前で知られている再構成法に従ってスライス像を「再構成」する為の計算機処理を行なう。再構成されたスライス像は普通のCRT管(図に示してない)で表示してもよいし、或いは計算機制御のカメラ(図に示してない)によってフィルタ記録に変換してもよい。
典型的な計算機式断層撮影検査は、イメージング平面と平行なスライス平面での被検体14の一連のスライスをイメージングすることを含む。各々のスライスが、X及びY軸に対して垂直なZ軸に沿って増分的に変位していて、3番目の空間的な次元の情報を提供する。ユーザは、Z軸に沿った位置の順序でスライス像を観察することにより、この3番目の次元を読み取ることが出来るし、或いは1組の再構成スライス像を構成する数値データを計算機プログラムによって編集して、3次元に於ける被検体の陰影つきの立体的画像を作ることが出来る。
計算機式断層撮影法での分解能が高くなるにつれて、一層幅の狭い扇形ビーム12及び検出器配列体16が用いられ、Z軸の次元で、余分のスライスを撮影することが出来る。断層撮影検査の時間及び費用が、必要とするスライスの数と共に増加する。走査時間が一層長くなると、患者の不快感も強まる。患者は断層撮影式再構成の忠実度を温存する為に殆ど動かない状態でいなければならない。更に、随意又は不随意の体動に起因するアーティファクト(偽像)が生じる惧れも増える。このため、一連のスライスを求めるのに要する時間を短縮することに、かなりの関心が持たれている。
一連のスライスについてのデータを収集するのに要する時間は、部分的には4つの因子に関係する。即ち、イ)ガントリーを走査速度まで加速するのに要する時間、ロ)完全な断層撮影投影の集合を求めるのに要する時間、ハ)ガントリーと減速するのに要する時間、及びニ)次のスライスの為に、患者をZ軸方向で位置ぎめし直すのに要する時間である。完全な一連のスライスを求めるのに要する時間を短縮することは、これらの4つの工程の内の何れかを完了するのに要する時間を短縮することによって達成し得る。
ガントリーとのインターフェイスとしてケーブルではなくスリップ・リングを用いる断層撮影装置では、ガントリーの加速及び減速に要する時間を激減することが出来る。スリップ・リングの使用によりガントリーは連続的に回転させることが出来る様になる。そこで、こゝで述べるCT装置は、360°以上にわたる連続回転が出来る様にするスリップ・リング又はそれに相当するものを備えていると仮定する。
断層撮影データの集合を収集するのに要する時間は、短縮するのが更に困難である。現在のCTスキャナは、1つのスライスに対する投影の集合を収集するのに、1乃至2秒程度を必要とする。この走査時間は、ガントリーを一層速い速度で回転させることによって短縮することが出来る。一般的に、ガントリー速度が高くなれば、回転速度が増大する率の平方根に比例して、収集されたデータの信号対雑音比が低下する。透過形断層撮影装置では、X線管の放射出力を強めることにより、これをある程度克服することが出来るが、こう云う装置のエネルギ限界がある。
[螺旋CT走査]
患者の位置を変える為の時間の短縮は、ガントリーの回転と同期してZ軸方向に患者を並進させることによって達成することが出来る。引続いて第1図について説明すると、ガントリー20の回転の間にZ軸に沿って絶えず患者を並進させることゝ投影データの収集との組合せが、「螺旋走査」と呼ばれており、これは被検体14に対してビーム軸線13が見かけ上の螺旋状経路22を持つことを表す。この螺旋の「ピッチ」、即ちガントリーの完全な1回転で被検体14が動くZ軸方向の距離が、一般的に、再構成像を作ろうとするスライスの幅に等しく設定され、一般的にはZ軸に沿った扇形ビーム12及び検出器配列体16の幅に関係する。この明細書で云う「螺旋走査」とは、一般的に、患者又は被検体を連続的に並進させながら、断層撮影イメージングデータを収集することを表す。これと異なって、「停止して撮影する」形の走査は、投影の集合を収集する際、患者又は被検体を並進させずに、断層撮影データの集合を収集することを指す。
走査の間、被検体を連続的に並進させることにより、走査の合間に患者の位置を変えるために通常必要であった時間の長さが省かれて、所定数のスライスを収集するのに必要な合計走査時間が短縮される。しかし都合の悪いことに、螺旋走査は、収集された断層撮影投影の集合のデータに特定の誤差を生じさせることがある。
断層撮影再構成計算処理では、断層撮影投影の集合が、ある固定したZ軸位置のスライス平面に沿って収集されることを前提としている。螺旋走査経路は当然この条件から外れ、このずれの結果、Z軸に沿って物体に有意の変化があった場合には、再構成されたスライス像にアーティファクトが生ずる。アーティファクトの程度は、一般的に、走査データのテーブル位置と所望のスライス平面のZ軸の値との間の差として測定される、投影データの「螺旋オフセット」に関係する。螺旋走査によって起こる誤差が包括的に「スキュー」誤差と呼ばれる。
螺旋走査に於けるスキュー誤差を減らす為に幾つかの方法が用いられている。米国特許第5,046,003号、発名の名称「螺旋投影走査に於けるスキュー像アーティファクトを減らす方法」に記載された1番目の方式は、患者に対する加速力を制限しながら、螺旋状に収集される投影をスライス平面の近くに集中するように、一様でないテーブルの運動を用いる。この方式の1つの欠点は、走査が行なわれる前に、スライス平面を決定しなければならないことである。
1989年11月2日出願の米国特許出願番号第07/430,371号、発明の名称「螺旋走査の為の計算機式断層撮影像再構成方法」、並びに1989年11月13日出願の同第07/435,980号、発明の名称「螺旋走査の為の補外再構成方法」に典型例が示されているが、2番目の方式では、相異なるガントリー角度、従って、被検体14に対する相異なるZ軸位置で収集された投影データの集合の間の補間並びに/又は補外によって、スキューによるアーティファクトを減少している。補間方法は、各々の投影が、螺旋走査の為に、各々のガントリー角度βに対して相異なるスライス平面で収集されたものであるにも関わらず、ある範囲のガントリー角度βにわたって、一定のスライス平面での有効な投影データを発生する。
螺旋走査のデータを補正する際の補間及び補外の欠点は、こう云う方法が、Z軸に沿った有効なビーム分布を増大することによって、収集された投影データのZ軸に沿った解像度を低下させることである。CT装置の空間的な解像度は、CT装置によって分解し得る最も小さい物体の目安である。他の全ての条件が同じであれば、解像度(一層小さい物体をイメージングする能力)が高い方が好ましい。
Z軸に沿った投影データの解像度は、主に扇形ビーム12及び検出器配列体16の形状によって決定される。第2a図について説明すると、従来の装置では、X線源10内にあって、そこから扇形ビーム12が出て来る焦点スポット26は一般的には1ミリ又はそれ以上程度の有限のZ軸の範囲を持っている。X線が焦点スポット26から比較的広い角度範囲にわたって出て来て、コリメータ24のX線不透過性のブレードによってコリメートされる。コリメータ24のブレードが全体として、Z軸方向に於ける扇形ビーム12の所望の幅を生じさせる溝孔を形成する。
コリメータ24によるコリメーションが行なわれても、扇形ビーム12は典型的には、所定の検出器素子18の面に入射する前に、Z軸に対して発散している。焦点スポット26のZ軸方向の範囲は有限であり、コリメータ24のブレードは必然的に検出器素子18から変位しているので、Z軸に沿った扇形ビーム12の実効幅、従って装置のZ軸方向の解像度は、ブレードが焦点スポット16からどれだけ離れて検出器素子18の方へ近づくかによって幾分変化する。
扇形ビーム12の幅は、回転軸線上で測定した、Z軸位置に対するX線強度を描いた強度分布28によって特徴づけることが出来る。分布28で示した扇形ビームの強度は、焦点スポット26の軸線方向の範囲が有限であることによって起こる「半影(penumbra)効果」の結果として、そのZ軸方向の両端で低下する。具体的に云うと、扇形ビーム12のZ軸方向の両端にある半影部17内の点は、コリメータ24のブレードの漸進的な陰影作用(shadowing)の結果として、焦点スポット26の全面積より小さい区域によって照射される。この半影効果の結果、放射の強度分布28は全体的に台形になり、強度はZ軸方向の両端で直線的に低下する。この様に扇形ビーム12の縁で強度が漸減することは、それが強度分布28の幅を増大させる点で望ましくない。扇形ビーム12が狭くなればなるほど、半影効果が一層顕著になり、その為、実際問題として半影効果が扇形ビーム12のZ軸方向の最小幅、従ってCT装置のZ軸方向の解像度を制限する。
検出器素子18の表面では、扇形ビーム12及び半影部17が拡がって、実質的に検出器素子18のZ軸方向の幅全体にまたがるようにZ軸に沿って伸びた、前記強度分布と類似した強度分布28’を作る。
第2b図について説明すると、スライス分布30は、各々の検出器素子18が発生した信号を、素子18の面に沿ったZ軸位置の関数として描いたものである。スライス分布30は、強度分布28と、Z軸位置に対する検出器素子18の感度を示す関数との関数である。一般的に、検出器素子18の感度はそのZ軸方向の両端で下がり、この為、スライス分布30の値は、検出器素子18の縁の近くにある半影部17内の位置では、急速に低下する。走査装置のZ軸方向の解像度は、一般的に、最大値の半分の値の所に於けるスライス分布30の幅(FWHMと記される半値全幅)と考えられ、これを“S”で表す。
第2c図について説明すると、上に述べた螺旋走査では、扇形ビーム12のビーム軸線13は、ビーム軸線13が相異なるガントリー角度βに回転する時、軌跡32で示す様に、被検体14に対してZ軸に沿って進む。螺旋走査で収集された投影データの補間は、相異なるZ軸位置で且つ360°即ち2πラジアン異なるガントリー角度で撮影された投影が全般的に同等なものであるとの認識による。従って、ガントリー角度βの2π(又は360°)後毎に、軌跡が0と2πの間の角度βに写像(マッピング)されるが、ガントリー角度βは実際には単調に増加し、軌跡32が連続的な直線であることを理解すべきである。普通、螺旋走査のピッチ、即ちガントリーの回転の360°毎のZ軸方向の並進距離は、スライス分布30のFWHM、即ちSに等しく設定される。
0から2πまでのガントリー角度の範囲全体に対する投影データを持つ、スライス平面Zrにおける補間後の投影集合は、スライス平面Zrの両側のZ軸位置にあってガントリー角度が2πだけ異なる点P及びQの投影データを選ぶことによって求められる。その時、スライス平面Zr上の点Rに対するデータは、点P及びQに於けるデータから補間される。この補間は、各々の投影P及びQのデータに、スライス平面Zrと各々の点P及びQのZ軸位置との間の距離の関数である加重係数を加重し、点P及びQの加重された投影データを加算することによって行なわれる。具体的に云うと、所定のガントリー角度β及びスライス平面Zrに対し、スライス平面Zr上のRに於ける投影の値は次の通りである。
R(Zr,β)=w(ΔZp)P(Zp,β)+w(ΔZq)Q(Zq,β) (1)
こゝでΔZp及びΔZqは、夫々スライス平面Zrと点P及びQとの間のZ軸に沿った距離であり、wは第2d図に示す加重関数33である。加重関数33は、Sと0の間のΔZp及びΔZqの大きさに対し、0及び1の間で直線的に変化する。加重関数は一般的に三角形であり、スライス平面からの距離が増加すると共に、所定の投影の重みを直線的に減ずる。βの他の値に対する追加の側に並んでいる点を使うことにより、スライス平面Zrに対する投影集合全体を構成することが出来る。
加重関数33の効果は、スライス分布30よりも実質的に幅の広い(FWHMが一層大きい)補間後のスライス分布34を作ることである。これは補間後のスライス分布34が、2SのZ軸範囲にわたって求められたスライス分布30からのデータを含むことに由るものである。この一層大きな補間後のスライス分布は、螺旋走査でスキュー誤差を減少するために必要な補間に伴って生じるものであり、収集された投影データのZ軸方向の解像度に悪影響を及ぼす。
発明の概要
本願に関連する最初に挙げた出願には、検出器素子の多数の狭い列を持つ小分けした検出器の列からの信号を組合せることにより、実効的なビーム分布又はFWHMを改善する装置が記載されている。この方法は後で詳しく説明する。
本発明は、一番縁にある列の検出器がスライス平面からずれた角度で扇形ビームのX線を受取ると云うことを認識したことによる。このずれが、投影データを組合せて、普通の扇形ビーム再構成方法を用いて再構成した時に、スライス分布又はFWHMを劣化させる。従って、本発明は、扇形ビームの角度偏差を一層正確に考慮することによって縁の列のデータによるスライス分布の劣化を防止する「コーン・ビーム」再構成法を用いることによって再構成した後のデータを組合せる。コーン・ビーム再構成方式は、多数の投影を同時に収集する時に使うものとして、従来一般的に知られているが、1個のスライスのスライス分布を改善する為に使うことは知られていなかった。
具体的に云うと、本発明の方法では、ビーム軸線に沿ってX線ビームを発生する。このビームは、焦点スポットから円錐形に発散すると共にビーム軸線に対して2次元で相隔たった経路に沿う複数個の射線(ray)を含み、これは並進軸線に沿った第1の次元で縦列(column)に並び、並進軸線に対して垂直な横軸線に沿った第2の次元で横列(row)に並ぶ。ビーム軸線は並進軸線の周りに複数個のビーム角度全体にわたって移動し、射線は、複数個のビーム角度で被検体を通過した後、検出器によって受取られる。検出器が各々の射線に関連する強度信号を発生する。横列のX線に対する強度信号が、投影集合の1次元の複数個の横列投影を形成する。ビーム軸線が複数個のビーム角度全体にわたって移動して、横列投影の投影集合を求める際、被検体がX線源に対して並進軸線に沿って並進すせられる。
投影集合の内の収集された横列投影が、最初は横列投影の空間周波数に従ってフィルタ作用にかけられ、その後、横列投影の各々の強度信号に関連する各々のX線の通路に沿って逆投影されて、ボクセル(voxel)のデータを発生する。
スライス平面が確認された後、スライス平面の近くにある選ばれたボクセルが組合されて像スライスを構成し、この像スライスが表示される。
本発明の1つの目的は、X線ビームが並進軸線に沿ってビーム軸線から離れるように発散することによる、ビーム分布に対する影響を減少することである。各々の射線の経路が並進軸線に対して垂直(即ち、Z軸方向の発散がない)と仮定する代わりに、実際の射線の経路に沿って逆投影することにより、逆投影されたボクセルの精度が改善される。逆投影以前の生の強度信号の組合せではなく、像領域に於けるこれらの更に正確なボクセルの組合せが、ビーム分布を改善し、こうして並進軸線に沿った像の解像度を改善する。
この後の横列投影のビーム角度は、ある角度間隔だけ隔たっており、投影集合の各々の射線をその経路に沿って逆投影する工程は、2πからこの角度間隔を差し引いた値以内の範囲内にあるビーム角度を持つ横列投影からの射線だけを逆投影する。
角度範囲に対するこの制限を用いるのは、扇形ビームの内の検出器の縁にある発散する射線は、真に平行な射線とは異なり、前及び後の扇形ビームからの発散される射線と重なり合って、データが2回測定される様にすることが認識されたからである。本発明では、各々のスライスが、スライスを中心として2πラジアンだけにわたるデータから再構成されて、冗長度を除くと共に、考えられる像のアーティファクトを避ける。本発明の上記並びにその他の目的並びに利点は、以下の説明から明らかになろう。この説明は、例として本発明の好ましい実施例を示した図面について横列なうが、この実施例は必ずしも本発明の範囲全体を表すものではなく、本発明の範囲を解釈するに当たっては、請求の範囲を参照されたい。
【図面の簡単な説明】
第1図は従来のCTガントリー及び被検体の見取図で、明細書中の前記「発明の背景」の所で説明している様な扇形ビームの螺旋走査、並びにそれに関連する相対的な角度及び軸線を示す。
第2a図は第1図の扇形ビームを誇張して示す断面図で、コリメータによって生ずる半影部を示す。
第2b図は第2a図の扇形ビームによって生ずるスライス分布を示すグラフである。
第2c図は第2a図の扇形ビームの中心の、ガントリー角度βの増加と共にZ軸に沿って生ずる螺旋走査による軌跡を示すグラフである。
第2d図は第2c図の螺旋走査に於けるスキュー誤差の影響を減らす為に、補間に使われる加重関数を示すグラフである。
第2e図は第2b図と同様なグラフで、第2d図の加重関数を用いた補間の後の第1図の扇形ビームの実効スライス分布を示す。
第3図は横列及び縦列の検出器素子を持つ検出器配列体及び扇形ビームを含む本発明のCT装置の見取図である。
第4図は第3図のCT装置と共に用いることが出来、本発明を実施するのに役立つCT制御装置のブロック図である。
第5図は第3図の検出器配列体の一部分及び扇形ビームの一部分を誇張して示す断面図であり、半影部が減少することを示す。
第6a図は第5図の扇形ビーム全体及び検出器配列体の断面図である。
第6b図は第5a図の扇形ビーム及び1個の検出器素子によって発生されたスライス分布を示すグラフである。
第6c図は螺旋走査でガントリー角度βの増加に伴ってZ軸方向に生じる、第6a図の1個の検出器素子に関連する各射線の軌跡を示すグラフである。
第6d図は第6b図と同様なグラフで、多数の単独検出器素子を組合せた後の第6a図の扇形ビームの実効スライス分布を示しており、本発明によってスライス分布が改善されることを示す。
第7図は第6a図と同様に第1図の扇形ビームを誇張して示す断面図で、再構成の際に平行な射線を前提としたことによって生ずる再構成誤差の原因を示す。
第8a図及び第8b図は平行な扇形ビーム及び発散する扇形ビームを誇張して示す断面図であり、発散する扇形ビームで走査の際に2回測定される容積が発生することを示す。
第9図は本発明に従って第3図の装置で投影データを再構成する工程を示すフローチャートである。
第10図は平面形検出器に対する第9図の再構成方法で使われる回転座標を示す線図である。
第11図は円筒形検出器で第9図の再構成方法に使われる座標を示す線図である。
好ましい実施例の詳しい説明
第3図について説明すると、本発明に用いるCTスキャナが、X線源10を支持するガントリー20を含む。X線源は、X線の扇形ビーム40をビーム軸線41に沿って、患者42を介して向かい合って支持された検出器配列体44に投射する様な向きになっている。ガントリー20が回転して、デカルト座標系のX−Y平面を定めるガントリー平面38内で、ビーム軸線を振らせる。ガントリー20の回転は、ガントリー平面38内の任意の基準位置からの角度βによって測定する。
患者42がテーブル46にのっており、このテーブルをデカルト座標系のZ軸と整合した並進軸線48に沿って動かすことが出来る。テーブル46がガントリー平面48と交差し、イメージング過程を妨げない様に放射線に対して半透明である。
扇形ビーム40のX線は、ビーム軸線41及びガントリー平面38から、並進軸線48に沿って発散すると共に、ガントリー平面38に沿って、並びにビーム軸線41と並進軸線48の両方に対して全体的に直交する横軸線50に沿って、ビーム軸線41からも発散する。
患者42を通過した後の扇形ビーム40のX線を検出器配列体44が受取る。この配列体は、第1図の検出器配列体16とは異なり、検出器素子18’の多数の横列を持っている。検出器素子18’は横軸線50に沿った横列と並進軸線48に沿った縦列とに配置されている。検出器配列体44の表面は、平面状であってもよいし、或いは焦点スポット26を中心とする球面又は円筒面の一部分を表すものであってもよい。
検出器素子18’の各々はX線を受取って、扇形ビーム40の別々の射線に沿って強度測定値を発生する。強度測定値が全体として、患者42の容積43による扇形ビーム40の減衰、従って患者42のこの容積43の平均密度を記述する。
好ましい実施例では、この容積は、普通の扇形ビームCT装置によって測定されるスライス容積と略等しく、その縦列に沿って測った検出器配列体44の幅は、普通の停止して撮影する形式の扇形ビーム装置の同様な検出器の幅と大体等しい。従って、検出器素子18’の縦列は、図1に示す様な普通の扇形ビーム検出器配列体16をZ軸に沿って単に小分けして並べたものである。
次に第4図ついて説明すると、第3図のCTイメージング装置の制御装置は、ガントリーに関連した制御モジュール52を持ち、これはX線制御装置54、ガントリー・モータ制御装置56、データ収集装置62及び像再構成装置68を含む。X線制御装置54が、X線源10に対する電力及びタイミング信号を発生して、コンピュータ60の制御のもとに、X線源を要求される通りにターンオン及びターンオフする。ガントリー・モータ制御装置56が、ガントリー20の回転速度及び位置を制御し、ガントリーの位置に関する情報をコンピュータ60に供給する。データ収集装置62が、検出器配列体44の検出器素子18からの強度信号を標本化してディジタル化し、像再構成装置68が、何れも検出器配列体44の検出器素子の横列及び縦列について夫々確認された、データ収集装置62からの標本化されてディジタル化された強度信号を受取り、検出器素子18からの強度信号を本発明に従って組合せ、公知の方法に従って高速で像の再構成を実施する。
上に述べた各々のモジュールが、スリップ・リング64を介してガントリー20上の関連する素子に接続され、コンピュータ60と種々のガントリー機能とのインターフェースとて作用する。スリッブ・リング64は、投影データを収集する為に、ガントリー20が360°より大きな角度にわたって連続的に回転することが出来る様にする。
並進軸線48に沿ったテーブル46の速度及び位置が、テーブル・モータ制御装置58を介して、コンピュータ60に伝達されると共にコンピュータによって制御される。
コンピュータ60が、オペレータ・コンソール65を介して指令及び走査パラメータを受取る。このコンソールは一般的にはCRT表示装置及びキーボードであり、オペレータが走査の為のパラメータを入力することが出来る様にすると共に、コンピュータ60からの再構成像及びその他の情報を表示することが出来る様にする。大量記憶装置66が、CTイメージング装置に対する動作プログラム、並びにオペレータが将来参照する為の像データを記憶する手段となる。コンピュータ60及び像再構成装置の両方には、データを記憶する電子メモリ(図に示してない)が付設されている。
動作について説明すると、ガントリー・モータ制御装置56がガントリー20を回転速度まであげ、テープ・モータ制御装置がテーブル46の並進を開始する。X線制御装置54がX線源10をターンオンし、投影データが連続的に収集される。各々のガントリー角度βで、収集された投影は、検出器配列体44の夫々特定の横列及び縦列にある各々の検出器素子18’に対して確認された強度信号で構成されている。
第5図について説明すると、Z軸すなわち並進軸線に沿って小分けした縦列の多数の検出器素子を使うことにより、第2a図に示したコリメータ24のブレードを使うことに伴う半影部17が実質的に除かれる。各縦列内の各々の検出器素子18’は互いに電気的に独立しており、こうして、縦列のZ軸の両端にある検出器素子以外の全ての検出器素子18’は、各々の検出器素子18’の物理的な範囲が、別個のコリメータよりも鋭敏に扇形ビーム40の射線79を限定するのに役立つと云う意味で、自己コリメーション作用を持つ。縦列の末端にある素子を除いた全ての素子18では、検出器素子18の面はコリメータによってじゃまされずに、焦点スポット46の面積全体によって完全に照射され、半影部17が全て除かれる。この「自己コリメーション」が、各々の検出器素子18から見た矩形の強度分布28’’’を実質的に鮮鋭にする。半影部17がないことは、検出器配列体の実際的な作用区域を不当に減少せずに、検出器配列体44の各横列に多数の検出器素子18を使える様にするのに資する。
第6a図−第6d図について説明すると、検出器配列体44を縦列の多数の検出器素子18に分割した結果として、強度分布28’’’は、第2a図に示した強度分布28’よりずっと狭い。強度分布28’’’は、S’のFWHMを持つ第6b図に示したスライス分布30’に対応しており、このS’は、好ましい実施例では、第2b図に示したFWHMのSよりかなり小さい。後者はCT装置のスライス幅と等しい。
次に第3図及び第6c図について説明すると、本発明のCT装置は、第1図の装置で用いたSの螺旋ピッチをそのまゝ使う。即ち、ガントリー20の各々の完全な1回転に対し、患者42が、軌跡32’で示す様に、スライスの厚さSに等しい分だけ並進させられる。しかし、Sとは異なる並進量を用いてもよいことが理解されよう。しかし、ガントリー20の各々の角度βで、検出器配列体44の1つの縦列内に各検出器素子18’から、Z軸に沿って多数の強度信号が得られる。従って、各々のガントリー角度βで、従来のCT装置ではZ軸に沿った1点に関連する投影が収集されるのに対して、本発明ではZ軸に沿った多数の隣接する点に関連する多数の薄い投影が収集される。
第3図及び第6c図について説明すると、検出器配列体44の1つの縦列内にある各検出器素子18’は、普通のCT装置のピッチと略同一のピッチSを持つが、この縦列内にある他の検出器素子18の螺旋22’と一緒に織り込みになっている自分自身の螺旋22’を辿る。従って、1つの縦列内にある隣接した検出器素子18’によって投影データが収集される点の相互間のZ軸に沿った間隔は、Sより実質的に小さい、即ち、普通のCT装置の相次ぐ走査で検出器素子18によって投影データが収集される点の相互間のZ軸に沿った間隔より小さい。
従って、位置Zrにある任意のスライスに対する投影集合の補間は、Sではなく、S’の大きさしか離れていないたった2点を用いることが出来る。その結果、Zrにあるスライス平面に対する補間によって生ずる実効的なビーム分布の拡大は、ずっと減少する。
原理的には、スライス平面Zrに於ける強度値を補間するに、ライス平面Zrに跨がるZ軸上の位置にある2点しか必要ではないが、この実施例では、信号対雑音比を適切にすると云う理由で、多数の点を使って複合信号を発生し、補間はそのまゝ使わない。更に、この複合信号は強度信号を直接的に組合せることによって発生されるのではなく、むしろ強度信号を像に再構成して、その像の容積要素すなわちボクセルを組合せることにより、最終的に求める像となる複合信号を発生する。この再構成過程を次に詳しく説明する。
再構成に使われるボクセルはスライス平面Zrの周りにあるボクセルであり、これらのボクセルを再構成するための強度信号は、Zrに近接する位置に関連する強度信号を持つ、所与のガントリー角度βに於ける検出器配列体44の多数の横列に関係する投影、並びにこの所与のガントリー角度の前後の他のガントリー角度βに於けるこの検出器の横列に関連する投影から選ばれる。例えば6個の横列を持つ、従って各縦列に6個の検出器素子18’を持つ検出器配列体44の場合、組合されるボクセルは、所望のスライス平面Zrの両側に対称的に存在する投影から選ばれた6個の強度信号から導き出される。
第6c図について説明すると、スライス平面の位置Zrでは、ボクセルの再構成には、投影線70で表すガントリー回転の約2πにわたってデータを収集することを必要とする。例えば、所与の角度β1に対し、Zrにあるスライス平面像のボクセルは、一般的には、1つのガントリー角度で検出器配列体44の1縦列内にあるZ軸位置Z1、Z2、Z3、Z4、Z5、Z6に対応する1番目、2番目、3番目、4番目、5番目及び6番目の検出器素子18から引き出すことが出来る。しかし、その前のβ2のガントリー角度では、ガントリーの螺旋形の移動により、物理的な検出器配列体44内にある検出器素子18’のZ軸位置が、もはやスライス平面ZrのZ軸位置の周りに対称的には存在していない。その為、同じボクセルは、ガントリー角度β2に於ける所与の縦列の2番目、3番目、4番目、5番目及び6番目の検出器素子18’からの検出器信号と、ガントリー位置β2+2πに於ける同じ縦列の1番目の検出器素子からの検出器信号とを用いることが出来る。
螺旋走査の際の強度信号の選択と云う操作により、検出器配列体44の1端にある検出器素子からの強度信号が落とされ、その代わりに、続くガントリー角度β+2πの時の検出器素子からの強度信号が用いられる。その意図は、検出器素子18’からの強度信号の多数のZ軸位置を、スライス平面Zrの位置に近づけることである。
多数の横列の内の各横列の対応する縦列からの再構成信号のボクセルを一緒に加算すると、この加算は個々の検出器素子18’の実効スライス分布S’を第6d図に示す複合スライス分布72に拡げる効果を持つ。この複合スライス分布72は、Sに大体等しいFWHMを持ち、従ってCT装置の所望の空間的な解像度と適合し、補間を用いた従来のCT螺旋走査で得られるスライス分布よりも明らかに進歩したものである。
次に第7図について説明すると、本発明では、扇形ビーム40がZ軸方向に若干発散すること、従って検出器素子18’によって限定された扇形ビーム40の射線79が相互にも、またガントリー平面38に対しても平行ではないことを認識する。この発散は小さいけれども、射線79がガントリー平面38と平行であることを前提としている再構成処理には重要な影響を及ぼす。
普通の扇形ビーム再構成法を使うと、患者42内の2つのボクセル80c及び80dはガントリー平面38と平行な平面内にあるが、発散する扇形ビーム40の相異なる射線79と交差するので、それらが相異なる平面内にある様に再構成される。その結果、再構成像の歪みが生ずる。
扇形ビーム40の発散は、扇形ビーム40の縁の近くにあるボクセル80aは、ガントリーが完全な円を描いて回転する間、ガントリー角度βの一部分の間しか射線79と交わらず、その為ある投影に寄与するが他の投影には全く寄与しないと云う意味で「部分的容積効果」を生ずる。部分的容積効果は、再構成像にアーティファクトを生じる。
第8a図及び第8b図について説明すると、ガントリー平面38に対して扇形ビーム40が発散することは、2回測定されるデータの問題を生ずる。これは、真に平行な射線の場合には起こらない問題である。第8a図に示す平行な射線の場合、ガントリーの回転の2π毎に検出器配列体44はそのZ軸方向の幅だけ前進していて、患者42の隣接する容積にわたって投影データを収集する。即ち、この為、患者42の各々のボクセル80は、各々のガントリー角度βで、1本の射線によって照射され、1本より多くの射線によって照射されることがない。これと対照的に、第8b図に示す様に扇形ビーム40がZ軸に沿って発散している場合、それが照射する容積は、焦点スポット26の近くでは、検出器配列体44の近くよりも少なくなる。完全な投影集合を得る為には、即ち、各々の角度βに対し、各々のボクセル80が少なくとも1本の射線によって照射される様にする為には、検出器配列体44をそのZ軸方向の幅一杯に前進されることは出来ず、ガントリー平面38からの扇形ビーム40の正確な発散度に応じてそれより少ない分だけ前進させなければならない。扇形ビームがX線源の近くでは相対的にすぼまっていることによるガントリー角度当たりの並進量に対するこの制約により、X線源から離れた所82にあるボクセル80はデータが2回測定される、即ち、投影データが2πだけ隔たるガントリー角度での2本の射線で収集される。この様に2回測定されるデータは、再構成像にアーティファクトを招かない様に考慮しなければならない。
次に第9図について説明すると、本発明で認識された、Z軸方向に於ける扇形ビーム40の発散によるこう云う問題は、多数の横列を持つ検出器配列体44によって許される範囲で、投影データの再構成に更に巧妙な再構成法を適用することによって解決することが出来る。この再構成では、本発明の螺旋走査と共に扇形ビーム40の発散に対処しなければならない。
第9図のプロセス・ブロック84で示す様に、この再構成方法は、2πのガントリー角度又はそれ以上の範囲にわたる投影データの収集から始まる。各々の投影は、そのガントリー角度βと、焦点スポット26からガントリー20の回転軸線15に対して垂直に通る扇形ビーム40の中心線に対するY軸及びZ軸変位とによって特定することが出来る。こう云う各々の投影は、平面形検出器44ではPβ(Y、Z)、円筒形の検出器44ではPβ(γ、Z)によって表すことが出来る。
こうして収集された投影データは、次に、扇形ビーム再構成方法に従ってゞはなく、扇形ビーム40の発散を考慮するコーン・ビーム再構成方法を用いて再構成される。コーン・ビーム再構成方法は、ガントリーの1回転で多数のスライス像を収集する場合に使うものとして、一般的に知られている。本発明では、螺旋走査にコーン・ビーム方式を用いる。この方式は、検出器配列体を検出器の多数の横列に小分けすることによって得られたデータを利用することにより、普通の扇形ビームの収集で達成し得るよりもずっと正確に1つのスライス像を再構成する為にも使われる。コーン・ビーム再構成の精度はコーン・ビーム角度が一層大きい場合には不満足である場合が多いが、Z軸方向に於ける扇形ビーム40の発散が比較的小さいことにより、コーン・ビーム再構成の精度は著しく改善される。
本発明は任意の形の検出器に応用し得るが、円筒形検出器及び平面形検出器について詳しく説明する。好ましい実施例で用いられる特定の再構成法は、ジ・オプティカル・ソサイエティ・オブ・アメリカによって刊行された、J.Opt.Soc.Am.A、第1巻第6号(1984年6月号)所載のL.A.フェルトカンプの論文「実用的なコーン・ビーム・アルゴリズム(Practical Cone Beam Algorithm)」に記載されているものに基づく。この再構成法を修正して弯曲した検出器及び螺旋走査に応用する。
1.平面形検出器の方程式
平面形検出器では、この再構成法は、プロセス・ブロック86で示す様に、最初に各々の投影Pβ〔Y、Z〕に加重して、下記の様に加重投影
Figure 0003742650
を得る。
Figure 0003742650
こゝでdは焦点スポット26と回転軸線15との間の距離である。
次に、プロセス・ブロック89に示す様に、加重投影
Figure 0003742650
を、Y及びZ方向のその空間周波数内容に従ってフィルタ作用にかけ、下記の様にフィルタ処理投影
Figure 0003742650
を得る。
Figure 0003742650
こゝで式(3)は、畳込み積分の核gy及びgz(Z)を用いたフィルタ作用を行なう畳込み積分であることが認識されよう。この様な畳込み積分は、周知の様に、周波数領域に於ける乗算に相当する。こゝでフィルタの核gy(Y)及びgz(Z)は次の通りである。
Figure 0003742650
こゝでW(ω)は、公知の窓関数である。
式(4)は、標準的な断層撮影フィルタのフーリエ変換であり、これは周波数が一層低いデータの重みを線形に減ずることにより、低い周波数に対して得られる断層撮影データが比例的に一層大きくなる分を補償する。式(5)はsinc関数、即ち、矩形低域フィルタのフーリエ変換である。ωy0及びωz0は、フィルタの通常帯の上限であり、夫々π/ΔZ及びπ/ΔYであってよい。ΔZ及びΔYは、Z軸及びY軸方向に於ける検出器素子18’相互の隔たりである。
プロセス・ブロック86、89で加重してフィルタ作用にかけた後、プロセス・ブロック90で、投影集合の投影をボクセルに逆投影する。
逆投影は、rをボクセル80の中心を表すベクトルとして、ベクトル記法によって定義された、像のボクセルについての減衰値又は密度値f(r)を生ずる。この逆投影は次の式に従う。
Figure 0003742650
ここで、f(r)はベクトルrによって定義された、再構成されたボクセルの密度値である。
式(6)の積分に対する投影
Figure 0003742650
の座標は、コーン・ビームでは、次の様に決定される。
Figure 0003742650
こゝで第10図について説明すると、
Figure 0003742650
及び
Figure 0003742650
はx’、y’及びz’軸に沿った単位ベクトルであり、最初の2つはガントリーの移動と一緒に回転するので、x’は扇形ビーム40のビーム軸線13と常に整合しており、y’は検出器配列体44の平面に大体沿っており、z’は回転軸線15と整合している。項zζ(β)は、Z軸に沿った患者42と焦点スポット16との間の相対運動を定め、ピッチHで決定される一定ピッチ螺旋走査では、(β/2π)H+z0に等しい。螺旋ピッチHはSに等しくすることが出来るが、それに制限されない。
普通の扇形ビームの逆投影と異なり、ボクセル80に対し、式(6)に従って投影
Figure 0003742650
を逆投影して密度値f(r)を求めることは、式(7)及び(8)によって定められた射線79の実際の経路に沿っており、従ってビーム軸線13からの射線79の発散を計算に入れている。従来の扇形ビーム装置は、射線79の実際の経路を考慮した逆投影を用いることが出来ない。これは、射線79の経路情報が、検出器配列体16(図1に示す)の単一の横列の検出器素子18によってそれらが実効的に組合される際に失われる為である。
2.円筒形検出器の方程式
第11図について説明すると、円筒形検出器配列体44では、プロセス・ブロック86で示す様に、再構成法は最初に各々の投影Pβ〔γ、Z〕に加重して、次の様に加重投影
Figure 0003742650
を求める。
Figure 0003742650
こゝでγは、焦点スポット26と検出器素子18’の特定の縦列との間の、ガントリー平面に平行な平面内での角度であり、Dは焦点スポット26と回転軸線15との間の距離であり、dは焦点スポット26と検出器素子18’との間の距離である。
次に、プロセス・ブロック89で示す様に、加重投影
Figure 0003742650
が、γ及びZ方向の空間周波数内容に従ってフィルタ作用にかけられて、下記のフィルタ処理投影
Figure 0003742650
を求める。
Figure 0003742650
ここで式(10)は、畳込み積分の核gγ(γ)及びgz(Z)を用いてフィルタ作用を行なう畳込み積分であることが認識されよう。この様な畳込み積分は、周知の様に周波数領域に於ける乗算に相当する。こゝでフィルタの核gγ(γ)及びgz(Z)は下記の通りである。
Figure 0003742650
こゝでW(ω)は公知の窓関数である。
式(11)は、標準的な断層撮影フィルタのフーリエ変換であって、周波数が一層低いデータの重みを線形に減ずることにより、低い周波数に対して得られる断層撮影データの量が比例的に一層大きくなることを補償している。式(12)はsinc関数、又は矩形低域フィルタのフーリエ変換である。ωγ0及びωz0は、フィルタの通過帯の上限であり、夫々π/ΔZ及びπ/Δγであってよい。こゝでΔZ及びΔγは、Z及びγ軸に於ける検出器素子18’相互の隔たりである。
プロセス・ブロック86及び89での加重及びフィルタ作用の後、プロセス・ブロック90で投影集合の投影を逆投影してボクセルを求める。
この逆投影により、rをボクセル80の中心を表すベクトルとしてベクトル記法によって定義された、像のボクセルについての減衰値又は密度値f(r)が得られる。逆投影は次の式に従う。
Figure 0003742650
こゝでf(r)はベクトルrによって定義された、再構成されたボクセルの密度値であり、
Figure 0003742650
であって、こゝでr及びφは、回転の中心15の周り、並びに患者42に対して固定であるX軸に対して測ったガントリー平面内の1点の極座標である。
式(13)の積分を行なう為の投影
Figure 0003742650
の座標は、コーン・ビームでは次の様に決定される。
Figure 0003742650
こゝで項zζ(β)は、Z軸に沿った患者42と焦点スポット26との間の相対運動を表し、ピッチHによって定められた一定ピッチ螺旋走査では、(β/2π)H+z0に等しい。螺旋ピッチHはSに等しくてもよいが、それに限られない。
平面形検出器の場合と同じく、普通の扇形ビーム逆投影と異なり、ボクセル80に対する式(13)に従っての投影
Figure 0003742650
の逆投影によって密度値f(r)を求めることは、式(15)及び(16)によって定められた射線79の実際の経路に沿っており、従ってビーム軸線13からの射線79の発散を計算に入れている。従来の扇形ビーム装置は、射線79の実際の経路を考慮した逆投影を用いることが出来ない。これは、射線79の経路の情報が、検出器配列体16(図1に示す)の単一横列の検出器素子18によるそれらの実効的な組合せの際に失われるためである。
プロセス・ブロック92で、再構成されたボクセル80の値f(r)を加算して像を形成する。この加算は、その結果得られる像の信号対雑音比を改善する。好ましい実施例において加算されるボクセルは、検出器配列体44内にある検出器の横列の総数に等しい値にすることの出来るZの値の範囲内で、所望のスライス平面Zrの両側に並んでいるものだけである。各々の検出器素子18’からの強度信号Pβ〔X、Y〕又はPβ〔γ、Y〕ではなく、ボクセル80の値f(r)を加算することにより、ビーム軸線13からの扇形ビーム40の発散が第6d図に示す様にスライス分布92を不必要に劣化させることはない。
ボクセル80の加算は、検出器配列体44を多数の横列の検出器素子18に分割することがスライスの厚さ寸法を減少することを意図したものではなく、スライス分布を改善する為であることを反映している。ボクセルの加算により、停止して撮影する方法によって従来のCT装置で得られるのと同様なZ軸方向の解像度を持つ像が得られ、その上、補間によって生ずるスライス分布の不利な拡がりを伴わずに、螺旋走査に伴う速度の上昇が可能になる。
この為、本発明の効果は、実効的なスライス分布の拡がりを防止すると共に、Z軸に沿った扇形ビームの発散に伴うアーティファクトを減らすことである。
当業者には、本発明の範囲内で、好ましい実施例の種々の変更が考えられよう。主に、πラジアンだけ隔たった射線79に沿って収集された投影の間の同等性を認識した半走査の方式を、上に述べた方式と共に用いて、πと云う少ないガントリーの回転でボクセルを再構成することが出来る。検出器44の縦列が、平行な射線に沿った強度信号を発生する場合の異なるガントリー角度は「関連角度」と呼ばれる。更に、好ましい実施例では、検出器素子が直線的な横列及び縦列に分けて配置されているが、多数の横列に沿った強度信号を測定することが出来る限り、縦列及び横列は直線に沿っている必要がないことが本発明の説明から理解されよう。本発明の範囲内に種々の実施例が含まれることを表すように、請求の範囲は記載されている。

Claims (10)

  1. 被検体の像を作る計算機式断層撮影装置に於て、
    並進軸線の回りの複数個のビーム角度にわたってビーム軸線を動かしながら、該ビーム軸線に沿ってX線ビームを送り出すX線源であって、該ビームが、焦点スポットから円錐形に発散すると共に、並進軸線に沿った第1の次元の縦列に且つ並進軸線に対して垂直な横軸線に沿った第2の次元の横列に並ぶように、ビーム軸線に対して2次元で相隔っている経路に沿った複数個の射線を含んでいるX線源と、
    被検体を通過した後のX線ビームを受取り、並進軸線に沿った縦列及び横軸線に沿った横列に配列されている検出器素子の配列体であって、該検出器素子の横列及び縦列が前記の射線の横列及び縦列にそれぞれ対応し、各々の検出器素子がX線ビームの射線を受取って、そのX線の強度に関係する強度信号を発生し、横列の検出器素子の強度信号が複数個の1次元横列投影を形成している検出器素子の配列体と、
    複数個のビーム角度にわたってビーム軸線が移動する間、複数個の並進位置にわたってX線源に対して並進軸線に沿って被検体を移動させる並進装置と、
    前記複数の横列投影の前記横列及び縦列方向における空間周波数に従って、投影集合の内の前記複数の横列投影をフィルタ作用にかけるフィルタと、
    各々が被検体の容積要素によるX線ビームの減衰を表す多数のボクセルに対するデータを発生する逆投影手段と、
    予定のスライス平面の近くにある射線に関連する選ばれたボクセルのデータを用いて像スライスを形成する組合せ装置と、
    像スライスの像を表示する表示装置とを有し、
    前記の横列及び縦列の検出器素子が実質的に単一平面内にあり、
    前記逆投影手段が次の式
    Figure 0003742650
    に従って演算し、この式でf(r)は空間ベクトルrによって定められた所与のボクセルの減衰値であり、dは焦点スポットと並進軸線との間の距離であり、
    Figure 0003742650
    及び
    Figure 0003742650
    は、
    Figure 0003742650
    が常にビーム軸線と整合し、
    Figure 0003742650
    が並進軸線と整合する様な向きの直交する単位ベクトルであり、
    Figure 0003742650
    は、横列Y及び縦列Zに関連した所与のビーム角度βに対する横列投影のフィルタ処理強度信号であり、更に
    Figure 0003742650
    であって、こゝでzζ(β)はX線源の並進とビーム角度の変化と関係づけられる関数であり、
    Figure 0003742650
    は下記の様に計算され、
    Figure 0003742650
    ここで
    Figure 0003742650
    である計算機式断層撮影装置。
  2. 被検体の像を作る計算機式断層撮影装置に於て、
    並進軸線の回りの複数個のビーム角度にわたってビーム軸線を動かしながら、該ビーム軸線に沿ってX線ビームを送り出すX線源であって、該ビームが、焦点スポットから円錐形に発散すると共に、並進軸線に沿った第1の次元の縦列に且つ並進軸線に対して垂直な横軸線に沿った第2の次元の横列に並ぶように、ビーム軸線に対して2次元で相隔っている経路に沿った複数個の射線を含んでいるX線源と、
    被検体を通過した後のX線ビームを受取り、並進軸線に沿った縦列及び横軸線に沿った横列に配列されている検出器素子の配列体であって、該検出器素子の横列及び縦列が前記の射線の横列及び縦列にそれぞれ対応し、各々の検出器素子がX線ビームの射線を受取って、そのX線の強度に関係する強度信号を発生し、横列の検出器素子の強度信号が複数個の1次元横列投影を形成している検出器素子の配列体と、
    複数個のビーム角度にわたってビーム軸線が移動する間、複数個の並進位置にわたってX線源に対して並進軸線に沿って被検体を移動させる並進装置と、
    前記複数の横列投影の前記横列及び縦列方向における空間周波数に従って、投影集合の内の前記複数の横列投影をフィルタ作用にかけるフィルタと、
    各々が被検体の容積要素によるX線ビームの減衰を表す多数のボクセルに対するデータを発生する逆投影手段と、
    予定のスライス平面の近くにある射線に関連する選ばれたボクセルのデータを用いて像スライスを形成する組合せ装置と、
    像スライスの像を表示する表示装置とを有し、
    前記の横列及び縦列の検出器素子が実質的に円筒の面と同形であり、
    前記逆投影手段が下記の式
    Figure 0003742650
    に従って演算し、こゝでf(r)は空間ベクトルrによって定義された所与のボクセルの減衰値であり、dは焦点スポットと並進軸線との間の距離であり、Eは下記の様に定められ、
    Figure 0003742650
    こゝでr及びφは、ガントリーの回転中心の周りで、且つ被検体に対して固定であるX軸に関して測定されたガントリー平面内の1点の極座標であり、
    Figure 0003742650
    は横列γ及び縦列Zに関連した所与のビーム角度βに対する横列投影のフィルタ処理強度信号であり、更に
    Figure 0003742650
    Figure 0003742650
    であって、こゝでzζ(β)はX線源の並進とビーム角度の変化を関係づける関数である計算機式断層撮影装置。
  3. 相次ぐ横列投影に関連するビーム角度が所定の角度増分だけ相隔たっており、横列投影の内、前記逆投影手段の作用を受ける投影の集合は、再構成しようとするボクセルを中心として、2πから前記角度間隔を差し引いた範囲内のビーム角度を持つ横列投影の射線だけを含んでいる請求項1又は2記載の計算機式断層撮影装置。
  4. 前記組合せ装置は、予定のスライス平面を中心として並進軸線に沿った予定数のボクセルの算術和を求める請求項1又は2記載の計算機式断層撮影装置。
  5. 前記組合せ装置は、並進軸線に沿った範囲が、並進軸線に沿った像の所望の空間的な解像度と等しい総数のボクセルを加算する請求項1又は2記載の計算機式断層撮影装置。
  6. 断層撮影装置が被検体の像を作る作動方法に於て、
    ビーム軸線に沿ってX線ビームを発生するようにX線源を作動させ、該ビームは、焦点スポットから円錐形に発散すると共に、並進軸線に沿った第1の次元の縦列に且つ並進軸線に対して垂直な横軸線に沿った第2の次元の横列に並ぶように、ビーム軸線に対して2次元で相隔っている経路に沿った複数個の射線を含んでおり、
    前記断層撮影装置を制御して前記ビーム軸線を並進軸線の回りの複数個のビーム角度にわたって移動し、
    複数個のビーム角度で被検体を通過した後のX線ビームに対応し、各々の射線に関連する強度信号を発生し、横列の射線に対する強度信号が投影集合の内の複数個の1次元横列投影を形成し、
    ビーム軸線が前記複数個のビーム角度にわたって移動する間、被検体を並進軸線に沿ってX線源に対して並進させて、横列投影の投影集合を求め、
    投影集合の前記複数の横列投影を前記複数の横列投影の前記横列及び縦列方向における空間周波数に従ってフィルタ作用にかけ、
    投影集合の各々の射線を逆投影して、ボクセルデータを発生し、各々のボクセルは被検体の容積要素によるX線ビームの減衰値を表しており、
    並進軸線に沿ったスライス平面を確認し、
    スライス平面の近くの射線に関連した選ばれたボクセルのデータを用いて像スライスを形成し、
    像スライスの像を表示する工程を含み、
    逆投影の前記工程が次の式
    Figure 0003742650
    に従って行なわれ、こゝでf(r)はベクトルrによって定義された所与のボクセルの減衰値であり、dは焦点スポットと並進軸線との間の距離であり、
    Figure 0003742650
    及び
    Figure 0003742650
    は、
    Figure 0003742650
    が常にビーム軸線と整合し、
    Figure 0003742650
    が並進軸線と整合する様な直交する単位ベクトルであり、
    Figure 0003742650
    は横列Y及び縦列Zに関連した所与のビーム角度βに於ける横列投影のフィルタ処理強度信号であり、更に
    Figure 0003742650
    であって、こゝでzζ(β)はX線源の並進とビーム角度の変化との比である方法。
  7. 断層撮影装置が被検体の像を作る作動方法に於て、
    ビーム軸線に沿ってX線ビームを発生するようにX線源を作動させ、該ビームは、焦点スポットから円錐形に発散すると共に、並進軸線に沿った第1の次元の縦列に且つ並進軸線に対して垂直な横軸線に沿った第2の次元の横列に並ぶように、ビーム軸線に対して2次元で相隔っている経路に沿った複数個の射線を含んでおり、
    前記断層撮影装置を制御して前記ビーム軸線を並進軸線の回りの複数個のビーム角度にわたって移動し、
    複数個のビーム角度で被検体を通過した後のX線ビームに対応し、各々の射線に関連する強度信号を発生し、横列の射線に対する強度信号が投影集合の内の複数個の1次元横列投影を形成し、
    ビーム軸線が前記複数個のビーム角度にわたって移動する間、被検体を並進軸線に沿ってX線源に対して並進させて、横列投影の投影集合を求め、
    投影集合の前記複数の横列投影を前記複数の横列投影の前記横列及び縦列方向における空間周波数に従ってフィルタ作用にかけ、
    投影集合の各々の射線を逆投影して、ボクセルデータを発生し、各々のボクセルは被検体の容積要素によるX線ビームの減衰値を表しており、
    並進軸線に沿ったスライス平面を確認し、
    スライス平面の近くの射線に関連した選ばれたボクセルのデータを用いて像スライスを形成し、
    像スライスの像を表示する工程を含み、
    逆投影の前記工程が次の式
    Figure 0003742650
    に従って行なわれ、こゝでf(r)は空間ベクトルrによって定義された所与のボクセル減衰値であり、dは焦点スポットと並進軸線との間の距離であり、更にEは次の式
    Figure 0003742650
    によって定められ、こゝでr及びφはガントリーの回転中心の周りで、且つ被検体に対して固定であるX線軸に関して測定したガントリー平面内の1点の極座標であり、
    Figure 0003742650
    は横列γ、縦列Zに関連する、所定のビーム角度βに対する横列投影のフィルタ処理強度信号であり、更に
    Figure 0003742650
    Figure 0003742650
    であって、こゝでzζ(β)はX線源の並進とビーム角度の変化との関係を定める関数である方法。
  8. 相次ぐ横列投影のビーム角度が所定の角度間隔だけ相隔たっており、投影集合の各々の射線をその経路に沿って逆投影する前記工程が、横列投影の内、再構成しようとするボクセルを中心として2πから前記角度間隔を差し引いた範囲内のビーム角度を持つ横列投影のX線だけを逆投影する請求項6又は7に記載の方法。
  9. 選ばれたボクセルを組合せて像スライスを形成する前記工程が、予定のスライス平面を中心として、並進軸線に沿った予定数のボクセルの算術和を求める請求項6又は7に記載の方法。
  10. 選ばれたボクセルを組合せて像スライスを形成する前記工程が、並進軸線に沿ったその範囲が、並進軸線に沿った像の所望の空間的な解像度と等しい総数のボクセルを加算する請求項6又は7に記載の方法。
JP51318095A 1992-08-07 1993-11-03 多重列検出器配列体を有する螺旋走査計算機式断層撮影装置用の再構成法 Expired - Lifetime JP3742650B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/926,987 US5291402A (en) 1992-08-07 1992-08-07 Helical scanning computed tomography apparatus
PCT/US1993/010568 WO1995012353A1 (en) 1992-08-07 1993-11-03 Helical scanning ct-apparatus with multi-row detector array
US08/151,456 US5469486A (en) 1992-08-07 1993-11-08 Projection domain reconstruction method for helical scanning computed tomography apparatus with multi-column detector array employing overlapping beams

Publications (2)

Publication Number Publication Date
JPH08505309A JPH08505309A (ja) 1996-06-11
JP3742650B2 true JP3742650B2 (ja) 2006-02-08

Family

ID=27377421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51318095A Expired - Lifetime JP3742650B2 (ja) 1992-08-07 1993-11-03 多重列検出器配列体を有する螺旋走査計算機式断層撮影装置用の再構成法

Country Status (4)

Country Link
EP (2) EP0729320A1 (ja)
JP (1) JP3742650B2 (ja)
DE (1) DE69334176T2 (ja)
WO (1) WO1995012353A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4163767B2 (ja) * 1996-05-02 2008-10-08 シーメンス アクチエンゲゼルシヤフト コンピュータ断層撮影装置の画像再構成方法
DE19832275B4 (de) * 1998-07-17 2006-09-14 Siemens Ag Verfahren zur Rekonstruktion von Bildern aus mittels eines CT-Gerätes durch Spiralabtastung des Untersuchungsobjekts gewonnenen Meßwerten und CT-Gerät zur Durchführung des Verfahrens
DE10204926A1 (de) * 2002-02-07 2003-08-21 Philips Intellectual Property Sequentielles Computertomographie-Verfahren
FR2887058B1 (fr) * 2005-06-10 2007-08-31 Daniel Ackerman Procede et dispositif de reconstruction 3d d'un objet a partir de plusieurs images 2d
JP6423415B2 (ja) * 2013-04-04 2018-11-14 イリノイ トゥール ワークス インコーポレイティド ヘリカルコンピュータートモグラフィー
CN114492060B (zh) * 2022-01-17 2024-03-29 北京工业大学 小模数塑料直齿圆柱齿轮工业ct投影及重建图像建模方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111738A (ja) * 1982-12-16 1984-06-28 株式会社東芝 X線断層撮影装置
US5396418A (en) * 1988-10-20 1995-03-07 Picker International, Inc. Four dimensional spiral volume imaging using fast retrace
FR2644590B1 (fr) * 1989-03-20 1994-08-19 General Electric Cgr Sa Procede d'acquisition de donnees radiologiques et de reconstruction de structures correspondant a ce corps
US5046003A (en) 1989-06-26 1991-09-03 General Electric Company Method for reducing skew image artifacts in helical projection imaging
US4941415A (en) 1989-11-02 1990-07-17 Entech Corporation Municipal waste thermal oxidation system
US5233518A (en) 1989-11-13 1993-08-03 General Electric Company Extrapolative reconstruction method for helical scanning
US5396528A (en) * 1991-06-28 1995-03-07 General Electric Company Tomographic image reconstruction using cross-plane rays
IL98945A0 (en) * 1991-07-24 1992-07-15 Elscint Ltd Multiple slice ct scanner
US5291402A (en) 1992-08-07 1994-03-01 General Electric Company Helical scanning computed tomography apparatus

Also Published As

Publication number Publication date
WO1995012353A1 (en) 1995-05-11
EP0729320A1 (en) 1996-09-04
DE69334176D1 (de) 2007-11-15
JPH08505309A (ja) 1996-06-11
EP1295560A3 (en) 2003-07-09
DE69334176T2 (de) 2008-07-03
EP1295560B1 (en) 2007-10-03
EP1295560A2 (en) 2003-03-26

Similar Documents

Publication Publication Date Title
US5377250A (en) Reconstruction method for helical scanning computed tomography apparatus with multi-row detector array
EP0426464B1 (en) Computerized tomographic image reconstruction method for helical scanning
US5291402A (en) Helical scanning computed tomography apparatus
US5430783A (en) Reconstruction method for helical scanning computed tomography apparatus with multi-row detector array employing overlapping beams
US5233518A (en) Extrapolative reconstruction method for helical scanning
US5991356A (en) Radiation tomography method and apparatus
US6256365B1 (en) Apparatus and method for reconstruction of images in a computed tomography system using oblique slices
EP0520778B1 (en) Tomographic image reconstruction using cross-plane rays
US6256366B1 (en) Apparatus and method for reconstruction of volumetric images in a computed tomography system using sementation of slices
EP0430549B1 (en) Helical scan computed tomography
JP4606414B2 (ja) 円錐形状光線束を用いるコンピュータ断層撮影方法
JPH08509408A (ja) 円すい状ビームデータからの画像の再構成
KR20010072303A (ko) 방사선 치료용 방출 수정 시스템
JPH11253435A (ja) コンピュ―タトモグラフ
US5170346A (en) Method for reducing patient translation artifacts in tomographic imaging
JP3290726B2 (ja) 透過型三次元断層撮影装置
JPH0669451B2 (ja) らせん走査における断層撮影像作成方法および装置
US7027552B2 (en) High resolution CT scanner
JP3917684B2 (ja) 物体の断層写真像を作成する方法及び装置
JP3742650B2 (ja) 多重列検出器配列体を有する螺旋走査計算機式断層撮影装置用の再構成法
US6999550B2 (en) Method and apparatus for obtaining data for reconstructing images of an object

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040108

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040603

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050425

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

EXPY Cancellation because of completion of term