Nothing Special   »   [go: up one dir, main page]

JP3634565B2 - Method for producing anisotropic rare earth alloy powder for permanent magnet - Google Patents

Method for producing anisotropic rare earth alloy powder for permanent magnet Download PDF

Info

Publication number
JP3634565B2
JP3634565B2 JP14358097A JP14358097A JP3634565B2 JP 3634565 B2 JP3634565 B2 JP 3634565B2 JP 14358097 A JP14358097 A JP 14358097A JP 14358097 A JP14358097 A JP 14358097A JP 3634565 B2 JP3634565 B2 JP 3634565B2
Authority
JP
Japan
Prior art keywords
powder
gas
phase
rare earth
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14358097A
Other languages
Japanese (ja)
Other versions
JPH10317003A (en
Inventor
尚 池上
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP14358097A priority Critical patent/JP3634565B2/en
Publication of JPH10317003A publication Critical patent/JPH10317003A/en
Application granted granted Critical
Publication of JP3634565B2 publication Critical patent/JP3634565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、各種モーター、アクチュエーター等に用いることが可能な高保磁力を有するR(希土類元素)−T(鉄属元素)−M(添加元素)−Cu−B系のボンド磁石用異方性永久磁石粉末の製造方法に係り、本系粗粉砕粉を水素ガス中で加熱保持する水素化処理、並びに所定雰囲気で加熱保持する再結晶処理を行い結晶粒を1μm以下の極微細結晶とした、R−T−M−Cu−B系永久磁石用希土類合金粉末の製造方法に関する。
【0002】
【従来の技術】
希土類系永久磁石粉末の水素処理法による製造方法は、例えば、特公平6−82575号公報や特公平7−68561号公報に開示されている。すなわち、かかる水素処理法とは、R−T(−M)−B系原料合金インゴットまたは粉末を、Hガス雰囲気またはHガスと不活性ガスの混合雰囲気中で温度500℃〜1000℃に保持して上記合金のインゴットまたは粉末にHを吸蔵させた後、Hガス圧力13Pa(1×10−1Torr)以下の真空雰囲気またはHガス分圧13Pa(1×10−1Torr)以下の不活性ガス雰囲気になるまで温度500℃〜1000℃で脱H処理し、ついで冷却することを特徴とするR−T(−M)−B系合金磁石粉末の製造方法である。
【0003】
上記方法で製造されたR−T(−M)−B系合金磁石粉末は、磁気異方性を有し、かつ常温ではある程度大きな保磁力を有する。これは、上記処理によって、非常に微細な再結晶粒径、実質的には0.1μm〜1μmの平均再結晶粒径を持つ組織となり、磁気的には正方晶NdFe14B型化合物の単磁区臨界粒径に近い結晶粒径となっており、なおかつ、これらの極微細結晶がある程度結晶方位を揃えて再結晶しているためである。
【0004】
上記のような、水素処理法において結晶方位がそろった再結晶組織を得るためには、例えば、特公平3−129702号公報や特公平3−129703号公報に開示されているような、Ga、Zr、Hfなどの添加元素を用いることが有効である。これら添加元素は、水素処理に用いる原料合金の正方晶構造NdFe14B型化合物のT(T:Fe、Co)などと置換して存在することで、水素処理後の磁石粉末が磁気的異方性を発現する役目を担うことが、例えば、Journal of Alloys and Compounds 242(1996)129〜135頁に示されている。また、特公平6−82575号公報、特開平4−133406号公報、特開平4−133407号公報には、水素処理用合金の添加元素として、新たにCuが開示されている。
【0005】
【発明が解決しようとする課題】
ところが、磁気的異方性を発現するための添加元素Mは、原料合金粉末中の正方晶構造NdFe14B型化合物中にTと置換して存在するだけでなく、そのほかの合金中の相、例えばRリッチなR−T−M系の相などを形成してしまい、水素処理後の磁石粉末が磁気的異方性を発現する上で、合金中に含まれる添加元素の全てがその効果を発揮するわけではない。
【0006】
このようなMを含むRリッチな相は強磁性相ではないので、磁気特性を向上させようとして添加元素を多く添加しても、原料合金粉末中のRリッチ相を増やすことになり、結果として合金粉末中の磁石として機能する相の体積割合が減少し、磁石特性、特に残留磁束密度や最大エネルギー積を低下させてしまうという欠点があった。
【0007】
そして、これらの添加元素、例えばGaは、その価格が高いために、使用量が多いとコスト高を招くという欠点があり、解決が望まれていた。
またCuを添加元素として使用する場合、原料合金粉末の成分範囲や水素処理などの製造条件、そしてその具体的な効果は何ら提案されていない。
【0008】
また、水素処理法を用いて異方性磁石合金粉末を製造する場合、その脱水素工程において、脱水素条件と雰囲気をHガス圧力13Pa(1×10−1Torr)以下の真空雰囲気またはHガス分圧13Pa(1×10−1Torr)以下の不活性ガス雰囲気といった水素分圧のみで規定すると処理量が多くなったり、処理炉の形状を変えると脱水素後の磁気特性が低下してしまうという問題があった。
【0009】
この発明は、磁気的異方性を発現するための添加元素Mを含有するR−T−M−B系永久磁石用希土類合金粉末の製造に際して、添加元素Mの使用量を低減し、かつCuを効果的に含有させて磁気異方性が十分に大きく高保磁力を有する異方性永久磁石用希土類合金粉末を効率よく安定的に製造可能なR−T−M−Cu−B系永久磁石用希土類合金粉末の製造方法の提供を目的としている。
【0010】
【課題を解決するための手段】
発明者らは、上記の目的を達成するため、原料合金粉末の組成と組織そして構成相との関係を詳細に検討した結果、Cuの原料合金における効果を新たに見出した。すなわち、発明者らはCuをR−T−M−B系原料合金に加えると、原料合金中では正方晶構造のNdFe14B型化合物ではなく、Rリッチな相にほとんど濃縮し、さらにRリッチな相に含まれる添加元素Mを正方晶構造NdFe14B型化合物に追い出すことを知見し、これによって添加元素量が減少することでコストが低減できることを知見した。
【0011】
さらに発明者らは、Mの添加量を増加させても、Mを含むRリッチな相が生成しないためにより大きな効果が引き出せることを知見し、また、発明者らは水素処理法において、脱水素雰囲気を不活性ガスの減圧気流とすることで炉内の水素分圧の均一性を高めることができること、さらに、減圧気流を用いることで効率よく炉内の雰囲気を置換し続けるために、水素処理法の処理量と水素処理炉の形状に関係なく、水素処理後に均一な磁気特性が得られることを知見し、この発明を完成した。
【0012】
すなわち、この発明は、組成が、
R 11〜15at%(R:Yを含む希土類元素の少なくとも1種で、Pr又はNdの1種または2種をRのうち50at%以上含有)、
T 76〜84at%(T:FeまたはFeの一部を50at%以下のCoで置換)、
M 0.05〜5at%(M:Ga、Al、Zr、Hf、Nb、W、Taのうち1種または2種以上)、Cu 0.01〜0.3at%、
B 5〜9at%の合金鋳塊を、
(1)粗粉砕して平均粒度が50μm〜5000μmの少なくとも80vol%以上が正方晶構造のNdFe14B型化合物からなる粗粉砕粉となした後、
(2)前記粗粉砕粉を原料粉末としてこれを10kPa〜1000kPaのHガス中で、600℃〜750℃の温度域を昇温速度10℃/min〜200℃/min以上で昇温し、さらに750℃〜900℃に15分〜8時間加熱保持し、組織をR水素化物、T−B化合物、T相、R14B化合物の少なくとも4相の混合組織とした後、
(3)さらにArガスまたはHeガスによる絶対圧10Pa〜50kPaの減圧気流中にて700℃〜900℃に5分〜8時間の保持をする脱H処理を行い、
(4)ついで冷却して得られる平均結晶粒径が0.05μm〜1μmである粉末を粉砕し、平均粒度20〜400μmの磁気的に異方性を有する合金粉末を得る、
ことを特徴とする永久磁石用異方性希土類合金粉末の製造方法である。
【0013】
【発明の実施の形態】
この発明において、原料合金に用いるR、すなわち希土類元素は、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Luが包括され、このうちの1種または2種以上とする。Rの50at%以上をPr、Ndのうちの少なくとも1種とするのは、50at%未満では十分な磁化が得られないためである。
【0014】
Rは、11at%未満ではα−Fe相の析出により保磁力が低下し、また15at%を越えると、目的とする正方晶NdFe14B型化合物以外に、Rリッチの第2相が多く析出し、この第2相が多すぎると合金の磁化を低下させるため好ましくなく、よってRの範囲は11〜15at%とする。また、好ましい範囲は、11.5〜13.5at%である。
【0015】
Tは、鉄属元素であって、Fe、Coを包含し、その含有が76at%未満では低保磁力、低磁化の第2相が析出して磁気的特性が低下し、84at%を越えるとα−Fe相の析出により保磁力、角型性が低下するため、76〜84at%とする。Tの好ましい範囲は、78〜82at%である。
【0016】
また、Feのみでも必要な磁気的特性は得られるが、Coの適量の添加は、キュリー温度の向上、すなわち、耐熱性の向上に有用であり、Coは必要に応じて添加できる。FeとCoの原子比においてCoが50%を越えるとNdFe14B型化合物の飽和磁化そのものの減少量が大きくなってしまうため、Tのうち原子比でCoを50%以下とした。Coの好ましい範囲は5〜20%である。
【0017】
添加元素Mの効果は、水素化時に母相の分解反応を完全に終了させずに、母相、すなわちR14B相を安定化して故意に残存させるのに有効な元素が望まれる。特に顕著な効果を持つものとして、Ga、Al、Zr、Nb、Hf、Ta、Wである。
Mの添加量は、0.05at%未満では水素中で母相のR14B相が安定化して残存しないために水素化再結晶処理後の粉末の異方化度が不十分になり、十分な磁化が得られない。また、添加量が5at%を越えると強磁性でない第2相が析出して磁化を低下させることから、Mは0.05〜5at%とした。さらに好ましい範囲は0.08〜0.5at%である。
【0018】
Cuの添加効果は、前記添加元素Mの効果を最大限に発揮させるためのものでり、Cuが処理用原料合金のRリッチな相に濃縮してRリッチ相中の添加元素Mを正方晶NdFe14B型化合物中に吐き出させることで、同等の効果を得るのに必要な添加元素Mの添加量を減らすことができる。このため、水素処理後の正方晶NdFe14B型化合物の割合を多くして磁化や残留磁束密度を向上させることができ、さらに、GaやZr、Ta等の高価な添加元素の含有量を低減して合金コストも低減させることができる。
【0019】
Cuは、0.01at%未満では上記の効果が少なく十分な磁化が得られず、また、添加量が0.3at%を越えると強磁性でない第2相が析出して磁化を低下させることから、0.01〜0.3at%とした。好ましいCuの含有範囲は0.02〜0.15at%である。
【0020】
Bは、正方晶NdFe14B型結晶構造を安定して析出させるためには必須元素であり、その添加量5at%未満ではR17相が析出して保磁力を低下させ、また減磁曲線の角型性が著しく損なわれ、9at%を超えて添加した場合は、磁化の小さい第2相が析出して粉末の磁化を低下させるため、含有量は5〜9at%とした。さらに好ましい範囲は5.7〜7at%である。
【0021】
この発明において、原料合金中の正方晶NdFe14B型化合物の含有量は、該化合物が80vol%未満であると、磁気特性が低下する。より具体的には、混在する第2相がα−Fe相の場合は保磁力を低下させ、Rリッチ相やBリッチ相の場合には磁化が低下するため、合金中の正方晶NdFe14B型化合物の存在比を80vol%以上とする。さらに好ましい範囲は90vol%以上である。
【0022】
この発明において、体積比で80%以上の正方晶NdFe14B型化合物を有する粗粉砕粉を得るためには、合金の鋳塊を900℃〜1200℃の温度で1時間以上焼鈍するか、造塊工程で鋳型の冷却速度を制御するなどの手段を適宜選択するとよい。
【0023】
水素処理法とは、所要粒度の粗粉砕粉が外観上その大きさを変化させることなく、極微細結晶組織の集合体が得られることを特徴とする。すなわち、正方晶NdFe14B型化合物に対し、高温、実際上は600℃〜900℃の温度範囲でHガスと反応させると、RH 、α−Fe、FeBなどに相分離し、さらに同温度域でHガスを脱H処理により除去すると、再度正方晶NdFe14B型化合物の再結晶組織が得られる。
【0024】
しかしながら、現実には、水素化処理条件によって分解生成物の結晶粒径、反応の度合いが異なり、水素化状態の金属組織は、水素化温度750℃未満と750℃以上で明らかに異なる。この金属組織上の違いが、脱水素処理を行った後の磁粉の磁気的性質、特に磁気異方性に大きく影響する。
【0025】
さらに、脱水素処理条件によって、正方晶NdFe14B型化合物の再結晶状態が大きく影響を受け、水素処理法によって作製した磁粉の磁気的性質、特に保磁力に大きく影響する。また、水素処理の正方晶NdFe14B型化合物をHガス中で加熱する工程において、希土類元素によってRH 、α−Fe、FeBなどに相分離する反応が、水素分圧によっては反応が進行しない領域が存在し、Rは元素によって水素圧力が磁気特性とくに保磁力に大きく影響する。
【0026】
出発原料の粗粉砕法は、従来の機械的粉砕法やガスアトマイズ法の他、H吸蔵による、いわゆる水素粉砕法を用いてもよく、工程の簡略化のためにこの水素粉砕による粗粉砕工程と、極微細結晶を得るための水素処理法を同一装置内で連続して行うことができる。
【0027】
この発明において、粗粉砕粉の平均粒度を50μm〜5000μmに限定したのは、50μm未満では粉末の酸化による磁性劣化の恐れがあり、また5000μmを超えると水素処理によって大きな磁気異方性を持たせることが困難となるからである。好ましい範囲は60〜300μmである。
【0028】
この発明において、Hガス中での加熱に際し、Hガス圧力が10kPa未満では、前述の分解反応が十分に進行せず、また1000kPaを超えると処理設備が大きくなりすぎ、工業的にコスト面、また安全面で好ましくないため、圧力範囲を10kPa〜1000kPaとした。さらに好ましくは70kPa〜350kPaである。
【0029】
ガス中での加熱処理温度は、600℃未満ではRH 、α−Fe、FeBなどへの分解反応が進行せず、また、600℃〜750℃の温度範囲では分解反応がほぼ完全に進行してしまい、分解生成物中に適量のR14B相が残存せず、脱水素処理後に磁気的また結晶方位的に十分な異方性が得られない。またHガス中での加熱処理温度が900℃を超えるとRH が不安定となり、かつ生成物が粒成長して正方晶NdFe14B型化合物極微細結晶組織を得ることが困難になる。
【0030】
従って、水素化の温度範囲が750℃〜900℃の領域であれば、脱水素時の再結晶反応の核となるR14B相が分散して適量残存するため、脱水素後のR14B相の結晶方位が残存R14B相によって決定され、結果的に再結晶組織の結晶方位が原料インゴットの結晶方位と一致し、少なくとも原料インゴットの結晶粒径の範囲内では大きな異方性を示すことになる。そのため水素化処理の温度範囲を750℃〜900℃とする。さらに好ましくは800℃〜890℃である。
【0031】
また、加熱処理保持時間については、上記の分解反応を十分に行わせるためには15分以上が必要であり、また8時間を超えると残存R14B相が減少して脱水素処理後の磁気異方性が低下するため好ましくない。従って15分〜8時間の加熱保持とする。さらに好ましくは1時間〜4時間である。
【0032】
ガス中での昇温速度は、10℃/min未満であると、昇温過程で600℃〜750℃の温度域を分解反応が進行しながら通過するために、完全に分解して母相のR14B相が残存せず、脱水素処理後の磁気的及び結晶方位的異方性が殆ど失われてしまう。また、多量に処理を行う場合は、大きな反応熱のために局部的に最適処理温度範囲を越える場合があり、そのために実用的な保磁力が得られない場合がある。
【0033】
ガス中での昇温速度を10℃/min以上にすれば、600℃〜750℃の領域で反応が十分に進行せず、母相を残存したまま750℃〜900℃の水素化温度域に達するため、脱水素処理後に磁気的および結晶方位的に大きな異方性を持った粉末を得ることができる。また、750℃〜900℃の温度域における分解反応時の反応熱による温度上昇は小さく、多量処理時でも実用的な保磁力が得やすい。
【0034】
従って、Hガス中での昇温速度は、750℃以下の温度域において、10℃/min以上とする必要がある。また、200℃/minを越える昇温速度は赤外炉等を用いても実質的に実現困難であり、また可能であっても設備費が過大となり好ましくない。よってHガス中での昇温速度を10℃〜200℃/minとする。さらに好ましくは12℃〜100℃/minである。
【0035】
この発明の脱H処理は、不活性ガス、具体的にはArガスまたはHeガス雰囲気の減圧下で行うが、これによって原料の周囲の実質的なH分圧はほぼ平衡水素圧、例えば850℃にて1kPa程度となり、脱水素反応は除々に進行する。
不活性ガスとしてArまたはHeに限定したのは、コスト面ではArが使い良く、また、Hガスの置換性や温度制御性の点からはHeガスが優れているためである。その他の希ガスは、性能面でのメリットがない上、コスト的に問題がある。また、一般に不活性ガスとして取り扱われるNガスは、希土類系化合物と反応して窒化物を形成するため不適当である。
【0036】
雰囲気の絶対圧力が10Pa未満では、脱水素反応が急激に起こり、化学反応による温度低下が大きく、また脱水素反応が急激すぎるために、冷却後の磁粉の組織に粗大な結晶粒が混在してしまい、そのために保磁力が大きく低下する。一方、雰囲気の絶対圧力が50kPaを越えると、脱水素反応に時間がかかりすぎて実用的には問題となる。そこで、雰囲気の絶対圧力は、10Pa〜50kPaとした。さらに好ましくは500Pa〜10kPaである。
【0037】
また、脱水素処理を減圧気流中で行うのは、脱水素反応によって原料から放出されるHガスによって、炉内水素圧力が上昇するのを防止し、炉内の脱水素工程を処理量や処理炉の形状に関係なく均一に行うためである。実用上は、一方から不活性ガスを導入しつつ、他方から真空ポンプで排気し、圧力の制御は供給口、排気口それぞれに取り付けられた流量調整弁を用いて行うとよい。
【0038】
この発明において、脱H処理の温度が700℃未満では、RH 相からのHの離脱が起こらないか、正方晶NdFe14B型化合物の再結晶が十分進行せず、また、900℃を超えると正方晶NdFe14B型化合物は生成するが、再結晶粒が粗大に成長し、高い保磁力が得られない。そのため、脱H処理の温度範囲は700℃〜900℃とする。さらに好ましくは、780℃〜870℃である。
【0039】
また、加熱処理保持時間は、処理設備の排気能力にもよるが、上記の再結晶反応を十分に行わせるためには少なくとも5分以上保持する必要があるが、2次的な再結晶反応によって結晶が粗大化すれば保磁力の低下を招くので、できる限り短時間の方が好ましく、5分〜8時間の加熱保持で十分である。さらに好ましくは15分〜2時間である。
【0040】
脱H処理は、原料の酸化防止の観点から、また処理設備の熱効率の観点で、水素化処理に引き続いて行うのがよいが、水素化処理後、一旦原料を冷却して、再び改めて脱Hのための熱処理を行ってもよい。
【0041】
脱H処理後の正方晶NdFe14B型化合物の再結晶粒径は、実質的に0.05μm以下の平均再結晶粒径を得ることは困難であり、またたとえ得られたとしても磁気特性上の利点がない。一方、平均再結晶粒径が1μmを超えると、粉末の保磁力が低下するため好ましくない。そのため、平均再結晶粒径を0.05μm〜1μmとした。さらに好ましくは0.1μm〜0.8μmである。
【0042】
この発明により得られた希土類合金粉末に樹脂または低融点金属を混合し、成形固化して異方性ボンド磁石を製造することができる。上記の希土類合金粉末をボンド磁石用原料として粉砕する方法は、従来からの機械的粉砕方法が採用できる。
【0043】
ボンド磁石を製造するのに用いる粉末の平均粒度は、20μm未満では粉末の酸化による磁気特性の劣化の恐れがあり、また、400μmを越えると小型磁気部品として精密成形する際に粗大すぎて好ましくないため、20μm〜400μmの範囲が望ましい。また、ボンド磁石を製造するのに用いる粉末の粒度分布において、10μm〜30μmの粒度を全体の5〜30%含めたものにすると、ボンド磁石を成形する際に配向が乱れ難くかつ高密度化できるため、望ましいことである。
【0044】
この発明による希土類合金粉末を用いて磁石化するには、以下に示す圧縮成形、射出成形、押し出し成形、圧延成形、樹脂含浸法など公知のいずれの製造方法であってもよい。圧縮成形の場合は、磁性粉末に熱硬化性樹脂、カップリング剤、滑剤などを添加混練した後、圧縮成形して加熱樹脂を硬化して得られる。また、樹脂の代わりにZn,Al等の低融点金属を用いてもよい。
【0045】
射出成形、押し出し成形、圧延成形の場合は、磁性粉末に熱可塑性樹脂、カップリング剤、滑剤などを添加混連した後、射出成形、押し出し成形、圧延成形のいずれかの方法にて成形して得られる。
【0046】
樹脂含浸法においては、磁性粉末を圧縮成型後、必要に応じて熱処理した後、熱硬化性樹脂を含浸させ、加熱して樹脂を硬化させて得る。また、磁性粉末を圧縮成型後、必要に応じて熱処理した後、熱可塑性樹脂を含浸させて得る。
【0047】
この発明において、ボンド磁石中の磁性粉末の重量比は、前記製法により異なるが、70〜99.5wt%であり、残部の0.5〜30wt%が樹脂その他である。圧縮成型の場合、磁性粉末の重量比は95〜99.5wt%、射出成型の場合、磁性粉末の充填率は90〜95wt%、樹脂含浸法の場合、磁性粉末の重量比は、96〜99.5wt%が好ましい。樹脂としては、熱硬化性、熱可塑性のいずれの性質を有するものも利用できるが、熱的に安定な樹脂が好ましく、例えば、ポリアミド、ポリイミド、フェノール樹脂、弗素樹脂、けい素樹脂、エポキシ樹脂などを適宜選定できる。
【0048】
【実施例】
実施例1
高周波誘導溶解法によって溶製して得られた、表1に示すNo.1〜7の組成の鋳塊を、1100℃、24時間、Ar雰囲気中で焼鈍して、鋳塊中の正方晶NdFe14B型化合物の体積比を90%以上とした。
【0049】
この鋳塊を、Arガス雰囲気中(O量0.5%以下)でスタンプミルにて平均粒度200μmに粗粉砕した後、この粗粉砕粉を表2に示す形状の炉に入れ、1Pa以下にまで真空排気した。その後、純度99.9999%以上のHガスを導入しつつ、表2に示す水素化処理条件で水素化処理を行った。こうして得た水素化原料を、引き続き表2に示す脱水素処理条件に従って脱水素処理を行った。排気にはロータリーポンプを用いた。冷却後、原料温度が50℃以下となったところで原料を取り出した。このときの合金粉末の磁気特性を表2に示す。
【0050】
実施例2
実施例1で得られた表1のNo.6の磁石合金粉末を、Arガス雰囲気中(O量0.5%以下)でスタンプミルにて、平均粒度100μmでかつ30μm以下の粒度が全体の20%を占めるように粗粉砕した後、2.5wt%のクレゾールノボラック樹脂を混合し、1.2MA/mの磁界中で0.6GPaの圧力を印加して成形した。得られた成形体は150℃Ar雰囲気中で1時間硬化させ、10mm角のボンド磁石とした。BHトレーサーで測定した磁気特性を表3に示す。
【0051】
比較例1
表1に示すNo.8〜11の組成を有する組成の粗粉砕粉について、この粗粉砕粉を表4に示す各種処理量で表4に示す形状の炉に入れ、1Pa以下にまで真空排気した。その後、純度99.9999%以上のHガスを導入しつつ、表4に示す処理条件で水素化処理およびを脱水素処理行った。ここに示した組成は、Cu及びMの範囲がこの発明の請求範囲外である。このときの合金粉末の磁気特性を表4に示す。
【0052】
比較例2
表1に示すNo.1〜7の組成を有する組成の粗粉砕粉について、この粗粉砕粉を表5に示す各種処理量で管状炉に入れ、1Pa以下にまで真空排気した。その後、純度99.9999%以上のHガスを導入しつつ、表5に示す処理条件で水素化処理およびを脱水素処理を行った。ここに示した製造条件は、脱水素条件の範囲がこの発明の限定範囲外である。このときの合金粉末の磁気特性を表5に示す。
【0053】
【表1】

Figure 0003634565
【0054】
【表2】
Figure 0003634565
【0055】
【表3】
Figure 0003634565
【0056】
【表4】
Figure 0003634565
【0057】
【表5】
Figure 0003634565
【0058】
【発明の効果】
この発明は、R−T−M−B系の異方性永久磁石用希土類合金粉末を水素処理法により製造する方法において、Cuを0.01〜0.3at%及び特定量のMを添加し、鋳塊を所定粒度に粉砕し、水素雰囲気の所定条件にて加熱、保持して水素化し、R水素化物、T−B化合物、T相、R14B化合物の少なくとも4相の混合組織とした後、所定雰囲気、所定温度で脱水素処理を行うことで、添加元素MのほとんどをR14B化合物相に導入でき、磁気異方性が十分に大きく、かつ極微細結晶で高保磁力を有するR−T−M−Cu−B系永久磁石用希土類合金粉末を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention provides an anisotropic permanent R (rare earth element) -T (iron element) -M (additive element) -Cu-B based bond permanent magnet having a high coercive force that can be used for various motors, actuators and the like. In accordance with a method for producing a magnet powder, a hydrogenation process in which the present coarsely pulverized powder is heated and held in hydrogen gas, and a recrystallization process in which the crystal grain is heated and held in a predetermined atmosphere are formed into ultrafine crystals of 1 μm or less. The present invention relates to a method for producing a rare earth alloy powder for a TM-Cu-B permanent magnet.
[0002]
[Prior art]
A method for producing a rare earth-based permanent magnet powder by a hydrogen treatment method is disclosed in, for example, Japanese Patent Publication No. 6-82575 and Japanese Patent Publication No. 7-68561. That is, such a hydrogen treatment method means that an RT (-M) -B-based material alloy ingot or powder is heated to a temperature of 500 ° C. to 1000 ° C. in an H 2 gas atmosphere or a mixed atmosphere of an H 2 gas and an inert gas. After holding and allowing H 2 to be occluded in the ingot or powder of the above alloy, a vacuum atmosphere of H 2 gas pressure of 13 Pa (1 × 10 −1 Torr) or lower, or H 2 gas partial pressure of 13 Pa (1 × 10 −1 Torr) the following de-H 2 was treated at a temperature 500 ° C. to 1000 ° C. until an inert gas atmosphere, and then a R-T (-M) -B alloy magnet powder manufacturing method, characterized by cooling.
[0003]
The RT (-M) -B alloy magnet powder produced by the above method has magnetic anisotropy and has a large coercive force to some extent at room temperature. This results in a structure having a very fine recrystallized grain size, substantially an average recrystallized grain size of 0.1 μm to 1 μm by the above treatment, and is magnetically composed of tetragonal Nd 2 Fe 14 B type compound. This is because the crystal grain size is close to the single domain critical grain size, and these ultrafine crystals are recrystallized with a certain degree of crystal orientation.
[0004]
In order to obtain a recrystallized structure having a uniform crystal orientation in the hydrogen treatment method as described above, for example, Ga, as disclosed in Japanese Patent Publication No. 3-129702 and Japanese Patent Publication No. 3-129703, It is effective to use an additive element such as Zr or Hf. These additive elements are present by substituting the tetragonal structure Nd 2 Fe 14 B type compound T (T: Fe, Co) of the raw material alloy used for the hydrogen treatment, so that the magnet powder after the hydrogen treatment becomes magnetic. The role of developing anisotropy is shown, for example, in Journal of Alloys and Compounds 242 (1996) pages 129-135. JP-B-6-82575, JP-A-4-133406, and JP-A-4-133407 also newly disclose Cu as an additive element of the hydrogen treatment alloy.
[0005]
[Problems to be solved by the invention]
However, the additive element M for expressing the magnetic anisotropy is not only present in the tetragonal structure Nd 2 Fe 14 B type compound in the raw material alloy powder by replacing T, but also in other alloys. Phase, for example, an R-rich R-T-M phase, etc., and the magnetic powder after hydrogen treatment exhibits magnetic anisotropy, all of the additive elements contained in the alloy are It is not effective.
[0006]
Since such an R-rich phase containing M is not a ferromagnetic phase, even if a large amount of additional elements are added to improve the magnetic properties, the R-rich phase in the raw material alloy powder is increased. The volume ratio of the phase functioning as a magnet in the alloy powder is reduced, and there is a drawback in that magnet characteristics, particularly residual magnetic flux density and maximum energy product are reduced.
[0007]
And since these additive elements, for example, Ga, are expensive, there is a drawback that if the amount used is large, the cost increases, and a solution has been desired.
Moreover, when using Cu as an additive element, the component range of raw material alloy powder, manufacturing conditions such as hydrogen treatment, and the specific effects are not proposed at all.
[0008]
In the case of producing anisotropic magnet alloy powder using a hydrogen treatment method, in the dehydrogenation step, the dehydrogenation conditions and atmosphere are set to a vacuum atmosphere or H 2 gas pressure of 13 Pa (1 × 10 −1 Torr) or less. If the gas partial pressure is specified only by the hydrogen partial pressure, such as an inert gas atmosphere of 13 Pa (1 × 10 −1 Torr) or less, the amount of processing increases, and if the shape of the processing furnace is changed, the magnetic properties after dehydrogenation will decrease. There was a problem that.
[0009]
The present invention reduces the amount of additive element M used in the production of a rare earth alloy powder for RTMB-based permanent magnets containing additive element M for developing magnetic anisotropy, and Cu For R-TM-Cu-B based permanent magnet capable of efficiently and stably producing rare earth alloy powder for anisotropic permanent magnet having a sufficiently large magnetic anisotropy and a high coercive force It aims at providing the manufacturing method of rare earth alloy powder.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the inventors have studied in detail the relationship between the composition, structure and constituent phase of the raw material alloy powder, and as a result, have found a new effect on the Cu raw material alloy. That is, when the inventors add Cu to the R-T-M-B type raw material alloy, the raw material alloy is not an Nd 2 Fe 14 B type compound having a tetragonal structure but is almost concentrated in an R-rich phase. It has been found that the additive element M contained in the R-rich phase is expelled to the tetragonal structure Nd 2 Fe 14 B type compound, and thus the cost can be reduced by reducing the amount of the additive element.
[0011]
Furthermore, the inventors have found that even if the amount of M added is increased, an R-rich phase containing M is not generated, so that a greater effect can be brought out. The hydrogen treatment can be performed in order to increase the uniformity of the hydrogen partial pressure in the furnace by making the atmosphere a reduced-pressure air flow of the inert gas, and in order to continue replacing the atmosphere in the furnace efficiently by using the reduced-pressure air flow. The present invention was completed by discovering that uniform magnetic properties can be obtained after hydrogen treatment regardless of the amount of treatment and the shape of the hydrogen treatment furnace.
[0012]
That is, the composition of the present invention is
R 11 to 15 at% (R: at least one rare earth element including Y, Pr or Nd containing one or two of R in 50 at% or more of R),
T 76 to 84 at% (T: Fe or a part of Fe is replaced with 50 at% or less Co),
M 0.05 to 5 at% (M: one or more of Ga, Al, Zr, Hf, Nb, W, Ta), Cu 0.01 to 0.3 at%,
B 5-9at% alloy ingot,
(1) After coarsely pulverized into a coarsely pulverized powder having an average particle size of 50 μm to 5000 μm and comprising at least 80 vol% of a tetragonal structure Nd 2 Fe 14 B type compound,
(2) Using the coarsely pulverized powder as a raw material powder, in a H 2 gas of 10 kPa to 1000 kPa, the temperature range of 600 ° C. to 750 ° C. is increased at a temperature increase rate of 10 ° C./min to 200 ° C./min, Furthermore, after heating and holding at 750 ° C. to 900 ° C. for 15 minutes to 8 hours, and making the structure a mixed structure of at least four phases of R hydride, TB compound, T phase, and R 2 T 14 B compound,
(3) Further, a de-H 2 treatment is performed in which the gas is held at 700 ° C. to 900 ° C. for 5 minutes to 8 hours in a reduced pressure air flow of 10 Pa to 50 kPa in absolute pressure with Ar gas or He gas,
(4) Next, the powder having an average crystal grain size of 0.05 μm to 1 μm obtained by cooling is pulverized to obtain a magnetically anisotropic alloy powder having an average grain size of 20 to 400 μm.
This is a method for producing an anisotropic rare earth alloy powder for a permanent magnet.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, R used for the raw material alloy, that is, the rare earth element includes Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu, and one of these or 2 or more types. The reason why 50 at% or more of R is at least one of Pr and Nd is that if it is less than 50 at%, sufficient magnetization cannot be obtained.
[0014]
When R is less than 11 at%, the coercive force decreases due to precipitation of the α-Fe phase, and when it exceeds 15 at%, there are many R-rich second phases in addition to the target tetragonal Nd 2 Fe 14 B type compound. Precipitation and too much of this second phase is not preferable because it reduces the magnetization of the alloy, so the R range is 11-15 at%. Moreover, a preferable range is 11.5-13.5 at%.
[0015]
T is an iron group element and includes Fe and Co. When the content is less than 76 at%, a second phase having a low coercive force and low magnetization is precipitated and the magnetic characteristics are deteriorated. Since coercive force and squareness decrease due to precipitation of the α-Fe phase, the content is set to 76 to 84 at%. A preferable range of T is 78 to 82 at%.
[0016]
Further, although necessary magnetic characteristics can be obtained with Fe alone, addition of an appropriate amount of Co is useful for improving the Curie temperature, that is, improving heat resistance, and Co can be added as necessary. If Co exceeds 50% in the atomic ratio of Fe and Co, the amount of decrease in the saturation magnetization itself of the Nd 2 Fe 14 B type compound increases, so Co in the atomic ratio of T is set to 50% or less. The preferable range of Co is 5 to 20%.
[0017]
The effect of the additive element M is desired to be an element effective for stabilizing and deliberately leaving the parent phase, that is, the R 2 T 14 B phase, without completely terminating the decomposition reaction of the parent phase during hydrogenation. Ga, Al, Zr, Nb, Hf, Ta, and W are particularly effective.
If the amount of M added is less than 0.05 at%, the R 2 T 14 B phase of the mother phase is stabilized and does not remain in hydrogen, so the degree of anisotropicity of the powder after the hydrogenation recrystallization treatment becomes insufficient. Sufficient magnetization cannot be obtained. Further, if the added amount exceeds 5 at%, a non-ferromagnetic second phase precipitates and lowers the magnetization, so M was set to 0.05 to 5 at%. A more preferable range is 0.08 to 0.5 at%.
[0018]
The effect of addition of Cu is to maximize the effect of the additive element M. Cu concentrates in the R-rich phase of the raw material alloy for processing, and the additive element M in the R-rich phase is tetragonal. By discharging into the Nd 2 Fe 14 B type compound, it is possible to reduce the amount of additive element M required to obtain the same effect. For this reason, the ratio of the tetragonal Nd 2 Fe 14 B type compound after hydrogen treatment can be increased to improve the magnetization and residual magnetic flux density, and the content of expensive additive elements such as Ga, Zr, and Ta And the alloy cost can be reduced.
[0019]
If Cu is less than 0.01 at%, the above effect is small and sufficient magnetization cannot be obtained, and if the addition amount exceeds 0.3 at%, a non-ferromagnetic second phase precipitates and lowers the magnetization. 0.01 to 0.3 at%. A preferable Cu content range is 0.02 to 0.15 at%.
[0020]
B is an essential element for stably precipitating the tetragonal Nd 2 Fe 14 B type crystal structure, and if its added amount is less than 5 at%, the R 2 T 17 phase precipitates to reduce the coercive force, When the squareness of the demagnetization curve is remarkably impaired and added over 9 at%, the second phase having a small magnetization is precipitated to lower the magnetization of the powder, so the content is set to 5 to 9 at%. A more preferable range is 5.7 to 7 at%.
[0021]
In this invention, when the content of the tetragonal Nd 2 Fe 14 B type compound in the raw material alloy is less than 80 vol%, the magnetic properties are deteriorated. More specifically, when the coexisting second phase is an α-Fe phase, the coercive force is lowered, and when it is an R-rich phase or a B-rich phase, the magnetization is lowered. Therefore, the tetragonal Nd 2 Fe in the alloy is reduced. 14 The abundance ratio of the B-type compound is 80 vol% or more. A more preferable range is 90 vol% or more.
[0022]
In this invention, in order to obtain a coarsely pulverized powder having a tetragonal Nd 2 Fe 14 B type compound with a volume ratio of 80% or more, the ingot of the alloy is annealed at a temperature of 900 ° C. to 1200 ° C. for 1 hour or more. A means for controlling the cooling rate of the mold in the ingot forming process may be appropriately selected.
[0023]
The hydrotreating method is characterized in that a coarsely pulverized powder having a required particle size can obtain an aggregate of an ultrafine crystal structure without changing its size in appearance. That is, for tetragonal Nd 2 Fe 14 B type compound, a high temperature, the practice is reacted with H 2 gas at a temperature range of 600 ℃ ~900 ℃, RH 2 ■ 3, α-Fe, etc. Fe 2 B When the phases are separated and the H 2 gas is removed by de-H 2 treatment in the same temperature range, a recrystallized structure of tetragonal Nd 2 Fe 14 B type compound is obtained again.
[0024]
However, in reality, the crystal grain size of the decomposition product and the degree of reaction differ depending on the hydrotreating conditions, and the metal structure in the hydrogenated state clearly differs between the hydrogenation temperature of less than 750 ° C. and 750 ° C. or more. This difference in the metal structure greatly affects the magnetic properties of the magnetic powder after the dehydrogenation treatment, particularly the magnetic anisotropy.
[0025]
Furthermore, the recrystallization state of the tetragonal Nd 2 Fe 14 B type compound is greatly affected by the dehydrogenation treatment conditions, and greatly affects the magnetic properties, particularly the coercive force, of the magnetic powder produced by the hydrogen treatment method. Further, in the step of heating the tetragonal Nd 2 Fe 14 B type compound hydrotreating with H 2 gas, RH by rare-earth element 2 3, α-Fe, the reaction of such phase separation Fe 2 B, a hydrogen partial Depending on the pressure, there is a region where the reaction does not proceed, and for R, the hydrogen pressure greatly affects the magnetic properties, particularly the coercive force, depending on the element.
[0026]
The coarse pulverization method of the starting material may be a conventional mechanical pulverization method or gas atomization method, or a so-called hydrogen pulverization method using H 2 occlusion. The hydrogen treatment method for obtaining ultrafine crystals can be continuously performed in the same apparatus.
[0027]
In this invention, the average particle size of the coarsely pulverized powder is limited to 50 μm to 5000 μm. If it is less than 50 μm, there is a risk of magnetic deterioration due to oxidation of the powder, and if it exceeds 5000 μm, a large magnetic anisotropy is given by hydrogen treatment. This is because it becomes difficult. A preferred range is 60 to 300 μm.
[0028]
In this invention, when heating with H 2 gas, is less than the H 2 gas pressure 10 kPa, without decomposition reaction proceeds sufficiently in the foregoing, also the processing facility becomes too large and exceeds 1000 kPa, industrial cost Moreover, since it is not preferable in terms of safety, the pressure range was set to 10 kPa to 1000 kPa. More preferably, it is 70 kPa-350 kPa.
[0029]
Heat treatment temperature with H 2 in the gas, RH 2 3 is less than 600 ° C., alpha-Fe, does not proceed decomposition reaction to such Fe 2 B, also the decomposition reaction in the temperature range of 600 ° C. to 750 ° C. Almost completely proceeds, an appropriate amount of R 2 T 14 B phase does not remain in the decomposition product, and sufficient anisotropy in terms of magnetic and crystal orientation cannot be obtained after dehydrogenation treatment. The H 2 heat treatment temperature in the gas RH 2 3 becomes unstable when it exceeds 900 ° C., and that the product obtained grain growing tetragonal Nd 2 Fe 14 B type compound ultrafine crystal structure It becomes difficult.
[0030]
Accordingly, when the temperature range of hydrogenation is in the range of 750 ° C. to 900 ° C., an appropriate amount of R 2 T 14 B phase, which becomes the nucleus of the recrystallization reaction during dehydrogenation, is dispersed and remains, so that R after dehydrogenation remains. crystal orientation of the 2 T 14 B phase is determined by the residual R 2 T 14 B phase, resulting in crystal orientation of the recrystallized structure is consistent with the crystal orientation of the material ingot, within the scope of the crystal grain size of at least a raw material ingot It shows a great anisotropy. Therefore, the temperature range of the hydrotreatment is set to 750 ° C to 900 ° C. More preferably, it is 800 degreeC-890 degreeC.
[0031]
In addition, the heat treatment holding time requires 15 minutes or more in order to sufficiently perform the above decomposition reaction. When the heat treatment holding time exceeds 8 hours, the remaining R 2 T 14 B phase decreases and the dehydrogenation treatment is performed. This is not preferable because the magnetic anisotropy is reduced. Accordingly, the heating and holding is performed for 15 minutes to 8 hours. More preferably, it is 1 hour-4 hours.
[0032]
When the heating rate in the H 2 gas is less than 10 ° C./min, it passes through the temperature range of 600 ° C. to 750 ° C. while the decomposition reaction proceeds in the heating process, so that it is completely decomposed and the mother The phase R 2 T 14 B phase does not remain, and the magnetic and crystal orientation anisotropy after the dehydrogenation treatment is almost lost. In addition, when a large amount of processing is performed, the optimum processing temperature range may be exceeded locally due to a large reaction heat, so that a practical coercive force may not be obtained.
[0033]
If the heating rate in H 2 gas is 10 ° C./min or higher, the reaction does not proceed sufficiently in the region of 600 ° C. to 750 ° C., and the hydrogenation temperature of 750 ° C. to 900 ° C. remains with the parent phase remaining. Therefore, a powder having large anisotropy in magnetic and crystal orientation can be obtained after the dehydrogenation treatment. Moreover, the temperature rise by the reaction heat at the time of the decomposition reaction in a temperature range of 750 ° C. to 900 ° C. is small, and a practical coercive force can be easily obtained even during a large amount of processing.
[0034]
Therefore, the temperature increase rate in H 2 gas needs to be 10 ° C./min or more in the temperature range of 750 ° C. or less. In addition, a temperature increase rate exceeding 200 ° C./min is practically difficult even if an infrared furnace or the like is used, and even if possible, the equipment cost is excessively undesirable. Thus the rate of temperature increase with H 2 gas and 10 ℃ ~200 ℃ / min. More preferably, it is 12 degreeC-100 degreeC / min.
[0035]
The de-H 2 treatment of the present invention is performed under a reduced pressure of an inert gas, specifically, an Ar gas or He gas atmosphere, whereby the substantial H 2 partial pressure around the raw material is substantially equal to the equilibrium hydrogen pressure, for example, It becomes about 1 kPa at 850 ° C., and the dehydrogenation proceeds gradually.
The reason why the inert gas is limited to Ar or He is that Ar is easy to use in terms of cost, and that He gas is excellent in terms of H 2 gas replacement and temperature controllability. Other noble gases have no performance advantage and are costly. Further, N 2 gas, which is generally handled as an inert gas, is inappropriate because it reacts with a rare earth compound to form a nitride.
[0036]
When the absolute pressure of the atmosphere is less than 10 Pa, the dehydrogenation reaction occurs rapidly, the temperature drop due to the chemical reaction is large, and the dehydrogenation reaction is too rapid, so that coarse crystal grains are mixed in the structure of the magnetic powder after cooling. As a result, the coercive force is greatly reduced. On the other hand, if the absolute pressure of the atmosphere exceeds 50 kPa, it takes a long time for the dehydrogenation reaction, which is practically problematic. Therefore, the absolute pressure of the atmosphere was set to 10 Pa to 50 kPa. More preferably, it is 500 Pa-10kPa.
[0037]
In addition, the dehydrogenation process is performed in a reduced-pressure air stream because the H 2 gas released from the raw material by the dehydrogenation reaction is prevented from increasing the hydrogen pressure in the furnace, and the dehydrogenation process in the furnace is performed in a process amount or This is because it is performed uniformly regardless of the shape of the processing furnace. Practically, an inert gas is introduced from one side and exhausted by a vacuum pump from the other side, and the pressure is preferably controlled using a flow rate adjusting valve attached to each of the supply port and the exhaust port.
[0038]
In the present invention, the de-H 2 treatment below a temperature of 700 ° C., or does not occur leaving of H 2 from RH 2 3-phase, recrystallization tetragonal Nd 2 Fe 14 B type compound is not sufficiently proceed, When the temperature exceeds 900 ° C., a tetragonal Nd 2 Fe 14 B type compound is produced, but the recrystallized grains grow coarsely, and a high coercive force cannot be obtained. Therefore, the temperature range of the de-H 2 treatment is set to 700 ° C to 900 ° C. More preferably, it is 780 degreeC-870 degreeC.
[0039]
In addition, although the heat treatment holding time depends on the exhaust capacity of the treatment equipment, it is necessary to hold for at least 5 minutes or more in order to sufficiently perform the above recrystallization reaction. If the crystal is coarsened, the coercive force is lowered, so that the time is preferably as short as possible, and heating and holding for 5 minutes to 8 hours is sufficient. More preferably, it is 15 minutes to 2 hours.
[0040]
De H 2 treatment, from the viewpoint of preventing oxidation of the raw materials, also in terms of thermal efficiency of the process equipment, but may be carried out following the hydrogenation process, after hydrogenation treatment, then once cooling the material, again again de A heat treatment for H 2 may be performed.
[0041]
The recrystallized grain size of the tetragonal Nd 2 Fe 14 B type compound after the de-H 2 treatment is substantially difficult to obtain an average recrystallized grain size of 0.05 μm or less. There is no advantage in magnetic properties. On the other hand, if the average recrystallized grain size exceeds 1 μm, the coercive force of the powder is lowered, which is not preferable. Therefore, the average recrystallized grain size is set to 0.05 μm to 1 μm. More preferably, it is 0.1 micrometer-0.8 micrometer.
[0042]
An anisotropic bonded magnet can be manufactured by mixing a resin or a low-melting-point metal with the rare earth alloy powder obtained according to the present invention, and molding and solidifying it. As a method of pulverizing the rare earth alloy powder as a raw material for the bonded magnet, a conventional mechanical pulverization method can be adopted.
[0043]
If the average particle size of the powder used for manufacturing the bonded magnet is less than 20 μm, the magnetic properties may be deteriorated due to the oxidation of the powder, and if it exceeds 400 μm, it is not preferable because it is too coarse for precision molding as a small magnetic part. Therefore, the range of 20 μm to 400 μm is desirable. In addition, in the particle size distribution of the powder used for manufacturing the bonded magnet, if the particle size of 10 μm to 30 μm is included in 5 to 30% of the total, the orientation is hardly disturbed and the density can be increased when forming the bonded magnet. Therefore, it is desirable.
[0044]
In order to magnetize using the rare earth alloy powder according to the present invention, any known manufacturing method such as compression molding, injection molding, extrusion molding, rolling molding, resin impregnation method shown below may be used. In the case of compression molding, it is obtained by adding and kneading a thermosetting resin, a coupling agent, a lubricant and the like to the magnetic powder, and then compression molding to cure the heated resin. Moreover, you may use low melting-point metals, such as Zn and Al, instead of resin.
[0045]
In the case of injection molding, extrusion molding, and rolling molding, a thermoplastic resin, a coupling agent, a lubricant, etc. are added to and mixed with magnetic powder, and then molded by any of injection molding, extrusion molding, or rolling molding. can get.
[0046]
In the resin impregnation method, the magnetic powder is compression-molded, heat-treated as necessary, impregnated with a thermosetting resin, and heated to cure the resin. Further, after compression molding, the magnetic powder is heat treated as necessary, and then impregnated with a thermoplastic resin.
[0047]
In this invention, the weight ratio of the magnetic powder in the bonded magnet varies depending on the production method, but is 70 to 99.5 wt%, and the remaining 0.5 to 30 wt% is resin or the like. In the case of compression molding, the weight ratio of the magnetic powder is 95 to 99.5 wt%, in the case of injection molding, the filling ratio of the magnetic powder is 90 to 95 wt%, and in the case of the resin impregnation method, the weight ratio of the magnetic powder is 96 to 99 0.5 wt% is preferable. As the resin, those having both thermosetting and thermoplastic properties can be used, but a thermally stable resin is preferable, for example, polyamide, polyimide, phenol resin, fluorine resin, silicon resin, epoxy resin, etc. Can be selected as appropriate.
[0048]
【Example】
Example 1
No. 1 shown in Table 1 obtained by melting by high frequency induction melting method. The ingots having the composition of 1 to 7 were annealed in an Ar atmosphere at 1100 ° C. for 24 hours, so that the volume ratio of the tetragonal Nd 2 Fe 14 B type compound in the ingot was 90% or more.
[0049]
This ingot is roughly pulverized in an Ar gas atmosphere (O 2 amount 0.5% or less) to a mean particle size of 200 μm by a stamp mill, and then this coarsely pulverized powder is put into a furnace having the shape shown in Table 2 and 1 Pa or less. Was evacuated to. Thereafter, hydrogen treatment was performed under the hydrotreatment conditions shown in Table 2 while introducing H 2 gas having a purity of 99.9999% or more. The hydrogenation raw material thus obtained was subsequently dehydrogenated according to the dehydrogenation conditions shown in Table 2. A rotary pump was used for exhaust. After cooling, the raw material was taken out when the raw material temperature became 50 ° C. or lower. Table 2 shows the magnetic properties of the alloy powder at this time.
[0050]
Example 2
No. 1 in Table 1 obtained in Example 1. After roughly pulverizing the magnetic alloy powder of No. 6 in an Ar gas atmosphere (O 2 amount 0.5% or less) in a stamp mill so that the average particle size is 100 μm and the particle size of 30 μm or less occupies 20% of the total, A 2.5 wt% cresol novolac resin was mixed and molded by applying a pressure of 0.6 GPa in a magnetic field of 1.2 MA / m. The obtained compact was cured in a 150 ° C. Ar atmosphere for 1 hour to obtain a 10 mm square bonded magnet. Table 3 shows the magnetic properties measured with the BH tracer.
[0051]
Comparative Example 1
No. shown in Table 1. About the coarsely pulverized powder having a composition of 8 to 11, this coarsely pulverized powder was placed in a furnace having the shape shown in Table 4 at various processing amounts shown in Table 4 and evacuated to 1 Pa or less. Thereafter, hydrogen treatment and dehydrogenation treatment were performed under the treatment conditions shown in Table 4 while introducing H 2 gas having a purity of 99.9999% or more. In the composition shown here, the range of Cu and M is outside the scope of the present invention. Table 4 shows the magnetic properties of the alloy powder at this time.
[0052]
Comparative Example 2
No. shown in Table 1. About the coarsely pulverized powder having a composition of 1 to 7, this coarsely pulverized powder was put into a tubular furnace at various treatment amounts shown in Table 5 and evacuated to 1 Pa or less. Thereafter, hydrogenation and dehydrogenation were performed under the treatment conditions shown in Table 5 while introducing H 2 gas having a purity of 99.9999% or more. In the production conditions shown here, the range of dehydrogenation conditions is outside the limited range of the present invention. Table 5 shows the magnetic characteristics of the alloy powder at this time.
[0053]
[Table 1]
Figure 0003634565
[0054]
[Table 2]
Figure 0003634565
[0055]
[Table 3]
Figure 0003634565
[0056]
[Table 4]
Figure 0003634565
[0057]
[Table 5]
Figure 0003634565
[0058]
【The invention's effect】
The present invention relates to a method for producing an R-T-M-B system rare earth alloy powder for anisotropic permanent magnets by a hydrogen treatment method, in which 0.01 to 0.3 at% Cu and a specific amount of M are added. The ingot is pulverized to a predetermined particle size, heated and held under a predetermined condition in a hydrogen atmosphere, and hydrogenated, and a mixed structure of at least four phases of R hydride, TB compound, T phase, and R 2 T 14 B compound After that, by performing a dehydrogenation process in a predetermined atmosphere and at a predetermined temperature, most of the additive element M can be introduced into the R 2 T 14 B compound phase, the magnetic anisotropy is sufficiently large, and the ultrafine crystal is highly retained. A rare earth alloy powder for an R-TM-Cu-B permanent magnet having magnetic force can be obtained.

Claims (1)

R 11〜15at%(R:Yを含む希土類元素の少なくとも1種で、Pr又はNdの1種または2種をRのうち50at%以上含有)、T76〜84at%(T:FeまたはFeの一部を50at%以下のCoで置換)、M 0.05〜5at%(M:Ga、Al、Zr、Hf、Nb、W、Taのうち1種または2種以上)、Cu 0.01〜0.3at%、B 5〜9at%の合金鋳塊を、粗粉砕して平均粒度が50μm〜5000μmの少なくとも80vol%以上が正方晶構造のNdFe14B型化合物からなる粗粉砕粉となした後、前記粗粉砕粉を10kPa〜1000kPaのHガス中で、600℃〜750℃の温度域を昇温速度10℃/min〜200℃/min以上で昇温し、さらに750℃〜900℃に15分〜8時間加熱保持し、組織をR水素化物、T−B化合物、T相、R14B化合物の少なくとも4相の混合組織とした後、さらにArガスまたはHeガスによる絶対圧10Pa〜50kPaの減圧気流中にて700℃〜900℃に5分〜8時間の保持をする脱H処理を行い、ついで冷却して得られる平均結晶粒径が0.05μm〜1μmである粉末を粉砕し、平均粒度20〜400μmの磁気的に異方性を有する合金粉末を得る永久磁石用異方性希土類合金粉末の製造方法。R 11 to 15 at% (R: at least one rare earth element including Y, Pr or Nd containing one or two of R at 50 at% or more of R), T76 to 84 at% (T: one of Fe or Fe) Part is substituted with 50 at% or less Co), M 0.05 to 5 at% (M: one or more of Ga, Al, Zr, Hf, Nb, W, Ta), Cu 0.01 to 0 .3 at%, B 5-9 at% alloy ingot was coarsely pulverized into a coarsely pulverized powder composed of a Nd 2 Fe 14 B type compound having an average particle size of 50 μm to 5000 μm and a tetragonal structure of at least 80 vol% Thereafter, the coarsely pulverized powder is heated in a temperature range of 600 ° C. to 750 ° C. at a temperature increase rate of 10 ° C./min to 200 ° C./min or more in H 2 gas of 10 kPa to 1000 kPa, and further 750 ° C. to 900 ° C. 15 minutes to 8 hours After maintaining heat and making the structure a mixed structure of at least four phases of R hydride, TB compound, T phase, and R 2 T 14 B compound, a reduced pressure air flow of 10 Pa to 50 kPa in absolute pressure by Ar gas or He gas In the inside, the de-H 2 treatment is performed at 700 ° C. to 900 ° C. for 5 minutes to 8 hours, and then the powder having an average crystal grain size of 0.05 μm to 1 μm obtained by cooling is crushed to obtain an average particle size The manufacturing method of the anisotropic rare earth alloy powder for permanent magnets which obtains the alloy powder which has magnetic anisotropy of 20-400 micrometers.
JP14358097A 1997-05-15 1997-05-15 Method for producing anisotropic rare earth alloy powder for permanent magnet Expired - Lifetime JP3634565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14358097A JP3634565B2 (en) 1997-05-15 1997-05-15 Method for producing anisotropic rare earth alloy powder for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14358097A JP3634565B2 (en) 1997-05-15 1997-05-15 Method for producing anisotropic rare earth alloy powder for permanent magnet

Publications (2)

Publication Number Publication Date
JPH10317003A JPH10317003A (en) 1998-12-02
JP3634565B2 true JP3634565B2 (en) 2005-03-30

Family

ID=15342050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14358097A Expired - Lifetime JP3634565B2 (en) 1997-05-15 1997-05-15 Method for producing anisotropic rare earth alloy powder for permanent magnet

Country Status (1)

Country Link
JP (1) JP3634565B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478889B2 (en) 1999-12-21 2002-11-12 Sumitomo Special Metals Co., Ltd. Iron-base alloy permanent magnet powder and method for producing the same
JP6380750B2 (en) * 2014-04-15 2018-08-29 Tdk株式会社 Permanent magnet and variable magnetic flux motor
CN106673148B (en) * 2017-01-19 2019-03-29 万明蓉 A kind of high efficient magnetizing device
CN107195413A (en) * 2017-05-24 2017-09-22 安徽省瀚海新材料股份有限公司 A kind of sintering process for preventing bulk sintered NdFeB from ftractureing
CN108281246B (en) * 2018-02-23 2020-08-25 金力永磁(宁波)科技有限公司 High-performance sintered neodymium-iron-boron magnet and preparation method thereof

Also Published As

Publication number Publication date
JPH10317003A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
CN108630371B (en) High-thermal-stability rare earth permanent magnet material, preparation method thereof and magnet containing same
JP5288277B2 (en) Manufacturing method of RTB-based permanent magnet
JPH09165601A (en) Anisotropic rare earth alloy powder for permanent magnet and production of anisotropic bonded magnet
EP0633582B1 (en) Rare earth magnetic powder, method of its manufacture
JP2001076917A (en) Manufacture of anisotropic rare-earth magnet powder
JP3540438B2 (en) Magnet and manufacturing method thereof
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP2011049440A (en) Method for manufacturing r-t-b based permanent magnet
JP3634565B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3623571B2 (en) Method for producing RTB-based anisotropic bonded magnet
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
EP2645381B1 (en) Process for producing R-T-B-based rare earth magnet particles
JP2000219942A (en) Alloy thin strip for rare earth magnet, alloy fine powder and their production
US6955729B2 (en) Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet
JP3667783B2 (en) Method for producing raw powder for anisotropic bonded magnet
JP3710837B2 (en) Rare earth alloy ingot for permanent magnet, alloy powder and method for producing bonded magnet
JPH10172850A (en) Production of anisotropic permanent magnet
JPH10189319A (en) Manufacture of material powder for anisotropic permanent magnet
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2708578B2 (en) Bonded magnet
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JP2978004B2 (en) Method for producing rare earth composite magnet having magnetic anisotropy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

EXPY Cancellation because of completion of term