JP3630299B2 - Method for manufacturing endless ring for metal belt of continuously variable transmission - Google Patents
Method for manufacturing endless ring for metal belt of continuously variable transmission Download PDFInfo
- Publication number
- JP3630299B2 JP3630299B2 JP2000222209A JP2000222209A JP3630299B2 JP 3630299 B2 JP3630299 B2 JP 3630299B2 JP 2000222209 A JP2000222209 A JP 2000222209A JP 2000222209 A JP2000222209 A JP 2000222209A JP 3630299 B2 JP3630299 B2 JP 3630299B2
- Authority
- JP
- Japan
- Prior art keywords
- nitriding
- endless ring
- treatment
- metal belt
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Articles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、例えば自動車等に使用されるベルト式無段変速機における金属ベルトの構成部品として用いられる金属ベルト用無端リングの製造方法に関するものである。
【0002】
【従来の技術】
上記のようなベルト式無段変速機に用いられる金属ベルトは、図1に示すような形状を有し、例えば約400枚の金属ブロックBを約9枚程度積層された2組の金属製無端リングRで無端状に連結したものであって、当該無端リングRは、動力伝達に伴う高い引張強度と、プーリーに巻き付くことによって生ずる繰り返し曲げ応力に耐え得る疲労強度が要求されることから、無端リングRには、超強力鋼として知られるマルエージング鋼が用いられ、さらに窒化処理が行われている。
【0003】
このマルエージング鋼には、窒化処理するに際して、酸化による不働態皮膜が形成されるため、窒素の浸入が妨害され、均一な窒化処理が困難であるという問題があったが、これについては、例えば特開平11−229113号公報などにより、均一な窒化方法が提案されている。
【0004】
一方、このような金属ベルト用無端リングは、上記のように10枚前後のリングが積層されて使用されるため、リングの窒化処理前後の周長伸び量のばらつきを小さくする必要がある。このため、従来では、ガス窒化に際してアンモニア濃度を薄くして窒素の侵入量を少なくし、窒化深さを浅くようにした、特開昭59−80772号公報に記載されたマルエージング鋼の窒化処理方法が良いとされていた。
【0005】
【発明が解決しようとする課題】
近年、エンジンの高出力化や、小型軽量化のニーズが高まっており、このような要求を満たすために、金属ベルトのさらなる高強度化が望まれているが、素材金属については、実用材料の中でも最高強度を有するマルエージング鋼を使用しているので、材料面での対応は限界と考えざるを得ず、窒化などの表面硬化処理による高強度化を図ることが望ましいと言える。
【0006】
しかしながら、前述のような周長ばらつきの問題から、窒化深さの浅い窒化処理しか検討されておらず、高トルク化への対応としては、無端リングの板厚を増したり、使用枚数を多くしたりする対策を採らざるを得ないという問題があった。
【0007】
【発明の目的】
本発明は、従来の金属ベルト用無端リングにおける上記課題に鑑みてなされたものであって、疲労強度に優れ、しかも窒化処理に基づく周長ばらつき量の少ない無段変速機の金属ベルト用無端リングの製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明に係わる無段変速機の金属ベルト用無端リングの製造方法は、18%Ni系マルエージング鋼からなる板厚0.1〜0.3mmの無端リングを500Hv以上の硬さに時効熱処理したのち、当該リングに表面における窒素濃度が0.5%以上、窒素の浸入深さが板厚中心までの距離の20〜50%、かつ圧縮残留応力値が600MPa以上となる窒化処理を施す構成とし、当該金属ベルト用無端リングの製造方法実施の一形態として請求項2に係わる製造方法においては、窒化処理がアンモニアガスを用いたガス窒化またはガス軟窒化である構成としており、無段変速機の金属ベルト用無端リングの製造方法におけるこのような構成を前述した従来の課題を解決するための手段としたことを特徴としている。
【0009】
【発明の作用】
本発明に係わる無段変速機の金属ベルト用無端リングは、図2に示すような工程によって製造される。
【0010】
すなわち、例えば、約0.3mmの板厚に圧延された18%Ni系マルエージング鋼粗材をレーザビームあるいはプラズマビーム溶接によって環状に接合した後、800〜850℃に加熱して固溶化処理を行い、次いで板幅12.5mmに切断する。そしてバレル研磨の後、およそ板厚0.18mm、周長700mmにリング圧延し、800〜850℃に加熱して再度固溶化処理を施す。そして、寸法矯正を行うと共に、480〜510℃に加熱することにより時効硬化処理を実施した後、450℃前後の温度で10〜60分程度の窒化処理を行う。
【0011】
なお、本発明において使用する18%Ni系マルエージング鋼とは、質量比で、C:0.03%以下、Si:0.1%以下、Mn:0.1%以下、Ni:17〜19%、Mo:3〜5.5%、Co:7〜9.5%、Al:0.05〜0.2%、Ti:0.15〜0.8%の化学成分のものを意味する。
【0012】
図5は、上記したように、板厚0.3mmの18%Ni系マルエージング鋼を用いて、プラズマ溶接、固溶化熱処理および圧延によって、板厚:0.18mm、幅:12.5mm、リング周長:700mmの無端リングに加工した後、図3(a)に示すように、加熱温度:480℃、保持時間:3時間の時効処理を行い、Hv570の硬度に調整した後、図3(b)に示すように、温度を450℃に固定し、保持時間を種々に変化させて窒化処理を行った場合の無端リングの疲労強度を板厚の中心部までの距離(板厚の1/2)に対する窒化深さの割合(%)で整理した結果を示すものであって、疲労強度は、窒化深さ約28%、すなわち無端リングの両表面から約0.025mmの深さに窒化層が形成されたリング(処理時間15分)においてピーク値を示し、板厚中心に対する窒化深さが20%〜50%の範囲に最適値を有することが判明した。
【0013】
なお、図5において、窒化深さ0%のものは窒化処理を行っていないものである一方、窒化深さ60%のものにおいては、最表面に白色層と呼ばれる脆弱な化合物層が形成されており、いずれも疲労強度が低下することが判る。
【0014】
また、上記窒化処理に際しては、不働態皮膜を除去するため、炉内を450℃に昇温して、残留アンモニア濃度40%に雰囲気保持した後、リングを炉内に装入し、塩化メチレンを10mlから40ml程度注入して窒化処理を行うようにした。さらに、疲労強度については、図4に示すように、160mm径の大ローラL1 と80mm径の小ローラL2 に得られた無端リングを掛装し、5000Nの一定引張り荷重を加えた状態でリングを1000rpmで回転させたときの破断までの繰り返し数(回転数)によって評価した。
【0015】
図6は、白色層の形成によって疲労強度が低下するという上記の結果に基づいて、残留アンモニア濃度40%のガス窒化処理における白色層の形成領域を窒化処理温度と処理時間について調べたものであり、例えば、処理温度が450℃の場合には80分以上の処理、処理温度が500℃の場合には50分以上の処理を避けるべきであることが判る。なお、このグラフは、残留アンモニア濃度が40%のときの結果であって、アンモニア濃度によって白色層の形成領域がずれることに留意する必要がある。
【0016】
また、図7は、上記によって得られた各無端リングにおける窒化深さと周長変化量との関係を図示したものであって、窒素侵入量の増加に伴って周長変化量も増加するものの、窒素濃度を高くしても窒化後のリング周長のばらつきが大きくなることはなく、窒化後のリング周長伸びが窒素量と強い相関があることから、周長伸びを窒素量によって予測することが可能になり、リング周長のばらつきの問題については解消できることが判明した。
【0017】
なお、本発明に係わる金属ベルト用無端リングの製造方法において、時効処理後の硬さを500Hv以上とするのは、内部硬さあるいは時効硬さが500Hvに満たない状態、すなわち十分に時効が進行していない状態で窒化処理を行うと、窒化層が脆くなり、十分な時効強度が得られないという不具合が生じることによる。
【0018】
また、窒化層の表面窒素濃度を0.5%以上としたのは、表面窒素濃度が0.5%を下回った場合には、十分な疲労強度を得るための表面硬さおよび圧縮残留応力が得られなくなることによる。
【0019】
そして、圧縮残留応力値を600MPa以上としたのも、圧縮残留応力値が600MPa未満となると、十分な疲労強度が得られなくなることに基づく。
【0020】
【発明の効果】
本発明の請求項1に係わる無段変速機の金属ベルト用無端リングの製造方法においては、18%Ni系マルエージング鋼からなる無端リングを500Hv以上の硬さに時効熱処理したのち、表面窒素濃度が0.5%以上、窒素の浸入深さが板厚中心までの距離の20〜50%、圧縮残留応力値が600MPa以上となる窒化処理を施すようにしているので、リングの周長伸びのばらつきを増大させることなく、金属ベルト用無端リングの引張および疲労強度を大幅に向上させることができ、当該製造方法の実施形態として請求項2にに係わる金属ベルト用無端リングの製造方法においては、窒化処理として、アンモニアガスを用いたガス窒化処理、あるいはガス軟窒化処理を施すようにしているので、窒素濃度や窒化深さのコントロールが比較的容易であるとともに、ガス軟窒化処置においては比較的低温で処理ができることから、歪みを抑えることができるという優れた効果がもたらされる。
【0021】
【実施例】
以下、本発明を実施例に基づいて、さらに具体的に説明する。
【0022】
図2に示したように、板厚0.3mmの18%Ni系マルエージング鋼に、プラズマ溶接、固溶化熱処理および圧延を施すことによって、板厚:0.18mm、幅:12.5mm、リング周長:700mmの無端リングに加工した。
【0023】
次に、図3(a)ないし(c)に示すヒートパターンを組み合わせた種々の条件のもとに、時効処理および窒化処理を行い、得られた無端リングの時効硬さ、窒化処理後の圧縮残留応力、表面硬度、内部硬さ、表面窒素濃度および窒化深さをそれぞれ測定すると共に、図4に示した方法(引張り荷重:5000N、回転速度:1000rpm)によって各無端リングの疲労強度を調査した。
【0024】
なお、窒化処理に際しては、リング表面の不働態皮膜を除去するために、炉内昇温、雰囲気調整(残留アンモニア濃度40%)およびリング装入ののち、10mlから40ml程度の塩化メチレンを炉内に注入した。
【0025】
これらの結果を表1に合わせて示す。
【0026】
【表1】
【0027】
表1に示すように、18%Ni系マルエージング鋼からなる無端リングに、3時間の時効熱処理、および窒化処理を施すことによって、内部硬さが500Hv以上であると共に、表面窒素濃度が0.5%以上、窒化深さが板厚中心までの距離の20〜50%の窒化層を備え、さらに600MPa以上の圧縮残留応力を有するようにした本発明A,B,C,Dに係わる金属ベルト用無端リングにおいては、いずれも極めて良好な疲労強度を備えていることが確認された。
【0028】
これに対して、窒化処理時間が8分と短く、表面窒素濃度が低く、窒化深さが浅い比較例E、逆に窒化処理時間が75分と長く、窒化深さが深い比較例F、および時効処理時間が1時間と短いために時効硬さが500Hvに満たない比較例Gの無端リングにおいては、いずれも十分な疲労強度が得られず、時効処理を窒化処理と同時(窒化しながら時効)に行った比較例Hにおいては、比較的高い圧縮残留応力が得られるものの、疲労強度はあまり高くないことが判明した。この理由は、必ずしも明確になっていないが、結晶粒界の母材中のチタンが窒素との析出物を作り、粒界強度が低下したことによるものと考えられる。また、窒化処理を行わず、時効処理のみを施した比較例Iの無端リングにおいては、圧縮残量応力が低く、比較例の中でも最低レベルの疲労強度を示すことが確認された。
【図面の簡単な説明】
【図1】本発明に係わる無端リングを用いた無段変速機用金属ベルトの形状および構造を示す概略説明図である。
【図2】本発明に係わる無端リングの製造工程の一例を示す説明図である。
【図3】(a)時効処理におけるヒートパターンの一例を示す説明図である。
(b)窒化処理におけるヒートパターンの一例を示す説明図である。
(c)時効処理と窒化処理を同時に行う場合のヒートパターンを示す説明図である。
【図4】無端リングの疲労試験方法を示す概略説明図である。
【図5】無端リングの窒化深さと疲労強度の関係を示すグラフである。
【図6】白色層形成に及ぼす窒化時間と窒化温度の関係を示すグラフである。
【図7】無端リングの窒化深さと周長変化量の関係を示すグラフである。
【符号の説明】
R 金属ベルト用無端リング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an endless ring for a metal belt used as a component part of a metal belt in a belt-type continuously variable transmission used in, for example, an automobile.
[0002]
[Prior art]
The metal belt used in the belt-type continuously variable transmission as described above has a shape as shown in FIG. 1, for example, two sets of metal endless layers in which about nine metal blocks B are laminated, for example. Since the ring R is connected endlessly, the endless ring R is required to have high tensile strength associated with power transmission and fatigue strength that can withstand repeated bending stress caused by winding around the pulley. For the endless ring R, maraging steel known as super-strength steel is used, and nitriding treatment is further performed.
[0003]
This maraging steel has a problem that, when nitriding, a passive film is formed by oxidation, so that nitrogen intrusion is hindered and uniform nitriding is difficult. JP-A-11-229113 proposes a uniform nitriding method.
[0004]
On the other hand, such an endless ring for a metal belt is used by stacking around 10 rings as described above, and therefore, it is necessary to reduce the variation in the circumferential elongation before and after the nitriding treatment of the ring. For this reason, conventionally, the nitriding treatment of maraging steel described in Japanese Patent Application Laid-Open No. 59-80772, in which the ammonia concentration is reduced during gas nitriding to reduce the amount of nitrogen penetration and the nitriding depth is shallow. The method was considered good.
[0005]
[Problems to be solved by the invention]
In recent years, there has been a growing need for higher engine output and smaller and lighter weights. To meet these demands, metal belts are required to have higher strength. Above all, since maraging steel having the highest strength is used, it is necessary to consider the limit in terms of material, and it can be said that it is desirable to increase the strength by surface hardening treatment such as nitriding.
[0006]
However, only the nitriding treatment with a shallow nitriding depth has been studied due to the above-mentioned circumferential length variation problem. To cope with higher torque, the thickness of the endless ring is increased or the number of used sheets is increased. There was a problem that they had to take countermeasures.
[0007]
OBJECT OF THE INVENTION
The present invention has been made in view of the above-described problems in conventional endless rings for metal belts, and has excellent fatigue strength and less perimeter variation based on nitriding treatment. It aims at providing the manufacturing method of.
[0008]
[Means for Solving the Problems]
The manufacturing method of an endless ring for a metal belt of a continuously variable transmission according to the present invention is an aging heat treatment of an endless ring made of 18% Ni maraging steel and having a thickness of 0.1 to 0.3 mm to a hardness of 500 Hv or more. After that, the ring is subjected to a nitriding treatment in which the nitrogen concentration on the surface is 0.5% or more, the nitrogen penetration depth is 20 to 50% of the distance to the center of the plate thickness, and the compressive residual stress value is 600 MPa or more. In the manufacturing method according to claim 2 as an embodiment of the manufacturing method of the endless ring for metal belt, the nitriding treatment is gas nitriding or gas soft nitriding using ammonia gas. Such a configuration in the method for manufacturing an endless ring for a metal belt is a means for solving the above-described conventional problems.
[0009]
[Effects of the Invention]
An endless ring for a metal belt of a continuously variable transmission according to the present invention is manufactured by a process as shown in FIG.
[0010]
That is, for example, 18% Ni-based maraging steel rolled to a thickness of about 0.3 mm is joined annularly by laser beam or plasma beam welding, and then heated to 800 to 850 ° C. for solution treatment. And then cut to a plate width of 12.5 mm. Then, after barrel polishing, it is ring-rolled to a plate thickness of about 0.18 mm and a circumferential length of 700 mm, heated to 800 to 850 ° C., and subjected to a solid solution treatment again. And while performing dimension correction and performing an age hardening process by heating to 480-510 degreeC, the nitriding process is performed for about 10 to 60 minutes at the temperature of about 450 degreeC.
[0011]
The 18% Ni-based maraging steel used in the present invention is, by mass ratio, C: 0.03% or less, Si: 0.1% or less, Mn: 0.1% or less, Ni: 17 to 19 %, Mo: 3 to 5.5%, Co: 7 to 9.5%, Al: 0.05 to 0.2%, Ti: 0.15 to 0.8%.
[0012]
FIG. 5 shows a plate thickness of 0.18 mm, a width of 12.5 mm, and a ring formed by plasma welding, solution heat treatment and rolling using 18% Ni maraging steel having a plate thickness of 0.3 mm as described above. After processing into an endless ring with a circumference of 700 mm, as shown in FIG. 3A, an aging treatment of heating temperature: 480 ° C. and holding time: 3 hours was performed to adjust the hardness to Hv570, and then FIG. As shown in b), the fatigue strength of the endless ring when the temperature is fixed at 450 ° C. and the nitriding treatment is performed by changing the holding time in various ways is the distance to the center of the plate thickness (1/1 of the plate thickness). 2) shows the result of arrangement by the ratio (%) of the nitriding depth with respect to 2), and the fatigue strength is about 28% of the nitriding depth, that is, the nitrided layer has a depth of about 0.025 mm from both surfaces of the endless ring. In the ring (processing time 15 minutes) A peak value each, nitride depth to the thickness center was found to have an optimum value in the range of 20% to 50%.
[0013]
In FIG. 5, the nitriding depth of 0% is not subjected to nitriding treatment, whereas the nitriding depth of 60% has a brittle compound layer called a white layer formed on the outermost surface. It can be seen that the fatigue strength decreases.
[0014]
In the above nitriding treatment, in order to remove the passive film, the temperature inside the furnace was raised to 450 ° C. and the atmosphere was maintained at a residual ammonia concentration of 40%, and then the ring was placed in the furnace, and methylene chloride was removed. Nitriding was performed by injecting about 10 to 40 ml. Furthermore, as shown in FIG. 4, the fatigue strength is applied to the endless ring obtained by attaching a large roller L1 having a diameter of 160 mm and a small roller L2 having a diameter of 80 mm, and a constant tensile load of 5000 N is applied. Evaluation was made based on the number of repetitions (number of rotations) until breakage when rotating at 1000 rpm.
[0015]
FIG. 6 shows the nitriding temperature and processing time of the white layer formation region in the gas nitriding treatment with a residual ammonia concentration of 40%, based on the above result that the fatigue strength is reduced by the formation of the white layer. For example, it is understood that when the processing temperature is 450 ° C., processing for 80 minutes or longer should be avoided, and when the processing temperature is 500 ° C., processing for 50 minutes or longer should be avoided. Note that this graph is a result when the residual ammonia concentration is 40%, and it should be noted that the formation region of the white layer is shifted depending on the ammonia concentration.
[0016]
FIG. 7 illustrates the relationship between the nitriding depth and the circumferential length change amount in each endless ring obtained as described above, and the circumferential length change amount increases as the nitrogen penetration amount increases. Even if the nitrogen concentration is increased, the variation in ring circumference after nitriding does not increase, and the ring circumference elongation after nitriding has a strong correlation with the nitrogen content. It became clear that the problem of variation in ring circumference could be solved.
[0017]
In the method for manufacturing an endless ring for a metal belt according to the present invention, the hardness after aging treatment is 500 Hv or more because the internal hardness or the aging hardness is less than 500 Hv, that is, the aging sufficiently proceeds. If the nitriding treatment is performed in a state in which the nitriding treatment is not performed, the nitrided layer becomes brittle and a sufficient aging strength cannot be obtained.
[0018]
In addition, the surface nitrogen concentration of the nitrided layer is set to 0.5% or more because when the surface nitrogen concentration is less than 0.5%, the surface hardness and compressive residual stress for obtaining sufficient fatigue strength are increased. By not getting.
[0019]
The reason why the compressive residual stress value is set to 600 MPa or more is that sufficient fatigue strength cannot be obtained when the compressive residual stress value is less than 600 MPa.
[0020]
【The invention's effect】
In the method of manufacturing an endless ring for a metal belt of a continuously variable transmission according to
[0021]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
[0022]
As shown in FIG. 2, by applying plasma welding, solution heat treatment and rolling to 18% Ni-based maraging steel having a plate thickness of 0.3 mm, plate thickness: 0.18 mm, width: 12.5 mm, ring Peripheral length: processed into an endless ring of 700 mm.
[0023]
Next, aging treatment and nitriding treatment are performed under various conditions combined with the heat patterns shown in FIGS. 3A to 3C, and the aging hardness of the obtained endless ring and compression after nitriding treatment are performed. Residual stress, surface hardness, internal hardness, surface nitrogen concentration and nitriding depth were measured, and the fatigue strength of each endless ring was investigated by the method shown in FIG. 4 (tensile load: 5000 N, rotational speed: 1000 rpm). .
[0024]
In the nitriding treatment, in order to remove the passive film on the ring surface, after raising the temperature in the furnace, adjusting the atmosphere (
[0025]
These results are also shown in Table 1.
[0026]
[Table 1]
[0027]
As shown in Table 1, by subjecting an endless ring made of 18% Ni-based maraging steel to an aging heat treatment and nitriding treatment for 3 hours, the internal hardness is 500 Hv or more and the surface nitrogen concentration is 0.1. A metal belt according to the present invention A, B, C, D having a nitrided layer having a nitriding depth of 20 to 50% of the distance to the center of the plate thickness and having a compressive residual stress of 600 MPa or more. It was confirmed that all endless rings for use had extremely good fatigue strength.
[0028]
In contrast, Comparative Example E, in which the nitriding time is as short as 8 minutes, the surface nitrogen concentration is low, and the nitriding depth is shallow, on the contrary, Comparative Example F in which the nitriding time is as long as 75 minutes and the nitriding depth is deep, and In the endless ring of Comparative Example G in which the aging hardness is less than 500 Hv because the aging treatment time is as short as 1 hour, sufficient fatigue strength is not obtained, and the aging treatment is performed simultaneously with nitriding treatment (aging while nitriding) In Comparative Example H performed in (1), it was found that although a relatively high compressive residual stress was obtained, the fatigue strength was not so high. Although this reason is not necessarily clear, it is considered that titanium in the base material of the crystal grain boundary forms a precipitate with nitrogen and the grain boundary strength is lowered. Further, it was confirmed that the endless ring of Comparative Example I in which only the aging treatment was performed without performing the nitriding treatment had a low compressive residual stress and exhibited the lowest level of fatigue strength among the Comparative Examples.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing the shape and structure of a metal belt for a continuously variable transmission using an endless ring according to the present invention.
FIG. 2 is an explanatory view showing an example of a manufacturing process of an endless ring according to the present invention.
FIG. 3A is an explanatory diagram showing an example of a heat pattern in an aging treatment.
(B) It is explanatory drawing which shows an example of the heat pattern in a nitriding process.
(C) It is explanatory drawing which shows a heat pattern in the case of performing an aging treatment and a nitriding treatment simultaneously.
FIG. 4 is a schematic explanatory diagram showing a fatigue test method for an endless ring.
FIG. 5 is a graph showing the relationship between the nitriding depth of an endless ring and the fatigue strength.
FIG. 6 is a graph showing the relationship between nitriding time and nitriding temperature affecting white layer formation.
FIG. 7 is a graph showing the relationship between the nitriding depth of an endless ring and the amount of change in circumference.
[Explanation of symbols]
R Endless ring for metal belt
Claims (2)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000222209A JP3630299B2 (en) | 2000-07-24 | 2000-07-24 | Method for manufacturing endless ring for metal belt of continuously variable transmission |
EP01117289.7A EP1176224B1 (en) | 2000-07-24 | 2001-07-17 | Nitrided maraging steel and method of manufacturing thereof |
US09/907,455 US6733600B2 (en) | 2000-07-24 | 2001-07-18 | Nitrided maraging steel and method of manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000222209A JP3630299B2 (en) | 2000-07-24 | 2000-07-24 | Method for manufacturing endless ring for metal belt of continuously variable transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002038251A JP2002038251A (en) | 2002-02-06 |
JP3630299B2 true JP3630299B2 (en) | 2005-03-16 |
Family
ID=18716480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000222209A Expired - Fee Related JP3630299B2 (en) | 2000-07-24 | 2000-07-24 | Method for manufacturing endless ring for metal belt of continuously variable transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3630299B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010002165A (en) * | 2008-05-22 | 2010-01-07 | Air Water Inc | Thermal treatment apparatus |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3823875B2 (en) * | 2002-05-14 | 2006-09-20 | 日産自動車株式会社 | Nitriding method for maraging steel and belt for belt-type continuously variable transmission nitrided by the method |
JP2004043962A (en) * | 2002-05-14 | 2004-02-12 | Nissan Motor Co Ltd | Surface hardening treatment method for maraging steel and belt for belt type continuously variable transmission produced by the method |
JP4531448B2 (en) * | 2004-06-07 | 2010-08-25 | 山陽特殊製鋼株式会社 | Mold nitriding method |
EP1831588B1 (en) * | 2004-12-24 | 2012-12-12 | Robert Bosch GmbH | Method for manufacturing push belts of distinguishable type and a composition of push belt types |
JP4929276B2 (en) * | 2005-04-01 | 2012-05-09 | ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング | Quality monitoring method in push belt manufacturing process |
WO2009134119A1 (en) | 2008-04-28 | 2009-11-05 | Robert Bosch Gmbh | Drive belt ring component and manufacturing method and maraging steel base material therefor |
JP6008976B2 (en) * | 2011-11-30 | 2016-10-19 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | Heat treatment process in manufacturing method of drive belt metal ring element |
NL1039971C2 (en) * | 2012-12-24 | 2014-06-25 | Bosch Gmbh Robert | Heat treatment process in a manufacturing method of a ring set for a drive belt. |
NL1039974C2 (en) * | 2012-12-27 | 2014-06-30 | Bosch Gmbh Robert | Drive belt provided with a ring set with steel rings having a nitride layer and method for determining a thickness of such a nitride layer. |
NL1041468B1 (en) * | 2015-09-08 | 2017-03-22 | Bosch Gmbh Robert | Metal ring component of a drive belt for a continuously variable transmisson. |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07116585B2 (en) * | 1986-03-25 | 1995-12-13 | 株式会社豊田中央研究所 | Gas nitriding method for thin sheet made of maraging steel |
JPH01142022A (en) * | 1987-11-27 | 1989-06-02 | Sumitomo Metal Ind Ltd | Manufacture of seamless metallic belt |
JPH02154834A (en) * | 1988-12-06 | 1990-06-14 | Sumitomo Metal Ind Ltd | Manufacture of metal belt for power transmission |
-
2000
- 2000-07-24 JP JP2000222209A patent/JP3630299B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010002165A (en) * | 2008-05-22 | 2010-01-07 | Air Water Inc | Thermal treatment apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2002038251A (en) | 2002-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1055738B1 (en) | Method of manufacturing laminated ring and heat treatment apparatus for use in such method | |
JP3630299B2 (en) | Method for manufacturing endless ring for metal belt of continuously variable transmission | |
US6733600B2 (en) | Nitrided maraging steel and method of manufacture thereof | |
KR101546561B1 (en) | Heat treatment process for a drive belt metal ring component | |
JP4166041B2 (en) | Sintered sprocket and manufacturing method thereof | |
US6379473B1 (en) | Method of manufacturing laminated ring using molten salt composition | |
JP2020504784A (en) | Metal ring member of drive belt for continuously variable transmission and method of manufacturing the same | |
KR20110000568A (en) | Drive belt ring component and manufacturing method and maraging steel base material therefor | |
JPH0971841A (en) | Steel for soft-nitriding | |
JP5784144B2 (en) | Heat treatment process for manufacturing process of drive belt metal ring components | |
JP5701193B2 (en) | CVT ring member manufacturing method, CVT ring member and CVT belt | |
JP3823875B2 (en) | Nitriding method for maraging steel and belt for belt-type continuously variable transmission nitrided by the method | |
JP2018172749A (en) | Steel for cvt ring, and cvt ring material for nitriding, and method for manufacturing the same, and cvt ring member and method for manufacturing the same | |
JP2000337453A (en) | Manufacture of endless metallic belt | |
US20190331197A1 (en) | Endless metal ring and method of producing the same | |
JP2018172751A (en) | Cvt ring material for nitriding, and cvt ring member, and method for manufacturing the same | |
JPH1025539A (en) | Press formed member with high fatigue strength | |
JP5882357B2 (en) | Heat treatment process for manufacturing drive belt metal ring components | |
JP3986996B2 (en) | Method for nitriding metal ring | |
JP3784618B2 (en) | Manufacturing method of laminated ring | |
JP6008976B2 (en) | Heat treatment process in manufacturing method of drive belt metal ring element | |
JP5633466B2 (en) | Continuously variable transmission belt and manufacturing method thereof | |
JP6934934B2 (en) | Flexible steel ring formed from maraging steel and provided with a nitrided surface layer | |
JP4443673B2 (en) | Method for producing endless metal belt | |
JP2019119898A (en) | Cvt ring raw material, cvt ring member, and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040520 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3630299 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071224 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071224 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071224 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081224 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081224 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101224 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111224 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111224 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111224 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121224 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121224 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131224 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |