Nothing Special   »   [go: up one dir, main page]

JP3626319B2 - Reaction method and apparatus using high-temperature and high-pressure fluid - Google Patents

Reaction method and apparatus using high-temperature and high-pressure fluid Download PDF

Info

Publication number
JP3626319B2
JP3626319B2 JP08009397A JP8009397A JP3626319B2 JP 3626319 B2 JP3626319 B2 JP 3626319B2 JP 08009397 A JP08009397 A JP 08009397A JP 8009397 A JP8009397 A JP 8009397A JP 3626319 B2 JP3626319 B2 JP 3626319B2
Authority
JP
Japan
Prior art keywords
temperature
reaction
pressure
state
superheated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08009397A
Other languages
Japanese (ja)
Other versions
JPH10272352A (en
Inventor
正澄 金澤
久俊 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tadano Ltd
Original Assignee
Tadano Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tadano Ltd filed Critical Tadano Ltd
Priority to JP08009397A priority Critical patent/JP3626319B2/en
Publication of JPH10272352A publication Critical patent/JPH10272352A/en
Application granted granted Critical
Publication of JP3626319B2 publication Critical patent/JP3626319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、高温高圧流体を利用した反応方法およびその装置に関するものである。
【0002】
【従来の技術】
従来から冷媒として使用されているフロンガスや、消化剤として使用されているハロンガスは環境汚染物質であることが指摘されており、これら物質の無害化処理が地球環境を守るという観点から全世界的な関心事となっている。
【0003】
ところが、上記したフロンガス、ハロンガス等は簡単には無害物質に分解することが難しく、従来から各種の試みがなされてきている。例えば、フロンガス処理方法に関しては、過熱蒸気分解法、焼却法、爆発反応分解法、微生物分解法、超音波分解法、プラズマ反応法等が提案されている。
【0004】
上記した処理方法の中で、過熱蒸気分解法は、フロンガスに限定することなく、クロロベンゼン等の有機溶剤、廃油、ダイオキシン、PCB、各種プラスチック、各種ゴム、糞尿、木材、紙等の産業廃棄物を主体とする被分解物質全般に対して汎用性のある処理方法として注目されている。この過熱蒸気分解法によれば、例えばフロンガスを弗化水素HF、塩化水素HCl、二酸化炭素CO等に分解可能である。
【0005】
上記過熱蒸気分解法においては、過熱水蒸気とフロンガスとの混合物を所定の温度条件のもとに所定時間保持することによりフロンガスを加水分解した後に冷却し、さらに中和等の処理により無害化することとされているが、上記加水分解反応は高温高圧な条件下で行ったとしても、ある程度長い反応時間が必要となる。
【0006】
【発明が解決しようとする課題】
ところで、近年、難分解物質の分解法として超臨界流体を利用した分解法が注目されてきている。この超臨界流体とは、臨界点(即ち、気液平行状態が成り立っている領域の上限)を超えた温度、圧力条件下にある流体のことであり、気体と液体の中間の性質を有している。この超臨界流体の特徴は、臨界点近傍で温度あるいは圧力のわずかな変化によって密度が大幅に変わる、分子量が大きく高沸点のものも比較的よく溶解する、粘度が気体並に小さく、拡散係数が液体に比べて大幅に大きい点にある。
【0007】
上記のような超臨界流体の特有の性質を利用すれば、難分解物質の分解あるいは化学物質の合成を効率よく行うことができるが、超臨界状態を現出するためには、例えば溶媒と被分解物質とを高温・高圧な条件下におく必要があり、装置の大型化、高コスト化を招くこととなる。
【0008】
本願発明は、上記の点に鑑みてなされたもので、過熱蒸気法と超臨界流体あるいは超臨界流体に近似した高温高圧流体を用いる方法とを併用することにより反応時における温度・圧力条件を低く設定しても反応速度を速めることができるようにすることを目的とするものである。
【0009】
【課題を解決するための手段】
本願発明の方法では、上記課題を解決するための方法として、溶媒と反応物質とを所定温度に加熱して得られる過熱混合蒸気に対して所定の周波数と出力を有する超音波を照射することにより、前記過熱混合蒸気中に部分的な高温高圧流体を生成し、該高温高圧流体により与えられる活性化エネルギーにより前記過熱混合蒸気に所定の化学反応を起こさせるようにしている。
【0010】
上記のようにしたことにより、超音波の音圧により過熱混合蒸気に高圧部分と低圧部分とが出現し、これが交互に繰り返されることとなる。すると、高圧部分は超臨界状態あるいは超臨界状態に近い高温高圧状態となる一方、低圧部分は真空状態となる。この状態が短時間で反転するから分子の移動速度が大きくなり、分子同士の衝突、分裂作用が連続的に発生することとなる。従って、活性化のためのエネルギーが与えられることとなり、分子同士の衝突、分裂が基本である物質の化学反応が大幅に加速されることとなる。
【0011】
しかも、過熱混合蒸気全体を超臨界状態あるいは超臨界状態に近い高温高圧状態とすることなく、超音波照射による高圧部分のみで超臨界状態あるいは超臨界状態に近い高温高圧状態が現出できることとなるため、反応に要する温度・圧力条件を低く設定できることとなる。
【0012】
本願発明の装置は、上記課題を解決するために、溶媒と反応物質とを所定温度に加熱する過熱蒸気生成手段と、該過熱蒸気生成手段により得られた過熱混合蒸気を反応させる反応手段と、該反応手段内において前記過熱混合蒸気に対して所定の周波数と出力を有する超音波を照射する超音波照射手段とを備えて構成されている。
【0013】
上記のように構成したことにより、超音波照射手段により照射された超音波の音圧により反応手段内において過熱混合蒸気に高圧部分と低圧部分とが出現し、これが交互に繰り返されることとなる。すると、高圧部分は超臨界状態あるいは超臨界状態に近い高温高圧状態となる一方、低圧部分は真空状態となる。この状態が短時間で反転するから分子の移動速度が大きくなり、分子同士の衝突、分裂作用が連続的に発生することとなる。従って、分子同士の衝突、分裂が基本である物質の化学反応が大幅に加速されることとなる。
【0014】
しかも、過熱混合蒸気全体を超臨界状態あるいは超臨界状態に近い高温高圧状態とすることなく、超音波照射による高圧部分のみで超臨界状態あるいは超臨界状態に近い高温高圧状態が現出できることとなるため、反応に要する温度・圧力条件を低く設定できることとなる。
【0015】
【発明の実施の形態】
以下、添付の図面を参照して、本願発明の好適な実施の形態について詳述する。
【0016】
第1の実施の形態
本実施の形態にかかる高温高圧流体を利用した反応方法は、図1に示すような装置を用いて実施されるものであり、フロン等の難分解物質を分解するために用いられる。
【0017】
なお、本方法が対象とする難分解物質は、有機化合物で安定なものをいうが、特に限定はなく、フロンガス、トリクレン等の有機溶剤、廃油、ダイオキシン、PCB、糞尿等の産業廃棄物、木材、紙、ゴム等あらゆるものを対象とし、その状態は、固体、液体、気体を問わず特に限定がない。なお、主として▲1▼有機化合物で有用ではあるが使用後の処理が困難なものや有害なもの、例えばフロン(ハロゲン炭化水素)、クロロベンゼン、問題となつているダイオキシン等であり、現在使用されていないがPCB等であり、又▲2▼有機化合物で有用であるが極めて安定であって、有害ではないが処理の困難なもの、例えばPE、プラスチック、ゴム等である。
【0018】
本実施の形態において使用される溶媒は、加熱によって蒸気となるものであればどのようなものであってもよいが、最適なものは水である。また、苛性ソーダ液、過酸化水素水も使用できる。
【0019】
図1において、符号1は被分解物質(例えば、フロン)を貯溜する被分解物質タンク、2は溶媒(例えば、水)を貯溜する溶媒タンク、3,4は被分解物質および溶媒を圧送するための流体ポンプ、5は過熱蒸気生成手段として作用する蒸気発生装置であり、被処理液および溶媒は流体ポンプ3,4により蒸気発生装置5内に圧送され、該蒸気発生装置5内においてヒータ6により加熱されて過熱蒸気とされる。
【0020】
前記蒸気発生装置5において生成された過熱蒸気は、配管を介して反応手段として作用する反応装置7に送られる。該反応装置7は、所定の温度を保って被分解物質と溶媒との過熱蒸気を所定時間経過させて通過させることにより分解処理するためのものであり、過熱蒸気を所定の反応時間保持できる構成のものであればよい。符号8は反応装置7に温度を維持するためのヒータである。
【0021】
前記反応装置7内は加圧されておらず、排出口側は大気に開放されている。つまり、注入口側の配管の圧力は管路による圧損のみの圧力勾配となっているのである。なお、反応装置7内は、過熱蒸気によって僅かな圧力が自然に発生し、圧力勾配となって被分解物質を移送する。
【0022】
しかして、この反応装置7には、該反応装置7内において過熱蒸気に対して所定の周波数と出力とを有する超音波を照射する超音波照射手段9が付設されている。該超音波照射手段9は、超音波発振用の発振子11を有する超音波ホーン10と、前記発振子11を発振させる超音波発振器12とからなっている。
【0023】
前記超音波照射手段9により超音波の照射が行われると、前記反応装置7内において、図2に示すように、超音波定在波Fが形成されることとなる。例えば図2における点Aにおける音圧Psの時間的変化を見てみると、図3に示すように、音圧Psが臨界圧力Pcを超えている部分(即ち、斜線部)Xは超臨界状態となるとともに、反対側(即ち、音圧PsがP以下の部分)は真空状態となる。この状態が短時間(即ち、超音波の周期)で反復されるため、反応装置7内に存在する分子(即ち、被分解物質および溶媒の分子)は大きな加速度を与えられることとなり、大きな速度で分子が衝突を繰り返す。つまり、高圧部分の温度、圧力状態が溶媒の超臨界あるいは超臨界に近い高温高圧条件を満足するように設定すれば、反応装置7内に超臨界状態あるいは超臨界状態に近い高温高圧状態を容易に確保できることとなり、超臨界状態あるいは超臨界状態に近い高温高圧状態でしか得られないエネルギー状態が不連続的に得られるのである。
【0024】
ところで、超音波照射中におけるt時とt時(t<t)における物質粒子の位置および超音波の状態は、図4(イ)および(ロ)に示す通りであり、粒子Kはa→b、c→b,dというように超音波の周期Tで繰り返し移動する。
【0025】
超音波の音圧Psは
Ps=2ωρAsin(2π/λ)x・sinωt
で示される。
【0026】
ここで、A:物質によって異なる定数
λ:波長
ω:角速度
x:位置
ρ:媒質密度
この時、x=0,λ/2,λ・・の時 P=0
x=λ/4,3λ/4・・の時 P=2ωρAで最大
又、音圧は、
=P/v=ρC (Pa・s/m=N・s/m
ここで、Z:固有音響インピーダンス
C:音速
ρ:密度
v:粒子速度
であり、強度との関係は
I=Pv=v (w/m
従って、必要な音圧が強度を決定し、発振子への入力電圧を決定すれば任意の圧力が得られる。
【0027】
又、超音波による圧縮は断熱圧縮であるから
【0028】
【数1】

Figure 0003626319
【0029】
ここで、k=Cp/Cv:比熱比である。
【0030】
上記式(1)あるいは式(2)が示す通りの温度上昇が得られるから、分解に必要な活性化エネルギーはさらに大きくなる。また、安定物質に変わる又は反応途中の物質は半周期で断熱膨張となるため急速冷却されることとなり、副生成物の発生も少なくなる。
【0031】
ところで、図5に示す模式的P−T線図によれば、超音波照射された過熱蒸気は、点Aの状態から点Cの状態を経て点Bの状態へと変化する。つまり、A→C→Bの過程での断熱圧縮と、B→C→Aの断熱膨張とを繰り返すこととなる。
【0032】
この時における化学反応の自由エネルギーGのプロフィールを見ると、図6に示すように、点Dの状態から点Eの状態を経て点Fの状態になり化学反応が終了する。ここで、G′が活性化エネルギーを示し、G−G=ΔGが自由エネルギー変化で負になる方向に進む。
【0033】
この活性化エネルギーG′は、化学反応が進むためには必ず必要であり、このエネルギーG′は、超臨界状態(即ち、図5の点B)でなくとも、超臨界状態に近い高温高圧状態(即ち、図5の点C)においても得られる場合がある。例えば、フロンなどは、超臨界状態に近い高温高圧状態でも十分に分解可能である。なお、クロロベンゼンなどは超臨界状態でないと分解できない。
【0034】
上記した活性化エネルギーG′(換言すれば、自由エネルギーGの増加dG)は、断熱変化では等エントロピー変化となるから、
dG=dH−TdS
で与えられる。
【0035】
ここで、dS=0であるから、dG=dHとなり、エンタルピー変化と等しくなる。
【0036】
この時、
ΔH=mCp(T−T)=(k/k−1)(p−p
と表せ、自由エネルギーは増加する。
【0037】
また、断熱圧縮の部分だけを考えてみると、急速な圧力増加を伴うので、温度をほぼ一定と考えれば、
−G=mRTln(p/p
となり、自由エネルギーはやはり増加する。
【0038】
つまり、全体として、圧縮・膨張を考えると、ΔS=0であるが、反応する局部的に見ると、以上のようになり、活性化エネルギーG′が容易に得られるのである。
【0039】
以上説明したように、反応装置7内の溶媒は、連続的な超臨界状態あるいは超臨界状態に近い高温高圧状態ではないが、超音波の周期で繰り返し生ずる高音圧部は超臨界状態あるいは超臨界状態に近い高温高圧状態となる。つまり、反応装置7内に超臨界流体あるいは超臨界流体に近い高温高圧流体が現出するのである。一方、被分解物質の分解は分子同士の衝突が基本であるから上記した超臨界状態あるいは超臨界状態に近い高温高圧状態の繰り返しにより溶媒分子の衝突速度がさらに加速され、その運動エネルギーは著しく大きくなり、さらに超臨界状態あるいは超臨界状態に近い高温高圧状態での活性化エネルギーも同時に得られることとなる。従って、反応装置7内における反応速度(換言すれば、分解速度)は通常の超臨界状態あるいは超臨界状態に近い高温高圧状態や過熱蒸気状態のときよりもさらに速くなるのである。
【0040】
さらに、前記反応装置7において被分解物質の分解により生成された生成ガスは冷却装置13に送られ、該冷却装置13において前記生成ガスが冷却水との熱交換により冷却液化される。そして、この冷却装置13により冷却液化された生成物(気液混合状態である)は気液分離装置14に送られ、液体と気体とに分離される。かくして分離された気体は無害化装置15に送られ、中和処理等により無害化された後、大気へ開放される。なお、分離された液体は廃液タンク(図示省略)に溜め込まれる。
【0041】
次に、環境汚染物質であり難分解物質であるフロンガスを分解処理する場合を例にとって以下にその動作態様を説明する。
【0042】
被分解物質タンク1内に液化したフロンを投入するとともに溶媒タンク2内に水を投入し、流体ポンプ3,4を駆動させることによってフロンと溶媒である水とを蒸気発生装置5に送り込んで両者を適当な比率で混合する。
【0043】
該蒸気発生装置5は、ヒータ6によって予め加熱されており、蒸気発生装置5内において両者が蒸発して400℃程度の過熱蒸気が生成される。なお、分解処理するために必要な過熱蒸気の温度は被分解物質によって異なるため、それぞれ被分解物質に応じて設定される。
【0044】
上記のようにして得られた過熱蒸気は、圧力勾配により反応装置7へ移送されるが、該反応装置7は、ヒータ8の駆動によって移送されてきた過熱蒸気の温度を維持できるように過熱状態に保持されている。この反応装置7内を過熱蒸気が通過する間に所定の反応時間経過するまで保持されるが、同時に超音波発振器12の駆動により超音波ホーン10から所定の周波数と出力を有する超音波が反応装置7内へ照射される。すると、前述したように、溶媒の過熱蒸気における超音波の高音圧部に超臨界状態あるいは超臨界状態に近い高温高圧状態が現出することとなり、フロンの加水分解が次式により速やかに進行する。ここで、超音波の周波数としては15kHz〜300kHz程度が好ましい。
【0045】
CCl+2HO→CO+2HF+2HCl
ちなみに、上記加水分解反応における反応温度および反応圧力について従来の方法と本発明方法とで比較したところ、表1の結果が得られた。
【0046】
【表1】
Figure 0003626319
【0047】
上記結果によれば、本発明方法によれば、反応温度をあまり高くすることなく、しかも反応装置7内全体を高圧にすることなく、部分的高圧(即ち、高音圧部のみが超臨界状態あるいは超臨界状態に近い高温高圧状態)でフロンの加水分解が速やかに進行することがわかる。
【0048】
上記のようにして反応装置7においてフロンの加水分解により生成された生成ガスは、冷却装置13へ送られ、冷却液化される。該冷却装置13の温度は生成ガスを液化できる程度であればよく、フロン分解の場合、生成ガス中の弗化水素HFが液化する温度である約18℃とされる。
【0049】
上記のようにして液化された生成物は、気液分離装置14において気体と液体に分離され、気体は無害化装置15において無害化された後大気中ほ放出される。一方、分離された液体は、廃液タンク(図示省略)に溜め込まれる。このように液化することにより副生成物の発生が防止される。また、液化することにより、ガスのまま大気中に飛散することによる二次汚染の心配がなくなる。
【0050】
第2の実施の形態
本実施の形態においては、本発明方法をメタノールCHOHと水素Hとを合成物質として二酸化炭素COの過熱蒸気を溶媒として2分子のメタノールを合成する場合に適用している。
【0051】
第1の実施の形態におけると同様にして、メタノールと水素と二酸化炭素との混合過熱蒸気を蒸気発生装置5において生成し、該過熱蒸気に反応装置7内において超音波を照射すると、次式に示す反応によりギ酸メチルHCOOCHが生成される。
【0052】
CHOH+CO+H→HCOOCH+H
その後、上記ギ酸メチルを水素で還元すると、次式に示す反応により2分子のメタノールが生成する。
【0053】
HCOOCH+2H→2CHOH
なお、この場合、気液分離装置および無害化装置は不要である。
【0054】
上記したように本実施の形態においても、超音波の反応装置7内へ照射により、二酸化炭素が超音波の高音圧部において高温高圧流体となり、上記反応が速やかに進行するのである。
【0055】
なお、この合成反応は、上記の例に限定されることなく、その他の合成例に適用可能なことは勿論である。
【0056】
【発明の効果】
本願発明によれば、溶媒と反応物質とを所定温度に加熱して得られる過熱混合蒸気に対して所定の周波数と出力を有する超音波を照射することにより、前記過熱混合蒸気中に部分的な高温高圧流体を生成し、該高温高圧流体により与えられる活性化エネルギーにより前記過熱混合蒸気に所定の化学反応を起こさせるようにしているので、超音波の照射により現出される高音圧部が超臨界状態あるいは超臨界状態に近い高温高圧状態として短時間で反転して分子の移動速度が大きくなる結果、分子同士の衝突、分裂作用が連続的に発生することとなり、分子同士の衝突、分裂が基本である物質の化学反応が大幅に加速されるという優れた効果がある。
【0057】
しかも、過熱混合蒸気全体を超臨界状態あるいは超臨界状態に近い高温高圧状態とすることなく、超音波照射による高圧部分のみで超臨界状態あるいは超臨界状態に近い高温高圧状態が現出できることとなるため、反応に要する温度・圧力条件を低く設定できるという効果もある。
【図面の簡単な説明】
【図1】本願発明の実施の形態にかかる高温高圧流体を利用した反応方法に用いられる反応装置の概略構成を示すシステム図である。
【図2】本願発明の実施の形態にかかる高温高圧流体を利用した反応方法に用いられる反応装置において超音波照射により現出される超音波定在波を示す説明図である。
【図3】前記超音波定在波における点Aの音圧の時間的変化を示す特性図である。
【図4】(イ)は反応装置内におけるt時とt時とにおける粒子の状態を示し、(ロ)はそれぞれの時の超音波の波形を示す。
【図5】模式的P−T線図である。
【図6】自由エネルギーの経時変化を示す特性図である。
【符号の説明】
5は過熱蒸気生成手段(蒸気発生装置)、7は反応手段(反応装置)、9は超音波照射手段、10は超音波ホーン、11は発振子、12は超音波発振器。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reaction method and apparatus using a high-temperature and high-pressure fluid.
[0002]
[Prior art]
It has been pointed out that chlorofluorocarbon gas, which has been used as a refrigerant, and halon gas, which has been used as a digestive agent, are environmental pollutants. From the viewpoint of detoxifying these substances to protect the global environment, It has become a concern.
[0003]
However, it is difficult to decompose the above-mentioned chlorofluorocarbon and halon gas into harmless substances, and various attempts have been made. For example, regarding the CFC treatment method, superheated steam decomposition method, incineration method, explosion reaction decomposition method, microbial decomposition method, ultrasonic decomposition method, plasma reaction method and the like have been proposed.
[0004]
Among the above-mentioned treatment methods, the superheated steam decomposition method is not limited to chlorofluorocarbon gas, but includes organic solvents such as chlorobenzene, waste oil, dioxin, PCB, various plastics, various rubbers, manure, wood, paper, and other industrial waste. It is attracting attention as a versatile treatment method for the entire substance to be decomposed. According to this superheated steam decomposition method, for example, it is possible to decompose CFC gas into hydrogen fluoride HF, hydrogen chloride HCl, carbon dioxide CO 2 or the like.
[0005]
In the superheated steam decomposition method, the mixture of superheated steam and chlorofluorocarbon gas is kept for a predetermined time under a predetermined temperature condition to hydrolyze the chlorofluorocarbon gas, then cooled, and further rendered harmless by a treatment such as neutralization. However, even if the hydrolysis reaction is carried out under conditions of high temperature and high pressure, a relatively long reaction time is required.
[0006]
[Problems to be solved by the invention]
By the way, in recent years, a decomposition method using a supercritical fluid has attracted attention as a decomposition method for hardly decomposed substances. This supercritical fluid is a fluid under a temperature and pressure condition that exceeds the critical point (that is, the upper limit of the region where the gas-liquid parallel state is established), and has a property intermediate between gas and liquid. ing. The characteristics of this supercritical fluid are that the density changes drastically in the vicinity of the critical point due to slight changes in temperature or pressure, those with high molecular weight and high boiling point dissolve relatively well, the viscosity is as small as gas, and the diffusion coefficient is It is in a point that is significantly larger than liquid.
[0007]
By utilizing the unique properties of the supercritical fluid as described above, it is possible to efficiently decompose difficult-to-decompose substances or synthesize chemical substances. It is necessary to put the decomposition substance under high temperature and high pressure conditions, which leads to an increase in the size and cost of the apparatus.
[0008]
The present invention has been made in view of the above points. By using a superheated steam method and a method using a supercritical fluid or a high-temperature and high-pressure fluid approximate to a supercritical fluid, the temperature and pressure conditions during the reaction can be lowered. The purpose is to increase the reaction rate even if it is set.
[0009]
[Means for Solving the Problems]
In the method of the present invention, as a method for solving the above-mentioned problem, by applying ultrasonic waves having a predetermined frequency and output to superheated mixed steam obtained by heating a solvent and a reactant to a predetermined temperature. A partial high-temperature high-pressure fluid is generated in the superheated mixed steam, and a predetermined chemical reaction is caused to occur in the superheated mixed steam by activation energy given by the high-temperature high-pressure fluid.
[0010]
As described above, the high pressure portion and the low pressure portion appear in the superheated mixed steam due to the sound pressure of the ultrasonic waves, and this is repeated alternately. As a result, the high pressure portion becomes a supercritical state or a high temperature and high pressure state close to the supercritical state, while the low pressure portion becomes a vacuum state. Since this state reverses in a short time, the moving speed of the molecules increases, and collisions between molecules and splitting action occur continuously. Therefore, the energy for activation is given, and the chemical reaction of the substance whose basis is collision and splitting between molecules is greatly accelerated.
[0011]
In addition, a supercritical state or a high-temperature and high-pressure state close to the supercritical state can be realized only by a high-pressure portion by ultrasonic irradiation without bringing the whole superheated mixed steam into a supercritical state or a high-temperature and high-pressure state close to the supercritical state. Therefore, the temperature and pressure conditions required for the reaction can be set low.
[0012]
In order to solve the above problems, the apparatus of the present invention comprises a superheated steam generating means for heating the solvent and the reactant to a predetermined temperature, a reaction means for reacting the superheated mixed steam obtained by the superheated steam generating means, The reaction means includes an ultrasonic irradiation means for irradiating the superheated mixed steam with ultrasonic waves having a predetermined frequency and output.
[0013]
By configuring as described above, the high pressure portion and the low pressure portion appear in the superheated mixed steam in the reaction means due to the sound pressure of the ultrasonic wave irradiated by the ultrasonic irradiation means, and this is repeated alternately. As a result, the high pressure portion becomes a supercritical state or a high temperature and high pressure state close to the supercritical state, while the low pressure portion becomes a vacuum state. Since this state reverses in a short time, the moving speed of the molecules increases, and collisions between molecules and splitting action occur continuously. Therefore, the chemical reaction of substances based on collision and splitting of molecules is greatly accelerated.
[0014]
In addition, a supercritical state or a high-temperature and high-pressure state close to the supercritical state can be realized only by a high-pressure portion by ultrasonic irradiation without bringing the whole superheated mixed steam into a supercritical state or a high-temperature and high-pressure state close to the supercritical state. Therefore, the temperature and pressure conditions required for the reaction can be set low.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0016]
First Embodiment A reaction method using a high-temperature and high-pressure fluid according to this embodiment is carried out using an apparatus as shown in FIG. 1 in order to decompose a hardly decomposable substance such as Freon. Used.
[0017]
The hard-to-decompose substances targeted by this method are organic compounds that are stable, but are not particularly limited, organic solvents such as chlorofluorocarbon and trichrene, waste oil, dioxin, PCB, manure and other industrial waste, wood Any object such as paper, rubber, etc., and its state is not particularly limited regardless of whether it is solid, liquid or gas. In addition, (1) organic compounds that are useful but difficult to treat after use and harmful ones such as chlorofluorocarbons (halogen hydrocarbons), chlorobenzene, dioxins in question, etc. are currently used. There are no PCBs, and (2) organic compounds that are useful but extremely stable and not harmful but difficult to process, such as PE, plastic, rubber and the like.
[0018]
The solvent used in the present embodiment may be any solvent as long as it becomes a vapor by heating, but the optimal one is water. Caustic soda solution and hydrogen peroxide solution can also be used.
[0019]
In FIG. 1, reference numeral 1 is a substance tank for storing a substance to be decomposed (for example, chlorofluorocarbon), 2 is a solvent tank for storing a solvent (for example, water), and 3 and 4 are for pumping the substance to be decomposed and the solvent. The fluid pump 5 is a steam generator that acts as superheated steam generation means, and the liquid to be treated and the solvent are pumped into the steam generator 5 by the fluid pumps 3 and 4, and the heater 6 in the steam generator 5. Heated to superheated steam.
[0020]
The superheated steam generated in the steam generator 5 is sent to a reaction device 7 acting as a reaction means via a pipe. The reactor 7 is for performing a decomposition process by allowing a superheated steam of a substance to be decomposed and a solvent to pass through after a predetermined time while maintaining a predetermined temperature, and is capable of holding the superheated steam for a predetermined reaction time. If it is a thing. Reference numeral 8 denotes a heater for maintaining the temperature in the reaction apparatus 7.
[0021]
The inside of the reactor 7 is not pressurized, and the discharge port side is open to the atmosphere. That is, the pressure of the piping on the inlet side is a pressure gradient only of pressure loss due to the pipeline. In the reaction apparatus 7, a slight pressure is naturally generated by the superheated steam, and a substance to be decomposed is transferred as a pressure gradient.
[0022]
Thus, the reaction device 7 is provided with ultrasonic irradiation means 9 for irradiating the superheated steam with ultrasonic waves having a predetermined frequency and output in the reaction device 7. The ultrasonic irradiation means 9 includes an ultrasonic horn 10 having an oscillator 11 for ultrasonic oscillation, and an ultrasonic oscillator 12 for oscillating the oscillator 11.
[0023]
When ultrasonic irradiation is performed by the ultrasonic irradiation means 9, an ultrasonic standing wave F is formed in the reaction apparatus 7 as shown in FIG. 2. For example, looking at the temporal change of the sound pressure Ps at the point A in FIG. 2, as shown in FIG. 3, a portion where the sound pressure Ps exceeds the critical pressure Pc (that is, a hatched portion) X is in a supercritical state. together with the opposite side (i.e., the sound pressure Ps P 0 following part) becomes a vacuum state. Since this state is repeated in a short time (that is, the cycle of ultrasonic waves), molecules existing in the reaction device 7 (that is, molecules of the substance to be decomposed and solvent) are given a large acceleration, and at a high speed. Molecules repeat collisions. In other words, if the temperature and pressure state of the high-pressure part are set so as to satisfy the high-temperature and high-pressure conditions close to the supercritical or supercritical state of the solvent, the high-temperature and high-pressure state close to the supercritical state or supercritical state can be easily set in the reactor 7. Therefore, an energy state that can be obtained only in a supercritical state or a high temperature and high pressure state close to the supercritical state can be obtained discontinuously.
[0024]
By the way, the position of the substance particle and the state of ultrasonic waves at t 1 and t 2 (t 1 <t 2 ) during ultrasonic irradiation are as shown in FIGS. Moves repeatedly with a period T of ultrasonic waves, such as a → b, c → b, d.
[0025]
The sound pressure Ps of the ultrasonic wave is Ps = 2ωρAsin (2π / λ) x · sinωt
Indicated by
[0026]
Here, A: a constant that varies depending on the substance λ: wavelength ω: angular velocity x: position ρ: medium density At this time, when x = 0, λ / 2, λ, P = 0
When x = λ / 4, 3λ / 4 ··· P = 2ωρA is the maximum and the sound pressure is
Z 0 = P / v = ρC (Pa · s / m = N · s / m 3 )
Here, Z 0 : inherent acoustic impedance C: sound velocity ρ: density v: particle velocity, and the relationship with intensity is I = Pv = v 2 Z 0 (w / m 2 )
Therefore, if the required sound pressure determines the intensity and the input voltage to the oscillator is determined, an arbitrary pressure can be obtained.
[0027]
Also, compression by ultrasonic waves is adiabatic compression. [0028]
[Expression 1]
Figure 0003626319
[0029]
Here, k = Cp / Cv: specific heat ratio.
[0030]
Since the temperature rise as shown in the above formula (1) or formula (2) is obtained, the activation energy required for the decomposition is further increased. Moreover, since the substance which changes into a stable substance or is in the middle of reaction undergoes adiabatic expansion in a half cycle, it is rapidly cooled, and the generation of by-products is reduced.
[0031]
Incidentally, according to the schematic PT diagram shown in FIG. 5, the superheated steam irradiated with ultrasonic waves changes from the state of point A to the state of point B through the state of point C. That is, adiabatic compression in the process of A → C → B and adiabatic expansion of B → C → A are repeated.
[0032]
Looking at the profile of the free energy G of the chemical reaction at this time, as shown in FIG. 6, the state of the point D is changed to the state of the point F through the state of the point E, and the chemical reaction is completed. Here, G ′ represents activation energy, and G 2 −G 1 = ΔG proceeds in a direction that becomes negative due to a change in free energy.
[0033]
This activation energy G ′ is absolutely necessary for the chemical reaction to proceed, and this energy G ′ is not in the supercritical state (ie, point B in FIG. 5), but is in a high temperature and high pressure state close to the supercritical state. (That is, it may also be obtained at point C in FIG. 5). For example, chlorofluorocarbon can be sufficiently decomposed even in a high temperature and high pressure state close to a supercritical state. In addition, chlorobenzene etc. cannot be decomposed unless it is in a supercritical state.
[0034]
Since the activation energy G ′ (in other words, increase dG of free energy G) described above becomes an isentropic change in the adiabatic change,
dG = dH−TdS
Given in.
[0035]
Here, since dS = 0, dG = dH, which is equal to the enthalpy change.
[0036]
This time,
ΔH = mCp (T 2 −T 1 ) = (k / k−1) (p 2 V 2 −p 1 V 1 )
The free energy increases.
[0037]
Also, considering only the adiabatic compression part, there is a rapid pressure increase, so if you think that the temperature is almost constant,
G 2 −G 1 = mRTln (p 2 / p 1 )
And free energy will still increase.
[0038]
That is, ΔS = 0 as a whole in consideration of compression / expansion, but when viewed locally in response, the activation energy G ′ can be easily obtained as described above.
[0039]
As described above, the solvent in the reactor 7 is not a continuous supercritical state or a high-temperature and high-pressure state close to the supercritical state, but the high sound pressure portion repeatedly generated in the cycle of the ultrasonic wave is a supercritical state or a supercritical state. It becomes a high temperature and high pressure state close to the state. That is, a supercritical fluid or a high-temperature and high-pressure fluid close to the supercritical fluid appears in the reactor 7. On the other hand, the decomposition of the substance to be decomposed is based on collision between molecules, so that the collision speed of solvent molecules is further accelerated by the repetition of the above supercritical state or high temperature and high pressure state close to the supercritical state, and the kinetic energy is remarkably large. In addition, activation energy in a supercritical state or in a high temperature and high pressure state close to the supercritical state can be obtained at the same time. Accordingly, the reaction rate (in other words, the decomposition rate) in the reaction apparatus 7 becomes even faster than in a normal supercritical state, a high-temperature high-pressure state close to the supercritical state, or a superheated steam state.
[0040]
Further, the product gas generated by the decomposition of the substance to be decomposed in the reaction device 7 is sent to the cooling device 13, where the generated gas is cooled and liquefied by heat exchange with cooling water. The product liquefied by the cooling device 13 (in a gas-liquid mixed state) is sent to the gas-liquid separation device 14 and separated into a liquid and a gas. The gas thus separated is sent to the detoxification device 15, detoxified by neutralization, etc., and then released to the atmosphere. The separated liquid is stored in a waste liquid tank (not shown).
[0041]
Next, the operation mode will be described below by taking as an example the case of decomposing chlorofluorocarbon, which is an environmental pollutant and a hardly decomposable substance.
[0042]
Both chlorofluorocarbon and chlorofluorocarbon are introduced into the decomposed substance tank 1 and water is introduced into the solvent tank 2 and the fluid pumps 3 and 4 are driven to feed chlorofluorocarbon and water as a solvent into the steam generator 5. Are mixed in an appropriate ratio.
[0043]
The steam generator 5 is preheated by a heater 6, and both of them are evaporated in the steam generator 5 to generate superheated steam at about 400 ° C. In addition, since the temperature of the superheated steam required for carrying out a decomposition process changes with substances to be decomposed, each is set according to the substance to be decomposed.
[0044]
The superheated steam obtained as described above is transferred to the reaction apparatus 7 by the pressure gradient, and the reaction apparatus 7 is in a superheated state so that the temperature of the superheated steam transferred by driving the heater 8 can be maintained. Is held in. The reactor 7 is held until a predetermined reaction time elapses while superheated steam passes, but at the same time, an ultrasonic wave having a predetermined frequency and output from the ultrasonic horn 10 is driven by the ultrasonic oscillator 12. 7 is irradiated. Then, as described above, a supercritical state or a high-temperature and high-pressure state close to the supercritical state appears in the high sound pressure portion of the ultrasonic wave in the superheated solvent of the solvent, and the hydrolysis of Freon proceeds rapidly according to the following equation. . Here, the frequency of the ultrasonic waves is preferably about 15 kHz to 300 kHz.
[0045]
CCl 2 F 2 + 2H 2 O → CO 2 + 2HF + 2HCl
Incidentally, when the reaction temperature and reaction pressure in the hydrolysis reaction were compared between the conventional method and the method of the present invention, the results shown in Table 1 were obtained.
[0046]
[Table 1]
Figure 0003626319
[0047]
According to the above results, according to the method of the present invention, a partial high pressure (that is, only the high sound pressure portion is in a supercritical state or without high reaction temperature and high pressure in the whole reactor 7) It can be seen that CFC hydrolysis proceeds rapidly in a high temperature and high pressure state close to a supercritical state.
[0048]
The product gas generated by the hydrolysis of CFC in the reaction device 7 as described above is sent to the cooling device 13 and liquefied by cooling. The temperature of the cooling device 13 may be such that the generated gas can be liquefied. In the case of chlorofluorocarbon decomposition, the temperature is about 18 ° C., which is the temperature at which hydrogen fluoride HF in the generated gas liquefies.
[0049]
The product liquefied as described above is separated into a gas and a liquid in the gas-liquid separation device 14, and the gas is detoxified in the detoxification device 15 and then released into the atmosphere. On the other hand, the separated liquid is stored in a waste liquid tank (not shown). By liquefying in this way, generation of by-products is prevented. In addition, by liquefying, there is no need to worry about secondary contamination due to scattering in the atmosphere as a gas.
[0050]
Second Embodiment In the present embodiment, the method of the present invention is applied to the case of synthesizing two molecules of methanol using methanol CH 3 OH and hydrogen H as a synthesis substance and superheated steam of carbon dioxide CO 2 as a solvent. ing.
[0051]
In the same manner as in the first embodiment, when mixed superheated steam of methanol, hydrogen and carbon dioxide is generated in the steam generator 5 and the superheated steam is irradiated with ultrasonic waves in the reactor 7, the following equation is obtained. The reaction shown produces methyl formate HCOOCH 3 .
[0052]
CH 3 OH + CO 2 + H 2 → HCOOCH 3 + H 2 O
Thereafter, when the methyl formate is reduced with hydrogen, bimolecular methanol is produced by the reaction shown in the following formula.
[0053]
HCOOCH 3 + 2H 2 → 2CH 3 OH
In this case, the gas-liquid separator and the detoxifying device are not necessary.
[0054]
As described above, also in the present embodiment, by irradiating the ultrasonic reaction device 7, carbon dioxide becomes a high-temperature and high-pressure fluid in the high sound pressure portion of the ultrasonic wave, and the reaction proceeds promptly.
[0055]
Of course, this synthesis reaction is not limited to the above example, but can be applied to other synthesis examples.
[0056]
【The invention's effect】
According to the present invention, the superheated mixed steam obtained by heating the solvent and the reactants to a predetermined temperature is irradiated with ultrasonic waves having a predetermined frequency and output, whereby a part of the superheated mixed steam is obtained. A high-temperature and high-pressure fluid is generated, and a predetermined chemical reaction is caused to occur in the superheated mixed steam by the activation energy given by the high-temperature and high-pressure fluid. As a result of inversion in a short time in a high temperature and high pressure state close to the critical state or supercritical state, the movement speed of the molecules increases, resulting in the continuous collision and splitting of the molecules, and the collision and splitting of the molecules. There is an excellent effect that the chemical reaction of the basic substance is greatly accelerated.
[0057]
In addition, a supercritical state or a high-temperature and high-pressure state close to the supercritical state can be realized only by a high-pressure portion by ultrasonic irradiation without bringing the whole superheated mixed steam into a supercritical state or a high-temperature and high-pressure state close to the supercritical state. Therefore, there is an effect that the temperature and pressure conditions required for the reaction can be set low.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a schematic configuration of a reaction apparatus used in a reaction method using a high-temperature and high-pressure fluid according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing an ultrasonic standing wave that appears by ultrasonic irradiation in a reaction apparatus used in a reaction method using a high-temperature and high-pressure fluid according to an embodiment of the present invention.
FIG. 3 is a characteristic diagram showing temporal changes in sound pressure at point A in the ultrasonic standing wave.
4A shows the state of particles at t 1 and t 2 in the reaction apparatus, and FIG. 4B shows the waveform of ultrasonic waves at each time.
FIG. 5 is a schematic PT diagram.
FIG. 6 is a characteristic diagram showing a change in free energy with time.
[Explanation of symbols]
5 is a superheated steam generation means (steam generation apparatus), 7 is a reaction means (reaction apparatus), 9 is an ultrasonic irradiation means, 10 is an ultrasonic horn, 11 is an oscillator, and 12 is an ultrasonic oscillator.

Claims (2)

溶媒と反応物質とを所定温度に加熱して得られる過熱混合蒸気に対して所定の周波数と出力を有する超音波を照射することにより、前記過熱混合蒸気中に部分的な高温高圧流体を生成し、該高温高圧流体により与えられる活性化エネルギーにより前記過熱混合蒸気に所定の化学反応を起こさせることを特徴とする高温高圧流体を利用した反応方法。By irradiating the superheated mixed steam obtained by heating the solvent and the reactant to a predetermined temperature with ultrasonic waves having a predetermined frequency and output, a partial high-temperature high-pressure fluid is generated in the superheated mixed steam. A reaction method using a high-temperature high-pressure fluid, wherein a predetermined chemical reaction is caused to occur in the superheated mixed steam by activation energy given by the high-temperature high-pressure fluid. 溶媒と反応物質とを所定温度に加熱する過熱蒸気生成手段と、該過熱蒸気生成手段により得られた過熱混合蒸気を反応させる反応手段と、該反応手段内において前記過熱混合蒸気に対して所定の周波数と出力を有する超音波を照射する超音波照射手段とを備えていることを特徴とする高温高圧流体を利用した反応装置。A superheated steam generating means for heating the solvent and the reactant to a predetermined temperature; a reaction means for reacting the superheated mixed steam obtained by the superheated steam generating means; A reaction apparatus using a high-temperature and high-pressure fluid, comprising an ultrasonic wave irradiation means for irradiating an ultrasonic wave having a frequency and an output.
JP08009397A 1997-03-31 1997-03-31 Reaction method and apparatus using high-temperature and high-pressure fluid Expired - Lifetime JP3626319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08009397A JP3626319B2 (en) 1997-03-31 1997-03-31 Reaction method and apparatus using high-temperature and high-pressure fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08009397A JP3626319B2 (en) 1997-03-31 1997-03-31 Reaction method and apparatus using high-temperature and high-pressure fluid

Publications (2)

Publication Number Publication Date
JPH10272352A JPH10272352A (en) 1998-10-13
JP3626319B2 true JP3626319B2 (en) 2005-03-09

Family

ID=13708591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08009397A Expired - Lifetime JP3626319B2 (en) 1997-03-31 1997-03-31 Reaction method and apparatus using high-temperature and high-pressure fluid

Country Status (1)

Country Link
JP (1) JP3626319B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471937B1 (en) * 1998-09-04 2002-10-29 Praxair Technology, Inc. Hot gas reactor and process for using same
JP3658602B2 (en) * 2000-03-22 2005-06-08 大旺建設株式会社 Method and apparatus for decomposing a hardly decomposable substance
JP2006035217A (en) * 2005-08-17 2006-02-09 Daio Kensetsu Kk Method for accelerating reaction of chemical substance utilizing ultrasonic wave

Also Published As

Publication number Publication date
JPH10272352A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
JP4710048B2 (en) Hydrogen generator and hydrogen generation method
US7067204B2 (en) Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
JP3626319B2 (en) Reaction method and apparatus using high-temperature and high-pressure fluid
JP2004306029A (en) Chemical reactor and decomposing method of toxic substance
KR101109260B1 (en) Recycling mechanism of organic system wastes by subcritical point water and supersonic emission
JP3219689B2 (en) Method and apparatus for decomposing hardly decomposable substances
JP3153733B2 (en) Combustion decomposition equipment for chlorofluorocarbon
JP3381320B2 (en) Freon gas treatment equipment
JP2011110446A (en) Treatment apparatus of organic waste liquid, and treatment method of organic waste liquid
JP2001300524A (en) Method for decomposing difficult-to-decompose organic matter
JP3725889B2 (en) Method and apparatus for promoting reaction of chemical substance using ultrasonic wave, and method for producing fluororesin using ultrasonic wave
JP3457518B2 (en) Method and apparatus for treating waste containing urethane foam
US20180117648A1 (en) Waste material treatment apparatus and waste material treatment method
JPH1028836A (en) Fluorocarbon decomposition treatment apparatus using discharge plasma
JPH0724081A (en) Method and apparatus for decomposing organic halogen compounds by high frequency induction plasma
JP4570847B2 (en) Method and apparatus for halogen-containing compound decomposition by plasma reaction method
JP2000167572A (en) Decomposition method of organic harmful substances in water or sludge
JP3241314B2 (en) Method and apparatus for decomposing organic halogen compound by plasma
JP2006035217A (en) Method for accelerating reaction of chemical substance utilizing ultrasonic wave
Nikitenko Isotope effect in hydrogen peroxide formation during H2O and D2O sonication
JP2001096147A (en) Method and apparatus for decomposition treatment of hardly decomposable substance
JP2001300522A (en) Method for decomposing difficult-to-decompose organic matter
JPH0810572A (en) Method for decomposing fluorocarbon
JP2001300525A (en) Method for decomposing difficult-to-decompose organic matter
JP2001300528A (en) Method for decomposing difficult-to-decompose organic matter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041210

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term