JP3623173B2 - Method for producing microphase-separated polymer structure using pressure jump - Google Patents
Method for producing microphase-separated polymer structure using pressure jump Download PDFInfo
- Publication number
- JP3623173B2 JP3623173B2 JP2001061086A JP2001061086A JP3623173B2 JP 3623173 B2 JP3623173 B2 JP 3623173B2 JP 2001061086 A JP2001061086 A JP 2001061086A JP 2001061086 A JP2001061086 A JP 2001061086A JP 3623173 B2 JP3623173 B2 JP 3623173B2
- Authority
- JP
- Japan
- Prior art keywords
- microphase
- pressure
- copolymer
- polymer structure
- separated polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ミクロ相分離構造を有するポリマーの製造方法の技術分野に属し、特にミクロ相分離構造を形成する新しい方法に関する。
【0002】
【従来の技術】
ミクロ相分離構造を有するポリマー(以下、ミクロ相分離ポリマー構造体ということがある)は、そのユニークな構造に由来する特性に基づく新たな機能性材料として期待されている。このようなミクロ相分離ポリマー構造体を得るには、2種以上のポリマー鎖から成るブロックまたはグラフトコポリマー(共重合体)を無秩序状態から秩序状態に変化させてミクロ相分離構造を形成する。
【0003】
ここで、無秩序状態から秩序状態に変化させること(クエンチ)によるミクロ相分離形成過程としては、専ら、温度を急激に変化させる手法(温度ジャンプ)が用いられている。しかし、温度ジャンプでは無秩序状態から秩序状態への素早いクエンチが行なわれず、異方性のある比較的大きなグレイン形成を伴い、均質なミクロ相分離構造を有するポリマーを得ることが困難であった。
【0004】
【発明が解決しようとする課題】
本発明は、コポリマーの無秩序状態から秩序状態へのクエンチが迅速に行なわれ、均質性に優れたミクロ相分離ポリマー構造体を製造することのできる新しい技術を提供することにある。
【0005】
【課題を解決するための手段】
本発明者は、検討を重ねた結果、従来より用いられていた温度ジャンプの代わりに、圧力ジャンプによりコポリマーのミクロ相分離を行なわせることにより上記の目的を達成し得ることを見出した。
【0006】
かくして、本発明は、2種以上のポリマー鎖から成るブロックコポリマーまたはグラフトコポリマーを無秩序状態から秩序状態に変化させてミクロ相分離構造を形成することによりミクロ相分離ポリマー構造体を製造するに当たり、無秩序状態にある前記コポリマーに核生成が起こらないような大きな圧力変化を与えて秩序状態にすることを特徴とするミクロ相分離ポリマー構造体の製造方法を提供するものである。
本発明のミクロ相分離ポリマー構造体の製造方法の好ましい具体例においては、無秩序状態のコポリマーに少なくとも10倍の圧力変化を与える。
【0007】
【発明の実施の形態】
本発明においては、無秩序状態にあるコポリマーに、急激に圧力を印加することにより秩序状態である高圧側へ圧力ジャンプすることにより系をクエンチする。例えば、後述の実施例に示すようなポリスチレン−ポリイソプレンジブロックコポリマーの場合は、当初の無秩序状態の圧力に対して少なくとも10倍の圧力を印加する。
【0008】
従来より実施されているような温度を急激に変化させること(温度ジャンプ)による秩序化構造形成過程(ミクロ相分離構造形成過程)は、核生成と成長により進行することが知られている。すなわち、温度ジャンプにより系を変化させた場合には、熱の拡散は遅いために系全体にわたって不均一な濃度の揺らぎ(濃度の変動)が生じており、この濃度が臨界濃度に達した部分に核が生成しこの核が成長して秩序化構造(ミクロ相分離構造)が形成することが多くの研究によって明らかにされている。このように温度ジャンプによるミクロ相分離構造の形成過程においては、濃度の揺らぎの影響が大きいために不均一(異方的)で且つ大きなグレインの形成を生じるものと考えれる。
【0009】
これに対して、本発明の方法は、無秩序状態にある系に充分な圧力変化を与えることにより秩序化構造(ミクロ相分離構造)を形成させるものである。本発明に従い充分な圧力ジャンプによって無秩序状態から秩序状態にクエンチすることによって得られるミクロ相分離ポリマー構造体は、温度ジャンプによって得られるものに比べて、グレインの非常に小さいアモルファス様の均一な(すなわち、異方性が抑制された)組織から成ることが見出されている。
【0010】
これは、圧力の拡散は熱の拡散よりも迅速であるため、系全体にわたって均質の濃度の揺らぎ(変動)が生じるために揺らぎの影響がきわめて少なく、徐々に連続的に秩序化構造(ミクロ相分離構造)が形成されるためと考えられる。すなわち、充分な圧力ジャンプによる本発明におけるミクロ相分離構造の形成は、溶液や固溶体の相分離でよく知られたスピノーダル分解によって進行しているものと理解される。このことは、例えば、時分割小角X線散乱法で散乱強度を測定することにより秩序化構造形成過程を観察すると、圧力ジャンプが充分でないときは散乱光強度が変化しない誘導期間(incubation period)が認められ核生成と成長によって進行していることが示唆されるのに対して、本発明に従い充分な圧力ジャンプを与えると、誘導期間は存在せず連続的に散乱強度が増加していることからも裏付けられる(後述の実施例参照)。
【0011】
かくして、本発明に従えば、無秩序状態にあるコポリマーを充分な圧力ジャンプにより秩序状態にクエンチすることにより、所望のミクロ相分離構造を有するポリマーが得られる。本発明の方法は、2種以上のポリマー鎖から成るブロックコポリマーまたはグラフトコポリマーであればいずれも適用可能であるが、一般的には、ジブロックコポリマーからミクロ相分離ポリマー構造体を製造するのに適用される。
【0012】
図1は、ジブロックコポリマーの典型的な相図を示すものである。図中、縦軸のχNのうちχはコポリマーを構成する2種のポリマー間の斥力を表わし、Nはポリマーの重合度を表わし、χNは温度の逆数(1/T)に相当する。また、横軸fはコポリマーを構成するポリマーの一方のポリマーの重量分率を表わす。図1に示されるようにODTライン(Order−Disorder Transition Line:秩序−無秩序転移ライン)を境にして下方が無秩序状態を呈する領域(DIS)であり、ODTラインの上方(内側)にポリマーの重量分率fに応じて球構造(SPH)、シリンダー構造(CYL)、共連続構造(OBDD)またはラメラ構造(LAM)から成る秩序化構造(ミクロ相分離構造)を呈する領域がある。
【0013】
かくして、例えばラメラ構造など、製造しようとする構造に応じてポリマーの組成fを満たす無秩序状態領域(DIS)内の点から、図中ODTラインの上方にある秩序状態領域内の点にクエンチすることにより、所望のミクロ相分離構造から成るミクロ相分離ポリマー構造体が得られる。図1に示すよう相図に沿って説明すると、従来の温度ジャンプではODTライン付近の秩序状態領域へのクエンチに過ぎなかったために、濃度揺らぎの影響が大きいが、本発明の方法はODTラインから遠く離れた秩序化領域内の深い点へのクエンチを可能にするため濃度揺らぎの影響がほとんどないと言える(後述の実施例参照)。
【0014】
【実施例】
以下に本発明の特徴を更に明らかにするため実施例を示すが、本発明はこの実施例によって制限されるものではない。
実施例:ジブロックコポリマーを用いるミクロ相分離ポリマー構造体の調製
用いた試料は、ポリスチレン−ポリイソプレンジブロックコポリマー(以下、PS−PIという)である。数平均分子量Mn=27,000、Mw/Mn=1.09である。ここで、Mwは重量平均分子量である。PS−PI中のスチレン重量分率を50%とし、ラメラ構造のミクロ相分離構造が形成されるようにした。このPS−PIは上限秩序−無秩序転移温度型および下限秩序−無秩序転移圧力型の相図を持つ(図1参照)。したがって、圧力に対しては、高圧において相転移が誘起されることになる。130℃、低圧(8.6〜10.5MPa)で無秩序状態にあるPS−PI系に、急激に圧力を印加することで秩序状態である高圧側へ圧力ジャンプすることにより系をクエンチしてミクロ相分離構造を形成させた。クエンチ後の散乱光強度の時間変化を時分割小角X線散乱法によって測定した。この系の130℃における秩序−無秩序転移圧力は22.5MPaである。クエンチする条件を表1に示す。表1には圧力ジャンプの条件を、相当する温度ジャンプの条件に換算した温度換算値も示している。温度換算値は秩序−無秩序転移温度(TODT)の圧力依存性より計算したものを用いた。ここで、(dTODT/dP=0.242K/MPaである。小角X線散乱測定は、 SPring 8のBL40XU(158.0MPaへの圧力ジャンプ)およびBL45XU(158.0MPa以外への圧力ジャンプ)にて行った。なお、 SPring 8とは、国から「放射光利用研究促進機構」に指定された財団法人高輝度光科学研究センター(JASRI)によって運営され共同利用施設として兵庫県佐用郡に設置されている「大型放射光施設」であり、BL40XUおよびBL45XUは、いずれも、該施設によって供される小角X線散乱測定用のビームラインの名称である。入射光の波長は1.1Åである。
【0015】
【表1】
【0016】
図2に10.3MPaから66.5MPaに圧力ジャンプしたときの散乱光強度の時間変化を示す。散乱光強度は2847msまで変化せず、その後散乱光強度の成長が見られた。すなわち、秩序化構造形成が開始する前に強度が変化しない期間、誘導期間が存在しており、秩序化構造形成過程は核生成と成長によって進行していることがわかった。
【0017】
また、49.0MPaへの圧力ジャンプ、80.4MPaへの圧力ジャンプにおいても同様な散乱光強度が時間変化しない期間(誘導期間)が観察された。このように圧力ジャンプの度合いが充分でない場合は、秩序化構造形成過程は核生成と成長により進行していることが確認された。
【0018】
図3に、最も深いクエンチである158.0MPaへ圧力ジャンプしたときの散乱光強度の時間変化を示す。この場合は、図2に示されるような誘導期間は存在せず、連続的に散乱光強度が増加していることが認められる。すなわち、秩序化は、核生成と成長によらず、スピノーダル分解またはこれに類似の機構で進行していることが推察される。
【図面の簡単な説明】
【図1】本発明が適用されるジブロックコポリマーの相図である。
【図2】無秩序状態(10.3MPa)から秩序状態(66.5MPa)に圧力ジャンプした後のPS−PIコポリマーの散乱光強度の時間変化を示す。
【図3】本発明に従い、無秩序状態(10.0MPa)から秩序状態(158.0MPa)に圧力ジャンプした後のPS−PIコポリマーの散乱光強度の時間変化を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a method for producing a polymer having a microphase separation structure, and particularly relates to a new method for forming a microphase separation structure.
[0002]
[Prior art]
A polymer having a microphase-separated structure (hereinafter sometimes referred to as a microphase-separated polymer structure) is expected as a new functional material based on characteristics derived from the unique structure. In order to obtain such a microphase-separated polymer structure, a microphase-separated structure is formed by changing a block or graft copolymer (copolymer) composed of two or more polymer chains from a disordered state to an ordered state.
[0003]
Here, as a microphase separation formation process by changing from a disordered state to an ordered state (quenching), a technique (temperature jump) for changing temperature rapidly is used exclusively. However, in the temperature jump, the rapid quenching from the disordered state to the ordered state is not performed, and it is difficult to obtain a polymer having a homogeneous microphase separation structure accompanied by the formation of anisotropic large grains.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a new technique capable of producing a microphase-separated polymer structure excellent in homogeneity by rapidly quenching a copolymer from a disordered state to an ordered state.
[0005]
[Means for Solving the Problems]
As a result of repeated studies, the present inventor has found that the above-described object can be achieved by causing the microphase separation of the copolymer by pressure jump instead of the temperature jump conventionally used.
[0006]
Thus, the present invention relates to the production of a microphase-separated polymer structure by forming a microphase-separated structure by changing a block copolymer or graft copolymer comprising two or more polymer chains from a disordered state to an ordered state. The present invention provides a method for producing a microphase-separated polymer structure, wherein the copolymer in a state is subjected to a large pressure change that does not cause nucleation to be in an ordered state.
In a preferred embodiment of the method for producing a microphase-separated polymer structure of the present invention, the disordered copolymer is subjected to a pressure change of at least 10 times.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the system is quenched by a pressure jump to a high pressure side in an ordered state by applying a sudden pressure to the copolymer in a disordered state. For example, in the case of a polystyrene-polyisoprene diblock copolymer as shown in the examples below, a pressure of at least 10 times the pressure of the initial disordered state is applied.
[0008]
It is known that an ordered structure formation process (microphase separation structure formation process) by abruptly changing the temperature (temperature jump) as conventionally performed proceeds by nucleation and growth. In other words, when the system is changed by a temperature jump, the diffusion of heat is slow, resulting in non-uniform concentration fluctuations (concentration fluctuations) throughout the system, and this concentration reaches the critical concentration. Numerous studies have revealed that nuclei are formed and grown to form an ordered structure (microphase separation structure). Thus, in the formation process of the micro phase separation structure by the temperature jump, it is considered that the formation of nonuniform (anisotropic) and large grains is caused because the influence of concentration fluctuation is large.
[0009]
On the other hand, the method of the present invention forms an ordered structure (microphase separation structure) by applying a sufficient pressure change to a disordered system. The microphase-separated polymer structure obtained by quenching from disordered state to ordered state with sufficient pressure jump according to the present invention has an amorphous-like uniform with very low grain (ie, compared to that obtained by temperature jump). It has been found to consist of a tissue with suppressed anisotropy.
[0010]
This is because the pressure diffusion is faster than the heat diffusion, so that the fluctuation of the homogeneous concentration occurs throughout the system, so that the influence of the fluctuation is extremely small, and the ordered structure (microphase This is thought to be due to the formation of a separation structure. That is, it is understood that the formation of the microphase separation structure in the present invention by a sufficient pressure jump proceeds by spinodal decomposition well known in the phase separation of solutions and solid solutions. This is because, for example, when the ordering structure formation process is observed by measuring the scattering intensity by the time-division small-angle X-ray scattering method, there is an induction period in which the scattered light intensity does not change when the pressure jump is not sufficient. While it is observed and suggested to be progressing by nucleation and growth, when a sufficient pressure jump is given according to the present invention, there is no induction period and the scattering intensity continuously increases. (See Examples below).
[0011]
Thus, according to the present invention, a polymer having the desired microphase separation structure can be obtained by quenching the disordered copolymer to the ordered state by a sufficient pressure jump. The method of the present invention can be applied to any block copolymer or graft copolymer composed of two or more polymer chains, but in general, to produce a microphase-separated polymer structure from a diblock copolymer. Applied.
[0012]
FIG. 1 shows a typical phase diagram of a diblock copolymer. In the figure, among the χN on the vertical axis, χ represents the repulsive force between the two polymers constituting the copolymer, N represents the degree of polymerization of the polymer, and χN corresponds to the reciprocal of temperature (1 / T). The horizontal axis f represents the weight fraction of one of the polymers constituting the copolymer. As shown in FIG. 1, a region (DIS) in which the lower part exhibits a disordered state with an ODT line (Order-Disorder Transition Line) as a boundary, and the weight of the polymer above (inner side) the ODT line. There is a region exhibiting an ordered structure (microphase separation structure) composed of a spherical structure (SPH), a cylinder structure (CYL), a co-continuous structure (OBDD), or a lamellar structure (LAM) depending on the fraction f.
[0013]
Thus, quenching from a point in the disordered state region (DIS) that satisfies the composition of the polymer f depending on the structure to be manufactured, such as a lamellar structure, to a point in the ordered state region above the ODT line in the figure. Thus, a microphase-separated polymer structure composed of a desired microphase-separated structure is obtained. Referring to the phase diagram as shown in FIG. 1, the conventional temperature jump is merely a quench to the ordered state region near the ODT line, and thus the influence of concentration fluctuation is large. It can be said that there is almost no influence of concentration fluctuations because it enables quenching to a deep point in a far-away ordered region (see examples described later).
[0014]
【Example】
Examples are given below to further clarify the features of the present invention, but the present invention is not limited to these examples.
Example: Preparation of a microphase-separated polymer structure using a diblock copolymer The sample used is a polystyrene-polyisoprene diblock copolymer (hereinafter referred to as PS-PI). The number average molecular weight Mn = 27,000 and Mw / Mn = 1.09. Here, Mw is a weight average molecular weight. The styrene weight fraction in PS-PI was set to 50% so that a lamellar structure microphase separation structure was formed. This PS-PI has a phase diagram of an upper order order-disorder transition temperature type and a lower order order-disorder transition pressure type (see FIG. 1). Therefore, for the pressure, a phase transition is induced at a high pressure. The system is quenched by microscopically jumping the pressure to the high-pressure side that is in an ordered state by applying a sudden pressure to the PS-PI system that is in a disordered state at 130 ° C. and low pressure (8.6 to 10.5 MPa). A phase separation structure was formed. The time change of the scattered light intensity after quenching was measured by the time-division small angle X-ray scattering method. The order-disorder transition pressure at 130 ° C. of this system is 22.5 MPa. Conditions for quenching are shown in Table 1. Table 1 also shows a temperature converted value obtained by converting the pressure jump condition into the corresponding temperature jump condition. The temperature converted value was calculated from the pressure dependence of the order-disorder transition temperature (T ODT ). Here, (dT ODT /dP=0.242 K / MPa. Small-angle X-ray scattering measurements were performed on SPring 8 BL40XU (pressure jump to 158.0 MPa) and BL45XU (pressure jump to other than 158.0 MPa). and went. It is to be noted that the SPring 8, is installed in Hyogo Prefecture Sayo-gun, as a joint-use facility is operated by the designated "using synchrotron radiation research promotion mechanism," the Japan Synchrotron radiation research Institute (JASRI) from the country BL40XU and BL45XU are both names of beam lines for small-angle X-ray scattering measurement provided by the facility, and the wavelength of incident light is 1.1 mm.
[0015]
[Table 1]
[0016]
FIG. 2 shows the time change of the scattered light intensity when the pressure jump is performed from 10.3 MPa to 66.5 MPa. The scattered light intensity did not change until 2847 ms, after which a growth of the scattered light intensity was observed. That is, it was found that there is an induction period during which the intensity does not change before the ordered structure formation starts, and that the ordered structure formation process proceeds by nucleation and growth.
[0017]
In addition, a similar period (induction period) in which the scattered light intensity did not change with time was observed in the pressure jump to 49.0 MPa and the pressure jump to 80.4 MPa. Thus, it was confirmed that when the degree of pressure jump is not sufficient, the ordered structure formation process proceeds by nucleation and growth.
[0018]
FIG. 3 shows the time variation of the scattered light intensity when the pressure jumps to 158.0 MPa which is the deepest quench. In this case, it is recognized that there is no induction period as shown in FIG. 2 and the scattered light intensity continuously increases. That is, it is inferred that ordering proceeds by spinodal decomposition or a similar mechanism regardless of nucleation and growth.
[Brief description of the drawings]
FIG. 1 is a phase diagram of a diblock copolymer to which the present invention is applied.
FIG. 2 shows the change over time in the scattered light intensity of a PS-PI copolymer after a pressure jump from the disordered state (10.3 MPa) to the ordered state (66.5 MPa).
FIG. 3 shows the time variation of the scattered light intensity of a PS-PI copolymer after pressure jumping from disordered state (10.0 MPa) to ordered state (158.0 MPa) according to the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001061086A JP3623173B2 (en) | 2001-03-06 | 2001-03-06 | Method for producing microphase-separated polymer structure using pressure jump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001061086A JP3623173B2 (en) | 2001-03-06 | 2001-03-06 | Method for producing microphase-separated polymer structure using pressure jump |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002265617A JP2002265617A (en) | 2002-09-18 |
JP3623173B2 true JP3623173B2 (en) | 2005-02-23 |
Family
ID=18920433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001061086A Expired - Fee Related JP3623173B2 (en) | 2001-03-06 | 2001-03-06 | Method for producing microphase-separated polymer structure using pressure jump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3623173B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5154473B2 (en) * | 2009-02-20 | 2013-02-27 | 三井化学株式会社 | Method for analyzing block copolymer and method for producing block copolymer |
US9005877B2 (en) * | 2012-05-15 | 2015-04-14 | Tokyo Electron Limited | Method of forming patterns using block copolymers and articles thereof |
KR102394994B1 (en) | 2013-09-04 | 2022-05-04 | 도쿄엘렉트론가부시키가이샤 | Uv-assisted stripping of hardened photoresist to create chemical templates for directed self-assembly |
US9349604B2 (en) | 2013-10-20 | 2016-05-24 | Tokyo Electron Limited | Use of topography to direct assembly of block copolymers in grapho-epitaxial applications |
US9947597B2 (en) | 2016-03-31 | 2018-04-17 | Tokyo Electron Limited | Defectivity metrology during DSA patterning |
-
2001
- 2001-03-06 JP JP2001061086A patent/JP3623173B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002265617A (en) | 2002-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Anastasaki et al. | One‐pot synthesis of ABCDE multiblock copolymers with hydrophobic, hydrophilic, and semi‐fluorinated segments | |
Zucchi et al. | Comparison of morphologies and mechanical properties of crosslinked epoxies modified by polystyrene and poly (methyl methacrylate)) or by the corresponding block copolymer polystyrene-b-poly (methyl methacrylate | |
Gao et al. | Controlled Polymerization of Multivinyl Monomers: Formation of Cyclized/Knotted Single‐Chain Polymer Architectures | |
Zhou et al. | Controlling the pore size of mesoporous carbon thin films through thermal and solvent annealing | |
WO2007017614A3 (en) | Method for preparing a polymeric material including a multiblock copolymer prepared by controlled free-radical polymerisation | |
Yuan et al. | Synthesis and characterization of polystyrene/poly (4‐vinylpyridine) triblock copolymers by reversible addition–fragmentation chain transfer polymerization and their self‐assembled aggregates in water | |
Roovers | Linear viscoelastic properties of polybutadiene. A comparison with molecular theories | |
JP3623173B2 (en) | Method for producing microphase-separated polymer structure using pressure jump | |
Samanta et al. | Multifunctional Porous Poly (vinylidene fluoride)‐graft‐Poly (butyl methacrylate) with Good Li+ Ion Conductivity | |
Hsu et al. | Strengthening of hydrogels made from enantiomeric block copolymers of polylactide (PLA) and poly (ethylene glycol)(PEG) by the chain extending Diels–Alder reaction at the hydrophilic PEG terminals | |
WATANABE et al. | Rheology and structure of styrene-butadiene diblock copolymers dissolved in selective solvents | |
Bartczak et al. | WAXS/SAXS study of plastic deformation instabilities and lamellae fragmentation in polyethylene | |
Lai et al. | Scaling of domain spacing in concentrated solutions of block copolymers in selective solvents | |
Yuan et al. | Self‐Assembled Colloidal Particle Clusters from In Situ Pickering‐Like Emulsion Polymerization via Single Electron Transfer Mechanism | |
JP2017501270A5 (en) | ||
Ida et al. | Swelling and mechanical properties of thermoresponsive/hydrophilic conetworks with crosslinked domain structures prepared from various triblock precursors | |
Zheng et al. | A useful method for preparing mixed brush polymer grafted nanoparticles by polymerizing block copolymers from surfaces with reversed monomer addition sequence | |
Shao et al. | Phase Behaviors of Multi‐tailed B2AB2‐Type Regio‐isomeric Giant Surfactants at the Columnar‐Spherical Boundary | |
Huang et al. | Star graft copolymer via grafting‐onto strategy using a comb! ination of reversible addition–fragmentation chain transfer arm‐first technique and aldehyde–aminooxy click reaction | |
Lay et al. | Comparison of structural properties of different polymer network types as obtained by computer simulation | |
Ishizu et al. | Synthesis of amphiphilic star block copolymers via diethyldithiocarbamate‐mediated living radical polymerization | |
Yoshida et al. | Stimuli‐responsive reversible physical networks. II. Design and properties of homogeneous physical networks consisting of periodic copolymers synthesized by living cationic polymerization | |
Maksym et al. | Pressure‐assisted strategy for the synthesis of vinyl pyrrolidone‐based macro‐star photoiniferters. A route to star block copolymers | |
BR112016026643B1 (en) | PROCESSES FOR PREPARING A BRANCHED CONJUGATED DIENE POLYMER AND CONJUGATED DIENE POLYMER LATEX, BRANCHED CONJUGATED DIENE POLYMER, CONJUGATED DIENE POLYMER LATEX, AND, ARTICLE | |
Faber et al. | Highly Ordered Structure Formation in RAFT‐Synthesized PtBOS‐b‐P4VP Diblock Copolymers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20031210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040930 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041122 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |