JP3621176B2 - Method for producing aliphatic polyester resin composition - Google Patents
Method for producing aliphatic polyester resin composition Download PDFInfo
- Publication number
- JP3621176B2 JP3621176B2 JP34824995A JP34824995A JP3621176B2 JP 3621176 B2 JP3621176 B2 JP 3621176B2 JP 34824995 A JP34824995 A JP 34824995A JP 34824995 A JP34824995 A JP 34824995A JP 3621176 B2 JP3621176 B2 JP 3621176B2
- Authority
- JP
- Japan
- Prior art keywords
- aliphatic polyester
- resin composition
- polyester resin
- layered silicate
- aliphatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Biological Depolymerization Polymers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ペレット化する際のカッティング性及び射出成形時の成形性を高めた脂肪族ポリエステル樹脂組成物に関するものである。
【0002】
【従来の技術】
合成繊維、フィルムその他成形体として利用されているプラスチックは、軽くて丈夫である利点に加えて、安価にかつ大量に安定して供給できるなど、我々の生活に豊かさと便利さをもたらし、プラスチック文明といえる現代の社会を構築してきた。しかしながら、近年、地球的規模での環境問題に対して、自然環境の中で分解する高分子素材の開発が要望されるようになり、その中でも特に微生物によって分解されるプラスチックは、環境適合性材料や新しいタイプの機能性材料として大きな期待がよせられている。
【0003】
α、ω―脂肪族ジオ−ルとα、ω―脂肪族ジカルボン酸との融解重縮合によって製造される脂肪族ポリエステル、例えばポリエチレンサクシネ−ト(PES)やポリエチレンアジペ−ト(PEA)及びポリブチレンサクシネ−ト(PBS)は古くから知られたポリマ−で安価に製造でき、かつ土中への埋没テストでも微生物により分解されることが確認されている〔インタ−ナショナル バイオ ディテリオレイション ブルティン(Int.Biodetetn.Bull. )、11巻、127頁(1975)及びポリマ− サイエンス テクノロジ−(Polym.Sci.Technol.)、3巻、61頁(1973)参照のこと〕。しかしながら、脂肪族ポリエステルは熱安定性に乏しく、重縮合時に分解反応を併発するので、通常は2,000〜6,000程度の分子量のものしか得られず、繊維やフィルムとして加工するには十分でなかった。
【0004】
これに対し、本発明者らは先に特定の触媒と着色防止剤を選択することによりポリエチレンサクシネ−ト、ポリブチレンサクシネ−ト、ポリブチレンアジペ−ト、ポリヘキサメチレンアジペ−トなどの脂肪族ポリエステルの溶融重縮合のみによる高分子量化が可能であり、成形体などとして利用することができることを提案した(特開平6−271656号公報、特願平5−297330号)。
【0005】
しかし、脂肪族ポリエステル全般の性質として、結晶化速度が非常に遅いので、反応容器を用いて脂肪族ポリエステルを重縮合し、目的の分子量まで重合度を上昇させた後、払い出しても、通常の冷却装置を用いて冷却したのでは、固化(結晶化)できず、カッティングが困難であり、長い冷却ゾ−ンを設置して固化させないと、できたポリマ−をカッティングしてペレット化できない場合があるという問題点があった。
【0006】
また、一般に結晶化速度の遅い脂肪族ポリエステルを用いて射出成形などの成形をする場合には、冷却固化させるのに長時間を要するため、物性面からも、製造面からも不利であった。
【0007】
【発明が解決しようとする課題】
本発明は、生分解性という本来の性質を損なうことなく、ポリマ−をペレット化する際のカッティング性及び射出成形時の成形性を高めた脂肪族ポリエステル樹脂組成物を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明は、かかる目的を達成するもので、脂肪族ポリエステル樹脂と層状珪酸塩とからなる脂肪族ポリエステル樹脂組成物を製造するに際して、層状珪酸塩を予めポリエステル原料のグリコール類に膨潤処理させておくことを特徴とするものである。
【0009】
【発明の実施の形態】
本発明で用いられる脂肪族ポリエステルとしては、グリコールと脂肪族ジカルボン酸との重縮合などにより得られるポリエチレンサクシネ−ト、ポリブチレンサクシネ−ト、ポリヘキサメチレンサクシネ−ト、ポリエチレンアジペ−ト、ポリヘキサメチレンアジペ−ト、ポリブチレンアジペ−ト、ポリエチレンオキザレ−ト、ポリブチレンオキザレ−ト、ポリネオペンチルオキザレ−ト、ポリエチレンセバケ−ト、ポリブチレンセバケ−ト、ポリヘキサメチレンセバケ−トなどが挙げられる。これらは2種類あるいはそれ以上の共重合体であってもよく、また、これらを主成分とするものであれば、他成分、例えば芳香族ジカルボン酸や多官能性の水酸基およびカルボン酸などを含んでもよい。
【0010】
また、ポリグリコ−ル酸やポリ乳酸などのようなポリ(α−ヒドロキシ酸)またはこれらの共重合体、ポリ(ε−カプロラクトン)やポリ(β−プロピオラクトン)のようなポリ(ω−ヒドロキシアルカノエ−ト)、ポリ(3−ヒドロキシブチレ−ト)、ポリ(3−ヒドロキシバリレ−ト)、ポリ(3−ヒドロキシカプロレ−ト)、ポリ(3−ヒドロキシヘプタノエ−ト)、ポリ(3−ヒドロキシオクタノエ−ト)のようなポリ(β−ヒドロキシアルカノエ−ト)とポリ(4−ヒドロキシブチレ−ト)などの脂肪族ポリエステルを用いることも可能である。
【0011】
また、本発明で用いられる層状珪酸塩は天然に存在するもの又は合成されたもののいずれを用いることもでき、あるいは併用することもできる。この層状珪酸塩の例としては、スメクタイト族、バ−ミキュライト族、雲母族、脆雲母族、緑泥石族が挙げられるが、特に好ましいものは、膨潤性フッ素雲母系鉱物である。
【0012】
層状珪酸塩は、生成する脂肪族ポリエステル100重量部に対して0.01〜50重量部、好ましくは0.1〜20重量部、最適には1〜10重量部の範囲になるように脂肪族ポリエステルに配合することが望ましい。この配合量があまり少ないと結晶化速度の改良効果が十分に発揮されず、また多すぎると伸度が小さくなり、靭性の低下が大きくなる。
なお、層状珪酸塩は、望ましくは粉末状であって、脂肪族ポリエステル樹脂中に分散状態になっていることが望ましい。
【0013】
次に本発明の組成物を得る方法としては、脂肪族ポリエステルと層状珪酸塩とを混練機を用いてメルトもしくはドライブレンドしてもよいが、通常は脂肪族ポリエステルを製造する際に、予めポリエステルの原料であるグリコ−ル類などに層状珪酸塩を膨潤処理させておいて脂肪族ジカルボン酸などを加えて脂肪族ポリエステルを製造することにより、膨潤した層状珪酸塩が脂肪族ポリエステル中に分散した組成物を得ることができる。なお、グリコ−ル類としては、エチレングリコ−ル、ブチレングリコ−ルなど脂肪族ポリエステルの原料と同じグリコ−ルを用いることが好ましい。またグリコ−ル類に層状珪酸塩を膨潤処理させる方法としては、グリコ−ル中に層状珪酸塩を長時間浸漬する方法、グリコ−ル中に層状珪酸塩を分散させた状態で加熱撹拌する方法、あるいは超音波処理など任意の方法を採用できる。
【0014】
脂肪族ポリエステル樹脂組成物には、その特性を大きく損なわない限りにおいて、顔料、熱安定剤、酸化防止剤、耐候剤、難燃剤、可塑剤、離型剤、強化剤等を添加することも可能である。熱安定剤や酸化防止剤としては、例えばヒンダ−ドフェノ−ル類、リン化合物、ヒンダ−ドアミン類、イオウ化合物、銅化合物やアルカリ金属のハロゲン化物あるいはこれらの混合物を使用することができる。特に銅化合物やアルカリ金属のハロゲン化物が最も効果的である。強化材としては、例えばクレ−、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、ケイ酸カルシウム、アスベスト、アルミン酸ナトリウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、ガラスバル−ン、カ−ボンブラック、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタリサイド、金属繊維、金属ウィスカ−、セラミックウィスカ−、チタン酸カリウムウィスカ−、窒化ホウ素、グラファイト、ガラス繊維、炭素繊維等が挙げられる。これらの添加剤は、重合時あるいは得られた樹脂組成物を溶解混練又は溶解成形する際に加えられる。
【0015】
本発明の脂肪族樹脂組成物は、通常の成形加工方法で目的の成形品とすることができる。例えば射出成形、押出成形、吹き込み成形、焼結成形等の熱溶融成形法を採用することができる。また、有機溶媒溶液から流延法により薄膜とする方法も採用することができる。
【0016】
【実施例】
次に、本発明を実施例によりさらに具体的に説明する。
なお、実施例中の融点及び結晶化に伴うピ−ク温度は以下のように求めた。
【0017】
パ−キン エルマ−社製の熱分析装置(DSC−7)を用いて、昇温速度20℃/分、徐冷却速度20℃/分で測定した。すなわち、まず20℃/分で昇温し融点(Tm)の吸熱ピ−クを測定した。さらに150℃まで昇温して5分間保持した後、20℃/分の速度で冷却して結晶化に伴う発熱ピ−ク(Tc)を測定した。
【0018】
実施例1
撹拌機、ウィグリュ−分留管及びガス導入管を付した三つ口フラスコに0.73gの膨潤性フッ素雲母系鉱物(コ−プケミカル社製;ME100 )をエチレングリコ−ル62.07g中に分散させ室温で一晩撹拌して、膨潤性フッ素雲母系鉱物を膨潤させた。
次いで、こはく酸を59.05g加え、前記フラスコ加熱用の油浴を200℃に昇温し、窒素ガスをガス導入管よりゆっくり融解液中に流し、200℃の温度で3時間要して生成する水と過剰のエチレングリコ−ルを留去してオリゴマ−を得た。
【0019】
次いで、ポリりん酸0.063gとテトラブチルチタネ−ト0.17gを加え、温度を30分かけて240℃にあげると同時に0.5mmHgの減圧状態にし、240℃で3時間重縮合を行い、白色のポリエチレンサクシネートを得た。
このポリマ−の熱的性質を測定したところ、103℃に融点の吸熱ピ−クが、また59℃に降温過程における結晶化に伴う発熱ピ−クがそれぞれ観察され、良好な結晶化挙動を示すことが分かった。また、良好なカッティング性を示すことも分かった。
【0020】
実施例2
撹拌機、ウィグリュ−分留管及びガス導入管を付した三つ口フラスコに0.73gの膨潤性フッ素雲母系鉱物(コ−プケミカル社製;ME100 )を1,4−ブタンジオ−ル29.74g中に分散させ100℃で60分間撹拌して、膨潤性フッ素雲母系鉱物を膨潤させた。
次いで、こはく酸を35.43g加え、油浴を200℃に昇温し、窒素をゆっくり融解液中に流し、200℃の温度で3時間要して生成する水と過剰の1,4−ブタンジオ−ルを留去してオリゴマ−を得た。
【0021】
次いで、ポリりん酸0.031gとテトラブチルチタネ−ト0.10gを加え、温度を20分かけて220℃にあげると同時に0.5mmHgの減圧状態にし、220℃で2時間重縮合を行い、白色のポリマ−(ポリブチレンサクシネート)を得た。
このポリマ−の熱的性質を測定したところ、117℃に融点の吸熱ピ−クが、また、83℃に降温過程における結晶化に伴う発熱ピ−クが観察され、良好な結晶化挙動を示すことが分かった。また、良好なカッティング性を示すことも分かった。
【0022】
比較例1
膨潤性フッ素雲母系鉱物を用いないことを除けば、実施例1と全く同様にして白色ポリマ−を得た。
このポリマ−の熱的性質を測定したところ、104℃に融点の吸熱ピ−クが観察されたが、結晶化に伴うピ−クは観察されず、不良の結晶化挙動を示すことが分かった。
【0023】
比較例2
膨潤性フッ素雲母系鉱物を用いないことを除けば、実施例2と全く同様にして白色ポリマ−を得た。
このポリマ−の熱的性質を測定したところ、117℃に融点の吸熱ピ−クが、また、76℃に降温過程における結晶化に伴う発熱ピ−クが観察され、実施例2に比して不良の結晶化挙動を示すことが分かった。
【0024】
【発明の効果】
以上の説明から明らかなように、本発明によれば、脂肪族ポリエステル樹脂の結晶化速度に比して、非常に速い結晶化速度を有することにより、ポリマ−をペレット化する際のカッティング性が向上し、ペレット化が容易となるとともに、射出成形時における固化が速くなり、優れた成形性を有する脂肪族ポリエステル樹脂組成物の提供が可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aliphatic polyester resin composition having improved cutting properties during pelletization and moldability during injection molding.
[0002]
[Prior art]
Plastics used as synthetic fibers, films and other molded products have the advantage of being light and durable, as well as being able to be supplied stably and inexpensively in large quantities. We have built a modern society that can be said. However, in recent years, in response to environmental problems on a global scale, there has been a demand for the development of polymer materials that can be decomposed in the natural environment. Among them, plastics that are decomposed by microorganisms in particular are environmentally compatible materials. As a new type of functional material, there are great expectations.
[0003]
Aliphatic polyesters produced by melt polycondensation of α, ω-aliphatic diols with α, ω-aliphatic dicarboxylic acids, such as polyethylene succinate (PES) and polyethylene adipate (PEA) and Polybutylene succinate (PBS) is a long-known polymer that can be produced at low cost, and has been confirmed to be degraded by microorganisms even in burial tests [international biodeterilation]. Bulletin (Int. Biodeetn. Bull.), 11, 127 (1975) and Polymer Science Technology (Polym. Sci. Technol.), 3, 61 (1973)]. However, since aliphatic polyesters have poor thermal stability and undergo a decomposition reaction at the time of polycondensation, usually only those having a molecular weight of about 2,000 to 6,000 can be obtained, which is sufficient for processing as fibers or films. It was not.
[0004]
On the other hand, the present inventors previously selected a specific catalyst and an anti-coloring agent to thereby produce polyethylene succinate, polybutylene succinate, polybutylene adipate, polyhexamethylene adipate. It has been proposed that a high molecular weight can be obtained only by melt polycondensation of an aliphatic polyester such as those described above (Japanese Patent Application Laid-Open No. Hei 6-271656, Japanese Patent Application No. Hei 5-297330).
[0005]
However, as a general property of aliphatic polyesters, the crystallization rate is very slow. Therefore, even if the aliphatic polyester is polycondensed using a reaction vessel, the degree of polymerization is increased to the target molecular weight, and then discharged, If it is cooled using a cooling device, it cannot be solidified (crystallized) and is difficult to cut. If a long cooling zone is not set and solidified, the resulting polymer cannot be cut and pelletized. There was a problem that there was.
[0006]
In general, when molding such as injection molding using an aliphatic polyester having a slow crystallization rate, it takes a long time to cool and solidify, which is disadvantageous from the viewpoint of physical properties and manufacturing.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide an aliphatic polyester resin composition having improved cutting properties when pelletizing a polymer and moldability at the time of injection molding without impairing the original property of biodegradability. Is.
[0008]
[Means for Solving the Problems]
The present invention achieves such an object, and in producing an aliphatic polyester resin composition comprising an aliphatic polyester resin and a layered silicate , the layered silicate is preliminarily swollen with glycols as a polyester raw material. It is characterized by this.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the aliphatic polyester used in the present invention include polyethylene succinate, polybutylene succinate, polyhexamethylene succinate, polyethylene adipate obtained by polycondensation of glycol and aliphatic dicarboxylic acid. Polyhexamethylene adipate, polybutylene adipate, polyethylene oxalate, polybutylene oxalate, polyneopentyl oxalate, polyethylene sebacate, polybutylene sebacate And polyhexamethylene sebacate. These may be two or more types of copolymers, and other components such as aromatic dicarboxylic acids, polyfunctional hydroxyl groups and carboxylic acids may be used as long as these are the main components. But you can.
[0010]
In addition, poly (α-hydroxy acid) such as polyglycolic acid and polylactic acid, or a copolymer thereof, poly (ω-hydroxy) such as poly (ε-caprolactone) and poly (β-propiolactone). Alkanoate), poly (3-hydroxybutyrate), poly (3-hydroxyvalerate), poly (3-hydroxycaproate), poly (3-hydroxyheptanoate), It is also possible to use poly (β-hydroxyalkanoates) such as poly (3-hydroxyoctanoate) and aliphatic polyesters such as poly (4-hydroxybutyrate).
[0011]
The layered silicate used in the present invention can be either naturally occurring or synthesized, or can be used in combination. Examples of the layered silicate include a smectite group, a vermiculite group, a mica group, a brittle mica group, and a chlorite group, and a particularly preferable one is a swellable fluoromica-based mineral.
[0012]
The layered silicate is 0.01 to 50 parts by weight, preferably 0.1 to 20 parts by weight, and most preferably 1 to 10 parts by weight with respect to 100 parts by weight of the resulting aliphatic polyester. It is desirable to mix with polyester. If the blending amount is too small, the effect of improving the crystallization rate is not sufficiently exhibited. If the blending amount is too large, the elongation decreases and the toughness decreases greatly.
The layered silicate is desirably in the form of powder and is desirably dispersed in the aliphatic polyester resin.
[0013]
Next, as a method for obtaining the composition of the present invention, the aliphatic polyester and the layered silicate may be melted or dry blended using a kneader. Usually, when the aliphatic polyester is produced, the polyester is previously prepared. The swelled layered silicate was dispersed in the aliphatic polyester by producing an aliphatic polyester by adding the aliphatic dicarboxylic acid after the layered silicate was swollen to glycols which are raw materials of A composition can be obtained. In addition, as glycols, it is preferable to use the same glycol as the raw material of the aliphatic polyester such as ethylene glycol and butylene glycol. Further, as a method of swelling the layered silicate in the glycols, a method of immersing the layered silicate in the glycol for a long time, a method of heating and stirring in a state where the layered silicate is dispersed in the glycol Alternatively, any method such as ultrasonic treatment can be adopted.
[0014]
It is possible to add pigments, heat stabilizers, antioxidants, weathering agents, flame retardants, plasticizers, mold release agents, reinforcing agents, etc. to the aliphatic polyester resin composition as long as the properties are not significantly impaired. It is. As the heat stabilizer and antioxidant, for example, hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, alkali metal halides, or mixtures thereof can be used. In particular, copper compounds and alkali metal halides are most effective. Examples of reinforcing materials include clay, talc, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, asbestos, sodium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, -Bon black, zinc oxide, antimony trioxide, zeolite, hydrotalicide, metal fiber, metal whisker, ceramic whisker, potassium titanate whisker, boron nitride, graphite, glass fiber, carbon fiber and the like. These additives are added during polymerization or when the obtained resin composition is melt-kneaded or melt-molded.
[0015]
The aliphatic resin composition of this invention can be made into the target molded article by a normal molding method. For example, hot melt molding methods such as injection molding, extrusion molding, blow molding, and sintering molding can be employed. A method of forming a thin film by casting from an organic solvent solution can also be employed.
[0016]
【Example】
Next, the present invention will be described more specifically with reference to examples.
In the examples, the melting point and peak temperature associated with crystallization were determined as follows.
[0017]
Using a thermal analyzer (DSC-7) manufactured by Parkin Elmer, the temperature was increased at a rate of 20 ° C./min and the cooling rate was 20 ° C./min. That is, first, the temperature was raised at 20 ° C./min, and the endothermic peak of the melting point (Tm) was measured. The temperature was further raised to 150 ° C. and held for 5 minutes, and then cooled at a rate of 20 ° C./minute, and the exothermic peak (Tc) accompanying crystallization was measured.
[0018]
Example 1
In a three-necked flask equipped with a stirrer, a wiggle fractionation tube and a gas introduction tube, 0.73 g of a swellable fluorinated mica-based mineral (manufactured by Cooper Chemicals; ME100) was dispersed in 62.07 g of ethylene glycol. The mixture was stirred overnight at room temperature to swell the swellable fluoromica mineral.
Next, 59.05 g of succinic acid is added, the temperature of the oil bath for heating the flask is raised to 200 ° C., nitrogen gas is slowly poured into the melt from the gas introduction tube, and it takes 3 hours at a temperature of 200 ° C. Water and excess ethylene glycol were distilled off to obtain an oligomer.
[0019]
Next, 0.063 g of polyphosphoric acid and 0.17 g of tetrabutyl titanate are added, and the temperature is raised to 240 ° C. over 30 minutes. At the same time, the pressure is reduced to 0.5 mmHg, and polycondensation is performed at 240 ° C. for 3 hours. A white polyethylene succinate was obtained.
When the thermal properties of this polymer were measured, an endothermic peak with a melting point was observed at 103 ° C., and an exothermic peak associated with crystallization during the temperature lowering process was observed at 59 ° C., indicating good crystallization behavior. I understood that. Moreover, it turned out that favorable cutting property is shown.
[0020]
Example 2
In a three-necked flask equipped with a stirrer, a wiggrew fractionation tube and a gas introduction tube, 0.73 g of a swellable fluorinated mica-based mineral (manufactured by Cooper Chemical Co., Ltd .; ME100) 29.74 g of 1,4-butanediol It was dispersed therein and stirred at 100 ° C. for 60 minutes to swell the swellable fluoromica mineral.
Next, 35.43 g of succinic acid was added, the temperature of the oil bath was raised to 200 ° C., nitrogen was slowly poured into the melt, and the water generated at 200 ° C. for 3 hours and excess 1,4-butanedio was generated. The oligomer was distilled off to obtain an oligomer.
[0021]
Next, 0.031 g of polyphosphoric acid and 0.10 g of tetrabutyl titanate are added, and the temperature is raised to 220 ° C. over 20 minutes. At the same time, the pressure is reduced to 0.5 mmHg, and polycondensation is performed at 220 ° C. for 2 hours. A white polymer (polybutylene succinate) was obtained.
When the thermal properties of this polymer were measured, an endothermic peak having a melting point was observed at 117 ° C., and an exothermic peak associated with crystallization during the temperature lowering process was observed at 83 ° C., indicating good crystallization behavior. I understood that. Moreover, it turned out that favorable cutting property is shown.
[0022]
Comparative Example 1
A white polymer was obtained in the same manner as in Example 1 except that the swellable fluoromica mineral was not used.
When the thermal properties of this polymer were measured, an endothermic peak with a melting point at 104 ° C. was observed, but no peak was observed with crystallization, indicating that it exhibited poor crystallization behavior. .
[0023]
Comparative Example 2
A white polymer was obtained in exactly the same manner as in Example 2 except that the swellable fluoromica mineral was not used.
As a result of measuring the thermal properties of this polymer, an endothermic peak having a melting point was observed at 117 ° C., and an exothermic peak accompanying crystallization during the temperature lowering process was observed at 76 ° C. Compared to Example 2. It was found to show poor crystallization behavior.
[0024]
【The invention's effect】
As is apparent from the above description, according to the present invention, the crystallization speed is very high compared to the crystallization speed of the aliphatic polyester resin, so that the cutting property when pelletizing the polymer is improved. Thus, pelletization is facilitated and solidification at the time of injection molding is accelerated, and it is possible to provide an aliphatic polyester resin composition having excellent moldability.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34824995A JP3621176B2 (en) | 1995-12-19 | 1995-12-19 | Method for producing aliphatic polyester resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34824995A JP3621176B2 (en) | 1995-12-19 | 1995-12-19 | Method for producing aliphatic polyester resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09169893A JPH09169893A (en) | 1997-06-30 |
JP3621176B2 true JP3621176B2 (en) | 2005-02-16 |
Family
ID=18395760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34824995A Expired - Fee Related JP3621176B2 (en) | 1995-12-19 | 1995-12-19 | Method for producing aliphatic polyester resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3621176B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002363393A (en) * | 2001-06-07 | 2002-12-18 | Unitika Ltd | Biodegradable polyester resin composition, its manufacturing method, and foamed product to be obtained therefrom |
EP1624024B1 (en) * | 2003-05-12 | 2007-07-04 | Unitika Ltd. | Biodegradable polyester resin composition, process for producing the same and foamed article and molded article using the same |
JP2005194415A (en) * | 2004-01-08 | 2005-07-21 | Unitika Ltd | Polylactic acid sheet and formed article made of the same |
-
1995
- 1995-12-19 JP JP34824995A patent/JP3621176B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09169893A (en) | 1997-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5840977B2 (en) | Method for producing thermoplastic polyester copolymer elastomer | |
JPH11511500A (en) | Polyalkylene ether as plasticizer and flow aid in poly (1,4-cyclohexane dimethylene terephthalate) resin | |
US4211689A (en) | Copolyesters of polybutylene terephthalate | |
EP0624179A1 (en) | Reinforced molding composition based on poly(1,4-cyclohexylene dimethylene terephthalate) containing a high molecular weight aliphatic polyester. | |
JP3621176B2 (en) | Method for producing aliphatic polyester resin composition | |
JPS59129253A (en) | Flame-retardant polyester resin composition | |
JPS58118849A (en) | Flame-retardant polyester resin composition | |
GB1569230A (en) | Flame retardant compositions comprising block copolyesters of polybutylene terephthalate | |
JPS59149954A (en) | Flame-retardant polyester resin composition | |
US4271063A (en) | Thermoplastic molding compositions | |
GB1569229A (en) | Block copolyesters of polybutylene terephthalate | |
JP3432279B2 (en) | Polyethylene succinate resin composition | |
JPH07107133B2 (en) | Polyarylene sulfide resin composition | |
JPH06172620A (en) | Polyester resin composition | |
US4418172A (en) | Polyester composition containing 2-methyl-1,3-propylene glycol dibenzoate | |
JP3678867B2 (en) | Low hardness polyester elastomer and method for producing the same | |
JPH0873710A (en) | Reinforced polyester resin composition and preparation thereof | |
JP3495057B2 (en) | Method for producing polyester / ester block copolymer and molded article thereof | |
JPH0420526A (en) | Production of aromatic polyester-amide | |
JPH08120071A (en) | Production of reinforced polyester resin composition | |
JP2758521B2 (en) | Method for producing high polymerization degree polyester | |
JPH0618997B2 (en) | Flame-retardant polyester resin composition | |
JP3006033B2 (en) | Resin composition | |
JP2807580B2 (en) | Polyester resin composition | |
JPH06145479A (en) | Polybutylene terephthalate-based resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040607 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041102 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041117 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071126 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |