Nothing Special   »   [go: up one dir, main page]

JP3617333B2 - Ultrasonic welding method - Google Patents

Ultrasonic welding method Download PDF

Info

Publication number
JP3617333B2
JP3617333B2 JP29236198A JP29236198A JP3617333B2 JP 3617333 B2 JP3617333 B2 JP 3617333B2 JP 29236198 A JP29236198 A JP 29236198A JP 29236198 A JP29236198 A JP 29236198A JP 3617333 B2 JP3617333 B2 JP 3617333B2
Authority
JP
Japan
Prior art keywords
ultrasonic welding
workpiece
horn
ultrasonic
workpieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29236198A
Other languages
Japanese (ja)
Other versions
JP2000117834A (en
Inventor
守道 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP29236198A priority Critical patent/JP3617333B2/en
Publication of JP2000117834A publication Critical patent/JP2000117834A/en
Application granted granted Critical
Publication of JP3617333B2 publication Critical patent/JP3617333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/322Providing cavities in the joined article to collect the burr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1246Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
    • B29C66/12463Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being tapered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • B29C66/30223Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined said melt initiators being rib-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5324Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length
    • B29C66/53241Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being tubular and said substantially annular single elements being of finite length relative to the infinite length of said tubular articles
    • B29C66/53242Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being tubular and said substantially annular single elements being of finite length relative to the infinite length of said tubular articles said single elements being spouts, e.g. joining spouts to tubes
    • B29C66/53243Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being tubular and said substantially annular single elements being of finite length relative to the infinite length of said tubular articles said single elements being spouts, e.g. joining spouts to tubes said spouts comprising flanges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81431General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single cavity, e.g. a groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8167Quick change joining tools or surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/841Machines or tools adaptable for making articles of different dimensions or shapes or for making joints of different dimensions
    • B29C66/8414Machines or tools adaptable for making articles of different dimensions or shapes or for making joints of different dimensions of different diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/843Machines for making separate joints at the same time in different planes; Machines for making separate joints at the same time mounted in parallel or in series
    • B29C66/8432Machines for making separate joints at the same time mounted in parallel or in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9241Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9261Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the displacement of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • B29C66/9292Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges in explicit relation to another variable, e.g. pressure diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9512Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools by controlling their vibration frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9516Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools by controlling their vibration amplitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9517Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration amplitude values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/749Motors
    • B29L2031/7492Intake manifold

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波溶着方法に関する。
【0002】
【従来の技術】
特開平7−266421号は、超音波ホーンを有する超音波ホーン部をエアシリンダにより単一の一方のワークに向けて移動させ一方のワークに当接加圧させて一方のワークを単一の他方のワークに超音波溶着する、従来の超音波溶着方法を開示している。そこでは、超音波溶着ホーンが一方のワークに当接する直前までは、超音波溶着ホーンの下降スピードを速くし、それによって、作業性およびサイクルタイムを向上させている。
【0003】
【発明が解決しようとする課題】
しかし、従来超音波溶着方法では、1回の超音波溶着ホーンの下降で1つの一方のワークを他方のワークに溶着することしかできないので、超音波溶着ホーンの下降スピードを上げても、作業性の向上およびサイクルタイムの短縮には限度がある。
本発明の目的は、超音波溶着ホーンを単一のワークに当接・加圧させていた従来方法に比べて、作業性およびサイクルタイムを向上させることができる超音波溶着方法を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成する本発明は、つぎの通りである。
(1) 超音波振動が伝達される超音波溶着ホーン複数の一方のワークを他方のワークに同時に超音波溶着する超音波溶着方法であって、
前記複数の一方のワークおよび前記他方のワークを樹脂または繊維強化樹脂から構成しておき、
前記複数の一方のワークにフランジ部と該フランジ部の下面に突出する突起とを形成しておくとともに、前記他方のワークに前記突起が干渉・溶融しながら侵入する凹部と該凹部の入口に位置する溶着ばり溜め部とを形成しておき、
前記超音波溶着ホーンを、先端部が超音波溶着ホーンの中心軸を通る2つ以上の対称軸と複数の辺をもつ外形形状に形成しておき、
超音波溶着を行う際に、前記超音波溶着ホーンを前記複数の一方のワークと他方のワークのうち前記複数の一方のワークに当接・加圧させ、
前記超音波溶着ホーンの先端で前記複数の一方のワークのフランジ部を加圧して、前記複数の一方のワークのフランジ部に設けられた突起と前記他方のワークの凹部の前記突起と干渉する部分とを、超音波溶着の溶着深さが1.5mm以上になるように、かつ、超音波溶着以後に、前記複数の一方のワークのフランジ部下面と、前記他方のワークの前記溶着ばり溜め部のまわりの、前記フランジ部下面に対向する面との間に、0.1mm以上の隙間が存在するように、超音波溶着する、超音波溶着方法。
(2) 前記超音波溶着ホーンと前記複数の一方のワークとの当接部全体にわたり超音波溶着ホーンの振幅をほぼ等しくして前記複数の一方のワークを他方のワークに超音波溶着する(1)記載の超音波溶着方法。
) 前記超音波溶着の周波数を30kHz以下とした(1)記載の超音波溶着方法。
) 前記超音波溶着ホーンの振幅を、両振幅で、40μm以上とした(1)記載の超音波溶着方法。
) 超音波溶着ホーンの加圧力を、50〜200kgf/cm2 とした(1)記載の超音波溶着方法。
【0005】
上記(1)の超音波溶着方法では、超音波溶着ホーンを複数の一方のワークと当接・加圧させるので、1回の超音波溶着ホーンの移動で複数の一方のワークを他方のワークに溶着でき、従来の1回の超音波溶着ホーンの下降で単一の一方のワークを他方のワークに溶着する場合に比べて、作業性およびサイクルタイムを向上させることができる。
また、超音波溶着ホーンの先端部が超音波溶着ホーンの中心軸を通る2つ以上の対称軸と複数の辺をもつ外形形状を有するので、超音波溶着ホーンと複数の一方のワークとの当接部全体にわたり超音波溶着ホーンの振幅がほぼ等しくなり、各溶着部の溶着強度不足は生じない。
また、複数の一方のワークおよび他方のワークは、樹脂または繊維強化樹脂からなり、一方のワークと他方のワークの接触・係合部(一方のワークの突起が他方のワークの凹部と接触・係合する部分)で樹脂同士が振動で局部的に溶融・凝固して超音波溶着される。
また、超音波溶着の溶着深さを1.5mm以上としたので、安定した大きな超音波溶着強度が確保される。超音波溶着の溶着深さを大にしていくと溶着ばり発生量も大となっていくが、溶着ばり溜まりの容積を溶着ばりを溜めるだけの容積に設定しておくことにより(たとえば、溶着深さ相当で2mm)、その溶着深さまでの発生ばりを吸収できる。
また、超音波溶着後の、複数の一方のワークと他方のワークとの隙間を、0.1mm以上としたので、一方のワークの突起と他方のワークの凹部とが係合し一方のワークのフランジ面と他方のワークの対向面とは接触せず、一方のワークの突起と他方のワークの凹部との間の加圧力が一定となって安定した溶着性が得られる。また、一方のワークのフランジ面と他方のワークの対向面とが当接してしまうと、その当接部が振動で溶け始めるが、そこに0.1mm以上の隙間が確保されているので、一方のワークのフランジ面と他方のワークの対向面の溶融が防止できる。
上記(2)の超音波溶着方法では、超音波溶着ホーンと複数の一方のワークとの当接部全体にわたり超音波溶着ホーンの振幅をほぼ等しくして溶着を実行するので、複数の一方のワークの他方のワークへの同時溶着にかかわらず、超音波溶着ホーンの伸縮の非均一によって生じる各溶着部の溶着強度不足は生じない。
上記()の超音波溶着方法では、超音波溶着の周波数を30kHz以下としたので、大きな超音波溶着強度が安定して得られ、また、一方のワークの超音波溶着ホーンとの当接面の表面摩耗が小さい。
上記()の超音波溶着方法では、超音波溶着ホーンの振幅を、両振幅で、40μm以上としたので、振幅の高い方が振動が突起に伝わりやすく溶融しやすいため、大きい超音波溶着強度が確保される。また、両振幅で40(〜100)μmで、一方のワークの超音波溶着ホーンとの当接面の表面摩耗が小さい。
上記()の超音波溶着方法では、超音波溶着の加圧力を、50〜200kgf/cm2 としたので、超音波溶着強度が高く、かつ一方のワークの超音波溶着ホーンとの当接面の表面摩耗も小さい。
【0006】
【発明の実施の形態】
図1〜図12は本発明実施例の超音波溶着方法を実施する装置と超音波溶着されるワーク(一方のワークと他方のワーク)を示している。
図1に示すように、本発明実施例の超音波溶着方法を実施する装置は、複数の一方のワーク2、3に当接され複数の一方のワーク2、3を加圧する、超音波振動が伝達される超音波溶着ホーン1を有している。複数の一方のワーク(超音波溶着ホーンと当接される方のワーク)2、3は、超音波溶着ホーン1により当接・加圧されて、他方のワーク4(一方のワークが溶着される方のワーク、この他方のワーク4は1つであっても複数であってもよい)に同時に超音波溶着される。
【0007】
超音波溶着では、超音波振動子とブースタと超音波溶着ホーン1とを直列に連結したものからなる超音波部を移動・加圧装置(たとえば、エアシリンダ、液圧シリンダ、モータ、など)でワーク2、3に対して移動させ、当接・加圧して、一方のワーク2、3と他方のワーク4とを超音波溶着する。超音波振動子の振動振幅はブースタによって増減され、ブースタから超音波溶着ホーン1に伝達される。超音波溶着ホーン1は、ブースタとの連結側の端部1bの全面でブースタから加圧力を受けるとともに、ブースタから超音波振動を受ける。ブースタからの振動を伝達されて超音波溶着ホーン1は軸方向(図の上下方向)に伸縮する。超音波溶着ホーン1は軸方向長さが約130mmで、一方のワーク2、3との当接側の端部1aで、たとえば10〜100μm伸縮する。超音波溶着ホーン1の材質は、加圧状態で超音波振動を受けて弾性的に伸縮するものであればよく、従来の超音波溶着ホーンの材質であってもよく、たとえば、鉄、アルミ、チタン、またはこれらの金属の合金、等からなる。
【0008】
複数の一方のワーク2、3および他方のワーク4は、樹脂または繊維強化樹脂からなる。樹脂は、たとえば熱可塑性樹脂からなる(ただし、熱可塑性樹脂に限るものではない)。樹脂は、たとえば、ポリアミド6、ポリアミド66である。また、強化繊維は、たとえばガラス繊維からなる(ただし、ガラス繊維に限るものではない)。
【0009】
複数の一方のワーク2、3は、たとえばユニオン(以下、ユニオン2、3ともいう)からなり(ただし、ユニオンに限るものではない)、他方のワーク4は、たとえばエンジンインテークマニホルド(以下、インテークマニホルド4ともいう)からなる(ただし、エンジンインテークマニホルドに限るものではない)。他方のワーク4がエンジンインテークマニホルドの場合、ユニオン2、3は、PCV(ポジティブクランクケースベンチレーション)システムの吸気系への入口や、EGR(エキゾーストガスリサーキュレーション)システムの再循環ガスの吸気系への入口、を構成するユニオンであり、そこにホースが装着される。複数のユニオン2、3の大きさは、通常、互いに異なる。
【0010】
図1、図6、図7に示すように、一方のワークであるユニオン2、3は、円筒部2a、3aと、円筒部2a、3aの外周面から半径方向外側に張り出すフランジ2b、3bと、フランジ2b、3bの他方のワーク4側への対向面に該面から突出するように形成された環状の突起2c、3cと、を有する。他方のワーク4には、一方のワーク2、3の突起2c、3cが干渉・溶融しながら侵入する環状の凹部4a、4bが形成されており、凹部4a、4bの入口には溶着ばりを閉じ込める溶着ばり溜め部5a、5bが形成されている。超音波溶着時には、突起2c、3cと凹部4a、4bの干渉部分が溶融し、加圧により突起2c、3cが凹部4a、4bに侵入していき、その時生じる溶着ばりは溶着ばり溜め部5a、5b内に吸収される。
【0011】
図1に示すように、超音波溶着ホーン1は、その先端部1aで、一方のワーク2、3をそのフランジ2c、3cにて当接して、加圧する。
図1、図2に示すように、超音波溶着ホーン1は、ブースタとの連結側の端部1bは横断面が円形であるが、一方のワーク2、3と当接する側の先端部1aは、フランジ2c、3cを包絡する多辺形の外形形状を有し、一方のワーク2、3と当接する側の先端部1aは、ブースタとの連結側の端部1b側の断面よりも断面が絞られている。
超音波溶着ホーン1は、一方のワーク2、3と当接する側の先端部1aに、一方のワーク2、3のフランジ2c、3cの上面より超音波溶着ホーン側にある部分を干渉防止のために受け入れるホーン穴6、7を有している。また、超音波溶着ホーン1は、ブースタとの連結側の端部1bに、ブースタとの連結用のホーン取付け穴(ねじ穴)8を有している。
【0012】
つぎに、上記装置、ワークを用いて実施される本発明実施例の超音波溶着方法を説明する。
本発明実施例の超音波溶着方法は、図1に示すように、超音波振動が伝達される超音波溶着ホーン1を複数の一方のワーク(超音波溶着ホーンと当接される方のワーク)2、3に当接・加圧させ、複数の一方のワーク2、3を他方のワーク4(一方のワークが溶着される方のワーク、この他方のワーク4は1つであっても複数であってもよい)に同時に超音波溶着する方法からなる。
【0013】
複数の一方のワーク2、3の同時溶着においては、すべての一方のワーク2、3の溶着強度を確保することが必要である。そのために、本発明実施例の超音波溶着方法では、超音波溶着ホーン1と複数の一方のワーク2、3との当接部全体にわたり超音波溶着ホーン1の振幅(超音波溶着ホーン1の先端1aでの振幅)をほぼ等しくして、複数の一方のワーク2、3を他方のワーク4に超音波溶着する。
【0014】
超音波溶着ホーン1の振幅を複数の一方のワーク2、3との当接部全体にわたり均一化するために、図2、または図3、または図4、または図5に示すように、超音波溶着ホーン1に、先端部1aが超音波溶着ホーンの中心軸(通常、ブースタとの連結用穴の中心を通る軸線)を通る2つ以上の対称軸11、12、13と複数の辺14、15、16、17をもつ外形形状(辺と辺との角は丸められていてもよいし、あるいは直線状に角取りされていてもよい)を有する超音波溶着ホーンを用いる。この場合、穴6、7、9、10は対称軸に対して対称である必要はない。
【0015】
上記の超音波溶着ホーンの例を4つ(図2〜図5)挙げる。
図2の例では、ホーン穴6、7(径は互いに異なってもよい)は2つで、対称軸11、12は2つであり、外形形状は4辺形で角部が直線状に切り落とされている。対称軸11からその両側の2辺14、15までの距離aとa´は互いに等しくされ、また、対称軸12からその両側の2辺16、17までの距離bとb´は互いに等しくされている。
図3の例では、ホーン穴6、7、9(径は互いに異なってもよい)は3つで、対称軸11、12、13は3つであり、外形形状は3辺形で角部が丸められている。対称軸11からその両側の2つのコーナ部までの距離aとa´は互いに等しくされ、また、対称軸12からその両側の2つのコーナ部までの距離bとb´は互いに等しくされている。
図4の例では、ホーン穴6、7、9(径は互いに異なってもよい)は3つで、対称軸11、12は2つであり、外形形状は4辺形で角部が丸められている。対称軸11から横方向に延びる2辺14、15までの距離aとa´は互いに等しくされ、また、対称軸12から縦方向に延びる2辺16、17までの距離bとb´は互いに等しくされている。
図5の例では、ホーン穴6、7、9、10(径は互いに異なってもよい)は4つで、対称軸11、12は2つであり、外形形状は4辺形で角部が丸められている。対称軸11からその両側の2辺14、15までの距離aとa´は互いに等しくされ、また、対称軸12からその両側の2辺16、17までの距離bとb´は互いに等しくされている。
【0016】
また、十分な溶着強度を確保するために、以下の条件を満足して、超音波溶着が実行されることが望ましい。以下の条件は、樹脂または繊維強化樹脂(たとえば、ガラス繊維強化ポリアミド6、66等、ただし、それに限るものではない)からなる、複数の一方のワーク2および他方のワーク4を用いて、試験により、求められた。
【0017】
第1の条件として、超音波溶着の溶着深さが、1.5mm以上であることが望ましい。ここで、溶着深さとは、突起2c、3cが他方のワーク4に当たった位置から超音波溶着中に進んだ距離dをいう。
図8は、種々の溶着深さに対して超音波溶着強度および超音波溶着ばり発生量の変化を試験により測定した結果を示している。図8からわかるように、超音波溶着強度は、約1.5mm以下の溶着深さでは、溶着深さの増加にほぼ比例して増加するが、約1.5mm以上ではほとんど一定である。これは、溶着深さが約1.5mmあればよいことを意味し、それ以上にしても溶着強度は増加しないことがわかる。そのため、溶着深さの上限を、1.9mm程度とすることが望ましい。
また、溶着ばりは、溶着深さが大になるとしだいに増加し、溶着ばりだまりに吸収される間は内外にばりは発生しないが、それを超えると内外にばりが発生する。図8は、溶着ばりだまりの容積を溶着深さ2mmまでのばりを吸収するように設計した場合であり、溶着深さ2mmまではばりを吸収でき、それを超えると内外にばりが発生することを示している。このことから、溶着ばりだまりの容積は設計溶着深さによって決定されるべきであることがわかる。
【0018】
第2の条件として、超音波溶着後の、複数の一方のワーク2、3のフランジ2c、3cの下面(他方のワーク4に対向している面)と他方のワーク4のフランジ2c、3cへの対向面との隙間gが超音波溶着後において0.1mm以上であることが望ましい。
図9は、溶着後隙間sを種々に変化させた場合の、超音波溶着部のリーク(洩れ)および超音波溶着強度の変化の傾向を示している。図9からわかるように、隙間sが0.1mm以上ではリークが無いが、0.1mmより小さいとリークが生じる場合が出てくる。これは、一方のワーク2、3と他方のワーク4がフランジ2b、3bの下面で当たると、溶着条件以外の反発力、弾性力等の影響で突起2c、3cの溶着部に亀裂やヒビが発生し、リークが発生するからであると考えられる。また、溶着後隙間sの上限は溶着強度から決まり、たとえば、突起2c、3cの高さが1.9mmの場合、溶着後隙間sが0.4mmを超えると溶着深さが1.5mmより小となり、溶着強度不足を生じるので、突起2c、3cの高さが1.9mmの場合は溶着後隙間sは0.4mm以下としなければならない。
【0019】
第3の条件として、超音波溶着の周波数は30kHz以下であることが望ましい。
図10は、超音波の周波数を種々に変化させた場合の、ワーク表面(一方のワーク2、3のフランジ2b、3bの超音波溶着ホーン1との接触面)の摩耗、および超音波溶着強度の変化の傾向を示している。図10からわかるように、30kHz以下では、ワーク表面の摩耗は少なくかつ安定しているが、30kHzを超えると摩耗が増大していく。これは、30kHzを超える周波数領域では、ワーク2、3の超音波溶着ホーン1との接触面が溶融していき、摩耗が激しくなるからである。また、超音波周波数が30kHzを超える周波数領域では、ワーク2、3の超音波溶着ホーン1との接触面が溶融していくので、突起2c、3cの方の溶融が影響を受け、超音波溶着強度が低下する。これらの結果、超音波溶着の周波数は30kHz以下であることが望ましい。
【0020】
第4の条件として、超音波溶着ホーンの振幅は、両振幅で、40μm以上であることが望ましい。
図11は、超音波溶着ホーン1のワーク2、3との当接面(超音波溶着ホーン1の下部1a)での両振幅を種々に変化させた場合の、ワーク表面(一方のワーク2、3のフランジ2b、3bの超音波溶着ホーン1との接触面)の摩耗、および超音波溶着強度の変化の傾向を示している。図11からわかるように、超音波振幅が両振幅で40μm以上の領域では、超音波溶着強度が高くかつ安定している。これは振幅が大きい方が、振動が突起2c、3cに伝わりやすく、溶融しやすいからであると考えられる。また、振幅が両振幅で40μm以上の領域では、振動が突起2c、3cに円滑に伝わってフランジ上面での振動が抑えられるため、ワーク表面の摩耗は少なくかつ安定している。したがって、超音波溶着ホーンの振幅は、両振幅で40μm以上であることが望ましい。
【0021】
第5の条件として、超音波溶着ホーンの加圧力は、フランジ面で、50〜200kgf/cm2 (4900〜19600kPa)であることが望ましい。
図12は、超音波溶着ホーン1のワーク2、3との当接面(超音波溶着ホーン1の下部1a)での加圧力を種々に変化させた場合の、ワーク表面(一方のワーク2、3のフランジ2b、3bの超音波溶着ホーン1との接触面)の摩耗、および超音波溶着強度の変化の傾向を示している。試験は超音波周波数を20kHzにして行った。図12からわかるように、加圧力が50〜200kgf/cm2 で、溶着強度が高い。加圧力が50kgf/cm2 以下では、溶着時間が長くなり、ワーク2、3の表面の摩耗が大になり、また溶着強度も低下する。この結果から、超音波溶着ホーンの加圧力は、フランジ面で、50〜200kgf/cm2 であることが望ましい。
【0022】
【発明の効果】
請求項1の超音波溶着方法によれば、超音波溶着ホーンを複数の一方のワークと当接・加圧させるので、1回の超音波溶着ホーンの移動・加圧で複数の一方のワークを他方のワークに溶着でき、従来の1回の超音波溶着ホーンの下降で単一の一方のワークを他方のワークに溶着する場合に比べて、作業性およびサイクルタイムを向上させることができる。
また、超音波溶着ホーンの先端部が超音波溶着ホーンの中心軸を通る2つ以上の対称軸と複数の辺をもつ外形形状を有するので、超音波溶着ホーンと複数の一方のワークとの当接部全体にわたり超音波溶着ホーンの振幅をほぼ等しくすることができ、各溶着部の溶着強度不足が生じなくなる。
また、複数の一方のワークおよび他方のワークが、樹脂または繊維強化樹脂からなるので、樹脂同士の超音波溶融・凝固で溶着できる。
また、超音波溶着の溶着深さを1.5mm以上としたので、安定した大きな超音波溶着強度を確保できる。
また、超音波溶着後の、複数の一方のワークと他方のワークとの隙間を、0.1mm以上としたので、一方のワークの突起と他方のワークの凹部とが係合部で加圧力が一定となって安定した溶着が得られる。また、0.1mm以上の隙間が確保されているので、一方のワークのフランジ面と他方のワークの対向面の溶融を防止できる。
請求項2の超音波溶着方法によれば、超音波溶着ホーンと複数の一方のワークとの当接部全体にわたり超音波溶着ホーンの超音波振幅をほぼ等しくして溶着を実行するので、複数の一方のワークを他方のワークへ同時に溶着するにかかわらず、全溶着部において、十分でかつ安定した溶着強度を得ることができる。
請求項の超音波溶着方法によれば、超音波溶着の周波数を30kHz以下としたので、大きな超音波溶着強度が安定して得られ、また、一方のワークの超音波溶着ホーンとの当接面の表面摩耗を小さくできる。
請求項の超音波溶着方法によれば、超音波溶着ホーンの振幅を、両振幅で、40μm以上としたので、大きい超音波溶着強度が確保される。
請求項の超音波溶着方法によれば、超音波溶着の加圧力を、50〜200kgf/cm2 としたので、大きい超音波溶着強度が確保される。
【図面の簡単な説明】
【図1】本発明実施例の超音波溶着方法を実施している装置の超音波溶着ホーンおよびワークの断面図である。
【図2】図1のA−A´線に沿って見た超音波溶着ホーンの下端部の端面図である。
【図3】本発明実施例の図2の形状とは別の形状の、超音波溶着ホーンの下端部の端面図である。
【図4】本発明実施例の図2、図3の形状とは別の形状の、超音波溶着ホーンの下端部の端面図である。
【図5】本発明実施例の図2、図3、図4の形状とは別の形状の、超音波溶着ホーンの下端部の端面図である。
【図6】本発明実施例の一方のワークのうちの一つのワークとそれが溶着される他方のワーク部分の、超音波溶着直前の、断面図である。
【図7】本発明実施例の一方のワークのうちの一つのワークとそれが溶着される他方のワーク部分の、超音波溶着後の、断面図である。
【図8】本発明実施例の超音波溶着方法における、溶着深さと、超音波溶着強度および超音波溶着ばり発生量との、関係を示すグラフである。
【図9】本発明実施例の超音波溶着方法における、溶着後隙間と、リーク(洩れ)の善し悪しおよび超音波溶着強度との、関係を示すグラフである。
【図10】本発明実施例の超音波溶着方法における、超音波周波数と、ワーク表面の摩耗および超音波溶着強度との、関係を示すグラフである。
【図11】本発明実施例の超音波溶着方法における、超音波振動両振幅と、ワーク表面の摩耗および超音波溶着強度との、関係を示すグラフである。
【図12】本発明実施例の超音波溶着方法における、加圧力と、ワーク表面の摩耗および超音波溶着強度との、関係を示すグラフである。
【符号の説明】
1 超音波溶着ホーン
2、3 一方のワーク
2b、3b 一方のワークのフランジ
2c、3c 一方のワークの突起
4 他方のワーク
4a、4b 他方のワークの凹部
5a、5b 他方のワークの溶着ばり溜め部
6、7、9、10 ホーン穴
8 ホーン取付け穴
11、12、13 中心軸
14、15、16、17 辺
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic welding method.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 7-266421 discloses that an ultrasonic horn having an ultrasonic horn is moved toward one single work by an air cylinder and pressed against one work, thereby making one work a single other. A conventional ultrasonic welding method for ultrasonic welding to a workpiece is disclosed. Here, until the ultrasonic welding horn comes into contact with one workpiece, the descending speed of the ultrasonic welding horn is increased, thereby improving workability and cycle time.
[0003]
[Problems to be solved by the invention]
However, in the conventional ultrasonic welding method, only one workpiece can be welded to the other workpiece by one descent of the ultrasonic welding horn. Therefore, even if the descent speed of the ultrasonic welding horn is increased, workability is improved. There is a limit to improving the performance and shortening the cycle time.
An object of the present invention is to provide an ultrasonic welding method capable of improving workability and cycle time as compared with a conventional method in which an ultrasonic welding horn is brought into contact with and pressed against a single workpiece. is there.
[0004]
[Means for Solving the Problems]
The present invention that achieves the above object is as follows.
(1) An ultrasonic welding method in which a plurality of workpieces are simultaneously ultrasonically welded to the other workpiece by an ultrasonic welding horn to which ultrasonic vibration is transmitted,
The plurality of one work and the other work are made of resin or fiber reinforced resin ,
A flange portion and a protrusion projecting from the lower surface of the flange portion are formed on one of the plurality of workpieces, and a concave portion where the protrusion enters the other workpiece while interfering and melting is located at an entrance of the concave portion. And forming a welding burre reservoir part,
The ultrasonic welding horn is formed in an outer shape having two or more symmetry axes and a plurality of sides, the tip portion passing through the central axis of the ultrasonic welding horn ,
When performing ultrasonic welding, the ultrasonic welding horn is contacted and pressed against the one of the plurality of workpieces and the other workpiece,
A portion that pressurizes the flange portion of the plurality of workpieces at the tip of the ultrasonic welding horn and interferes with the projection of the recess portion of the other workpiece and the projection of the recess portion of the other workpiece And after the ultrasonic welding, the lower surface of the flange portion of the plurality of workpieces and the welding pool portion of the other workpiece, so that the welding depth of ultrasonic welding is 1.5 mm or more. An ultrasonic welding method in which ultrasonic welding is performed such that there is a gap of 0.1 mm or more between a surface facing the lower surface of the flange portion around the surface.
(2) The amplitude of the ultrasonic welding horn is substantially equal over the entire contact portion between the ultrasonic welding horn and the plurality of one workpiece, and the plurality of one workpiece is ultrasonically welded to the other workpiece (1 ) The ultrasonic welding method described.
( 3 ) The ultrasonic welding method according to (1), wherein a frequency of the ultrasonic welding is 30 kHz or less.
( 4 ) The ultrasonic welding method according to (1), wherein the amplitude of the ultrasonic welding horn is 40 μm or more in both amplitudes.
( 5 ) The ultrasonic welding method according to (1), wherein the pressure of the ultrasonic welding horn is 50 to 200 kgf / cm 2 .
[0005]
In the ultrasonic welding method of (1) above, the ultrasonic welding horn is brought into contact with and pressurized with a plurality of workpieces, so that the one ultrasonic workpiece is moved to the other workpiece by one movement of the ultrasonic welding horn. Compared to the case where a single workpiece is welded to the other workpiece by lowering the conventional ultrasonic welding horn, workability and cycle time can be improved.
Further, since the tip of the ultrasonic welding horn has an outer shape having two or more symmetrical axes passing through the central axis of the ultrasonic welding horn and a plurality of sides, the contact between the ultrasonic welding horn and one of the plurality of workpieces is avoided. The amplitudes of the ultrasonic welding horns are almost equal over the entire contact portion, and the welding strength at each welding portion is not insufficient.
In addition, the plurality of one workpiece and the other workpiece are made of resin or fiber reinforced resin, and the contact / engagement portion between one workpiece and the other workpiece (the protrusion of one workpiece is in contact / engagement with the recess of the other workpiece The resin is locally melted and solidified by vibration and ultrasonically welded.
Further, since the welding depth of ultrasonic welding is set to 1.5 mm or more, a stable and large ultrasonic welding strength is ensured. Increasing the welding depth of ultrasonic welding increases the amount of welding flash generated. However, by setting the volume of the welding flash pool to a volume that can store the welding flash (for example, the welding depth) The generated flash up to the weld depth can be absorbed.
Further, since the gap between the plurality of one workpiece and the other workpiece after ultrasonic welding is set to 0.1 mm or more, the projection of one workpiece and the concave portion of the other workpiece are engaged with each other. The flange surface and the opposing surface of the other workpiece do not contact each other, and the pressure between the projection of one workpiece and the concave portion of the other workpiece is constant, so that stable weldability is obtained. Also, if the flange surface of one workpiece comes into contact with the opposite surface of the other workpiece, the contact portion starts to melt by vibration, but since a gap of 0.1 mm or more is secured there, Melting of the flange surface of the workpiece and the facing surface of the other workpiece can be prevented.
In the ultrasonic welding method of the above (2), the welding is performed with the amplitude of the ultrasonic welding horn being substantially equal over the entire contact portion between the ultrasonic welding horn and the plurality of one workpiece. Regardless of the simultaneous welding to the other workpiece, the welding strength deficiency of each welded portion caused by non-uniform expansion and contraction of the ultrasonic welding horn does not occur.
In the ultrasonic welding method of ( 3 ) above, since the frequency of ultrasonic welding is set to 30 kHz or less, a large ultrasonic welding strength can be stably obtained, and the contact surface of one workpiece with the ultrasonic welding horn Small surface wear.
In the ultrasonic welding method of ( 4 ) above, since the amplitude of the ultrasonic welding horn is set to 40 μm or more in both amplitudes, the higher the amplitude, the easier the vibration is transmitted to the projections and the melting is easier, so the higher ultrasonic welding strength. Is secured. Moreover, the surface wear of the contact surface with the ultrasonic welding horn of one workpiece is small at both amplitudes of 40 (˜100) μm.
In the ultrasonic welding method of ( 5 ) above, since the pressure of ultrasonic welding is 50 to 200 kgf / cm 2 , the ultrasonic welding strength is high, and the contact surface of one workpiece with the ultrasonic welding horn The surface wear is small.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
1 to 12 show an apparatus for performing an ultrasonic welding method according to an embodiment of the present invention and a work to be ultrasonically welded (one work and the other work).
As shown in FIG. 1, the apparatus for carrying out the ultrasonic welding method of the embodiment of the present invention is in contact with a plurality of workpieces 2, 3 to pressurize the plurality of workpieces 2, 3. It has an ultrasonic welding horn 1 to be transmitted. A plurality of one work (work to be contacted with the ultrasonic welding horn) 2 and 3 are contacted and pressurized by the ultrasonic welding horn 1 and the other work 4 (one work is welded). The other workpiece 4 and the other workpiece 4 may be one or plural) and are ultrasonically welded simultaneously.
[0007]
In ultrasonic welding, an ultrasonic unit composed of an ultrasonic transducer, a booster, and an ultrasonic welding horn 1 connected in series is moved and pressurized by an apparatus (for example, an air cylinder, a hydraulic cylinder, a motor, etc.). The workpieces 2 and 3 are moved, brought into contact with and pressurized, and one workpiece 2 and 3 and the other workpiece 4 are ultrasonically welded. The vibration amplitude of the ultrasonic vibrator is increased or decreased by the booster, and is transmitted from the booster to the ultrasonic welding horn 1. The ultrasonic welding horn 1 receives an applied pressure from the booster over the entire surface of the end 1b on the connection side with the booster, and receives ultrasonic vibration from the booster. The vibration from the booster is transmitted and the ultrasonic welding horn 1 expands and contracts in the axial direction (vertical direction in the figure). The ultrasonic welding horn 1 has an axial length of about 130 mm, and expands and contracts, for example, by 10 to 100 μm at the end 1 a on the contact side with the workpieces 2 and 3. The material of the ultrasonic welding horn 1 may be any material that elastically expands and contracts by receiving ultrasonic vibration in a pressurized state, and may be a material of a conventional ultrasonic welding horn, such as iron, aluminum, It consists of titanium or an alloy of these metals.
[0008]
The plurality of one workpieces 2 and 3 and the other workpiece 4 are made of resin or fiber reinforced resin. The resin is made of, for example, a thermoplastic resin (however, the resin is not limited to the thermoplastic resin). Examples of the resin include polyamide 6 and polyamide 66. The reinforcing fiber is made of, for example, glass fiber (however, it is not limited to glass fiber).
[0009]
One of the plurality of workpieces 2 and 3 is made of, for example, a union (hereinafter also referred to as unions 2 and 3) (but is not limited to a union), and the other workpiece 4 is made of, for example, an engine intake manifold (hereinafter referred to as an intake manifold). 4) (but not limited to the engine intake manifold). When the other work 4 is an engine intake manifold, the unions 2 and 3 are connected to an intake system of a PCV (positive crankcase ventilation) system and to an intake system of a recirculation gas of an EGR (exhaust gas recirculation) system. A union that constitutes the inlet, and a hose is attached thereto. The sizes of the plurality of unions 2 and 3 are usually different from each other.
[0010]
As shown in FIGS. 1, 6, and 7, the unions 2 and 3, which are one workpiece, have a cylindrical portion 2 a and 3 a, and flanges 2 b and 3 b that project outward from the outer peripheral surface of the cylindrical portions 2 a and 3 a in the radial direction. And annular protrusions 2c and 3c formed on the surface of the flanges 2b and 3b facing the other workpiece 4 so as to protrude from the surface. The other workpiece 4 is formed with annular recesses 4a and 4b into which the protrusions 2c and 3c of the one workpiece 2 and 3 enter while interfering and melting, and a welding beam is confined at the inlets of the recesses 4a and 4b. Welded flash reservoirs 5a and 5b are formed. At the time of ultrasonic welding, the interference portions of the protrusions 2c and 3c and the recesses 4a and 4b are melted, and the protrusions 2c and 3c enter the recesses 4a and 4b by pressurization. 5b is absorbed.
[0011]
As shown in FIG. 1, the ultrasonic welding horn 1 presses one workpiece 2, 3 at its tip 1 a by abutting it with its flange 2 c, 3 c.
As shown in FIGS. 1 and 2, the ultrasonic welding horn 1 has an end portion 1 b on the side connected to the booster having a circular cross section, but a tip end portion 1 a on the side in contact with one of the workpieces 2 and 3 is , Having a polygonal outer shape that envelops the flanges 2c and 3c, and the tip portion 1a on the side in contact with one of the workpieces 2 and 3 has a cross section that is larger than the cross section on the end portion 1b side on the connection side with the booster. It is squeezed.
In the ultrasonic welding horn 1, a portion on the ultrasonic welding horn side from the upper surface of the flanges 2 c and 3 c of the one workpiece 2 and 3 is prevented from interfering with the tip end portion 1 a on the side in contact with the one workpiece 2 and 3. Horn holes 6 and 7 to be received. Moreover, the ultrasonic welding horn 1 has a horn attachment hole (screw hole) 8 for connection with a booster at an end 1b on the connection side with the booster.
[0012]
Next, an ultrasonic welding method according to an embodiment of the present invention, which is performed using the above apparatus and workpiece, will be described.
In the ultrasonic welding method of the embodiment of the present invention, as shown in FIG. 1, an ultrasonic welding horn 1 to which ultrasonic vibration is transmitted is used as a plurality of workpieces (a workpiece that comes into contact with the ultrasonic welding horn). 2 and 3, and a plurality of one workpieces 2 and 3 are connected to the other workpiece 4 (a workpiece to which one workpiece is welded, even if there is only one other workpiece 4. The ultrasonic welding may be performed at the same time.
[0013]
In simultaneous welding of a plurality of workpieces 2 and 3, it is necessary to ensure the welding strength of all the workpieces 2 and 3. Therefore, in the ultrasonic welding method of the embodiment of the present invention, the amplitude of the ultrasonic welding horn 1 over the entire contact portion between the ultrasonic welding horn 1 and the plurality of workpieces 2 and 3 (the tip of the ultrasonic welding horn 1). (Amplitude at 1a) are made substantially equal, and a plurality of one workpieces 2, 3 are ultrasonically welded to the other workpiece 4.
[0014]
In order to make the amplitude of the ultrasonic welding horn 1 uniform over the entire contact portion with one of the plurality of workpieces 2 and 3, as shown in FIG. 2, FIG. 3, or FIG. 4, or FIG. The welding horn 1 has two or more symmetrical axes 11, 12, 13 and a plurality of sides 14 where the tip 1 a passes through the central axis of the ultrasonic welding horn (usually the axis passing through the center of the connection hole with the booster). An ultrasonic welding horn having an outer shape having 15, 16, and 17 (the corners between the sides may be rounded or may be rounded linearly) is used. In this case, the holes 6, 7, 9, 10 need not be symmetric with respect to the axis of symmetry.
[0015]
Four examples of the ultrasonic welding horn will be given (FIGS. 2 to 5).
In the example of FIG. 2, there are two horn holes 6 and 7 (diameters may be different from each other), two symmetry axes 11 and 12, the outer shape is a quadrilateral, and the corners are cut off in a straight line. It is. The distances a and a ′ from the symmetry axis 11 to the two sides 14 and 15 on both sides thereof are made equal to each other, and the distances b and b ′ from the symmetry axis 12 to the two sides 16 and 17 on both sides are made equal to each other. Yes.
In the example of FIG. 3, there are three horn holes 6, 7, and 9 (the diameters may be different from each other), three symmetry axes 11, 12, and 13, the outer shape is a triangle, and the corners are It is rounded. The distances a and a ′ from the symmetry axis 11 to the two corner portions on both sides thereof are equal to each other, and the distances b and b ′ from the symmetry axis 12 to the two corner portions on both sides thereof are equal to each other.
In the example of FIG. 4, there are three horn holes 6, 7, and 9 (the diameters may be different from each other), two symmetry axes 11 and 12, and the outer shape is a quadrilateral with rounded corners. ing. The distances a and a ′ from the symmetry axis 11 to the two sides 14 and 15 extending in the lateral direction are equal to each other, and the distances b and b ′ from the symmetry axis 12 to the two sides 16 and 17 extending in the vertical direction are equal to each other. Has been.
In the example of FIG. 5, there are four horn holes 6, 7, 9, 10 (diameters may be different from each other), two symmetry axes 11, 12, the outer shape is a quadrilateral and the corners are It is rounded. The distances a and a ′ from the symmetry axis 11 to the two sides 14 and 15 on both sides thereof are made equal to each other, and the distances b and b ′ from the symmetry axis 12 to the two sides 16 and 17 on both sides are made equal to each other. Yes.
[0016]
Moreover, in order to ensure sufficient welding strength, it is desirable that ultrasonic welding is performed while satisfying the following conditions. The following conditions are based on tests using a plurality of one workpiece 2 and the other workpiece 4 made of resin or fiber reinforced resin (for example, glass fiber reinforced polyamide 6, 66, etc., but not limited thereto). ,I was asked.
[0017]
As a first condition, it is desirable that the welding depth of ultrasonic welding is 1.5 mm or more. Here, the welding depth refers to a distance d traveled during ultrasonic welding from a position where the projections 2c and 3c hit the other workpiece 4.
FIG. 8 shows the results of measuring the changes in the ultrasonic welding strength and the amount of ultrasonic welding beam generated by various tests for various welding depths. As can be seen from FIG. 8, the ultrasonic welding strength increases substantially in proportion to the increase in the welding depth at a welding depth of about 1.5 mm or less, but is almost constant at about 1.5 mm or more. This means that it is sufficient that the welding depth is about 1.5 mm, and it can be seen that the welding strength does not increase even if it is more than that. Therefore, it is desirable that the upper limit of the welding depth be about 1.9 mm.
Further, the welding flash gradually increases as the welding depth increases, and no flash is generated inside and outside while being absorbed by the weld pool, but when it exceeds that, a flash is generated inside and outside. FIG. 8 shows a case where the volume of the welded puddle is designed to absorb a flash up to a welding depth of 2 mm. The flash can be absorbed up to a welding depth of 2 mm, and if it exceeds that, a flash will be generated inside and outside. Is shown. From this it can be seen that the volume of the weld pool should be determined by the design weld depth.
[0018]
As a second condition, to the flanges 2c and 3c of the other workpiece 4 and the lower surfaces (surfaces facing the other workpiece 4) of the flanges 2c and 3c of the plurality of workpieces 2 and 3 after ultrasonic welding. It is desirable that the gap g with the opposite surface is 0.1 mm or more after ultrasonic welding.
FIG. 9 shows the tendency of the leakage of the ultrasonic weld and the change in the ultrasonic weld strength when the gap s after welding is variously changed. As can be seen from FIG. 9, there is no leakage when the gap s is 0.1 mm or more, but there are cases where leakage occurs when it is smaller than 0.1 mm. This is because when one of the workpieces 2 and 3 and the other workpiece 4 hit the lower surface of the flanges 2b and 3b, cracks and cracks are generated in the welded portions of the protrusions 2c and 3c due to the influence of repulsive force and elastic force other than the welding conditions. This is considered to be because of the occurrence of leaks. The upper limit of the post-weld gap s is determined by the weld strength. For example, when the height of the protrusions 2c and 3c is 1.9 mm, the weld depth is less than 1.5 mm when the post-weld gap s exceeds 0.4 mm. Therefore, when the height of the protrusions 2c and 3c is 1.9 mm, the post-weld gap s must be 0.4 mm or less.
[0019]
As a third condition, the frequency of ultrasonic welding is preferably 30 kHz or less.
FIG. 10 shows the wear of the workpiece surface (contact surface of the flanges 2b and 3b of the workpieces 2 and 3 with the ultrasonic welding horn 1) and the ultrasonic welding strength when the frequency of the ultrasonic wave is changed variously. Shows the trend of change. As can be seen from FIG. 10, the wear on the workpiece surface is small and stable at 30 kHz or less, but the wear increases when it exceeds 30 kHz. This is because in the frequency region exceeding 30 kHz, the contact surface of the workpieces 2 and 3 with the ultrasonic welding horn 1 is melted, and the wear becomes severe. Further, in the frequency region where the ultrasonic frequency exceeds 30 kHz, the contact surface of the workpieces 2 and 3 with the ultrasonic welding horn 1 is melted, so that the melting of the projections 2c and 3c is affected, and ultrasonic welding is performed. Strength decreases. As a result, the frequency of ultrasonic welding is desirably 30 kHz or less.
[0020]
As a fourth condition, the amplitude of the ultrasonic welding horn is preferably 40 μm or more in both amplitudes.
FIG. 11 shows a workpiece surface (one workpiece 2, one workpiece 2, when both amplitudes on the contact surface (the lower portion 1a of the ultrasonic welding horn 1) of the ultrasonic welding horn 1 with the workpieces 2, 3 are variously changed. 3 shows the tendency of the wear of the flanges 2b and 3b on the contact face of the ultrasonic welding horn 1) and the change of the ultrasonic welding strength. As can be seen from FIG. 11, the ultrasonic welding strength is high and stable in the region where the ultrasonic amplitude is 40 μm or more in both amplitudes. This is presumably because the larger the amplitude, the easier the vibration is transmitted to the protrusions 2c and 3c, and it is easier to melt. Further, in a region where the amplitude is 40 μm or more in both amplitudes, the vibration is smoothly transmitted to the protrusions 2c and 3c and the vibration on the upper surface of the flange is suppressed, so that the wear on the work surface is small and stable. Therefore, it is desirable that the amplitude of the ultrasonic welding horn is 40 μm or more in both amplitudes.
[0021]
As a fifth condition, the pressure of the ultrasonic welding horn is desirably 50 to 200 kgf / cm 2 (4900 to 19600 kPa) on the flange surface.
FIG. 12 shows the workpiece surface (one workpiece 2, one workpiece 2, when the applied pressure on the contact surface (the lower portion 1a of the ultrasonic welding horn 1) of the ultrasonic welding horn 1 with the workpieces 2, 3 is variously changed. 3 shows the tendency of the wear of the flanges 2b and 3b on the contact face of the ultrasonic welding horn 1) and the change of the ultrasonic welding strength. The test was conducted at an ultrasonic frequency of 20 kHz. As can be seen from FIG. 12, the applied pressure is 50 to 200 kgf / cm 2 and the welding strength is high. When the applied pressure is 50 kgf / cm 2 or less, the welding time becomes long, the wear of the surfaces of the workpieces 2 and 3 increases, and the welding strength also decreases. From this result, it is desirable that the pressure of the ultrasonic welding horn is 50 to 200 kgf / cm 2 on the flange surface.
[0022]
【The invention's effect】
According to the ultrasonic welding method of claim 1, since the ultrasonic welding horn is brought into contact with and pressurized with a plurality of workpieces, the plurality of one workpieces are moved by one movement / pressurization of the ultrasonic welding horn. It can be welded to the other workpiece, and the workability and cycle time can be improved as compared with the conventional case where one single workpiece is welded to the other workpiece by lowering the ultrasonic welding horn once.
Further, since the tip of the ultrasonic welding horn has an outer shape having two or more symmetrical axes passing through the central axis of the ultrasonic welding horn and a plurality of sides, the contact between the ultrasonic welding horn and one of the plurality of workpieces is avoided. The amplitude of the ultrasonic welding horn can be made substantially equal over the entire contact portion, and the welding strength is not insufficient at each welding portion.
In addition, since the plurality of one work and the other work are made of resin or fiber reinforced resin, they can be welded by ultrasonic melting / solidification of the resins.
Moreover, since the welding depth of ultrasonic welding is 1.5 mm or more, a stable and large ultrasonic welding strength can be ensured.
In addition, since the gap between the plurality of one workpiece and the other workpiece after ultrasonic welding is set to 0.1 mm or more, the protrusion of one workpiece and the recess of the other workpiece are applied by the engaging portion. Constant and stable welding is obtained. Moreover, since the clearance of 0.1 mm or more is ensured, melting of the flange surface of one workpiece and the facing surface of the other workpiece can be prevented.
According to the ultrasonic welding method of the second aspect, since the ultrasonic amplitude of the ultrasonic welding horn is made substantially equal over the entire contact portion between the ultrasonic welding horn and the plurality of workpieces, the welding is executed. Regardless of whether one workpiece is welded to the other workpiece at the same time, sufficient and stable welding strength can be obtained at all the welded portions.
According to the ultrasonic welding method of claim 3 , since the frequency of ultrasonic welding is set to 30 kHz or less, a large ultrasonic welding strength can be stably obtained, and the contact of one workpiece with the ultrasonic welding horn is achieved. Surface wear on the surface can be reduced.
According to the ultrasonic welding method of claim 4 , since the amplitude of the ultrasonic welding horn is set to 40 μm or more in both amplitudes, a high ultrasonic welding strength is ensured.
According to the ultrasonic welding method of claim 5, since the pressure of ultrasonic welding is set to 50 to 200 kgf / cm 2 , a high ultrasonic welding strength is ensured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an ultrasonic welding horn and a workpiece of an apparatus performing an ultrasonic welding method according to an embodiment of the present invention.
FIG. 2 is an end view of the lower end portion of the ultrasonic welding horn viewed along the line AA ′ in FIG. 1;
FIG. 3 is an end view of a lower end portion of an ultrasonic welding horn having a shape different from the shape of FIG. 2 of the embodiment of the present invention.
4 is an end view of a lower end portion of an ultrasonic welding horn having a shape different from the shapes of FIGS. 2 and 3 according to the embodiment of the present invention. FIG.
5 is an end view of a lower end portion of an ultrasonic welding horn having a shape different from the shapes of FIGS. 2, 3, and 4 of the embodiment of the present invention. FIG.
FIG. 6 is a cross-sectional view of one of the workpieces of the embodiment of the present invention and the other workpiece portion to which it is welded, just before ultrasonic welding.
FIG. 7 is a cross-sectional view after ultrasonic welding of one workpiece of one workpiece of the embodiment of the present invention and the other workpiece portion to which it is welded.
FIG. 8 is a graph showing the relationship between the welding depth, the ultrasonic welding strength, and the amount of ultrasonic welding flash generated in the ultrasonic welding method of the embodiment of the present invention.
FIG. 9 is a graph showing a relationship between a post-weld gap, a leak quality, and ultrasonic welding strength in the ultrasonic welding method according to an embodiment of the present invention.
FIG. 10 is a graph showing the relationship between the ultrasonic frequency, the work surface wear and the ultrasonic welding strength in the ultrasonic welding method of the embodiment of the present invention.
FIG. 11 is a graph showing the relationship between the amplitude of both ultrasonic vibrations, the wear on the workpiece surface, and the ultrasonic welding strength in the ultrasonic welding method of the embodiment of the present invention.
FIG. 12 is a graph showing the relationship between the applied pressure, the work surface wear, and the ultrasonic welding strength in the ultrasonic welding method of the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ultrasonic welding horn 2, 3 One work 2b, 3b One work flange 2c, 3c One work protrusion 4 The other work 4a, 4b The other work recessed part 5a, 5b The other work welding pool part 6, 7, 9, 10 Horn hole 8 Horn mounting holes 11, 12, 13 Center axis 14, 15, 16, 17 sides

Claims (5)

超音波振動が伝達される超音波溶着ホーン複数の一方のワークを他方のワークに同時に超音波溶着する超音波溶着方法であって、
前記複数の一方のワークおよび前記他方のワークを樹脂または繊維強化樹脂から構成しておき、
前記複数の一方のワークにフランジ部と該フランジ部の下面に突出する突起とを形成しておくとともに、前記他方のワークに前記突起が干渉・溶融しながら侵入する凹部と該凹部の入口に位置する溶着ばり溜め部とを形成しておき、
前記超音波溶着ホーンを、先端部が超音波溶着ホーンの中心軸を通る2つ以上の対称軸と複数の辺をもつ外形形状に形成しておき、
超音波溶着を行う際に、前記超音波溶着ホーンを前記複数の一方のワークと他方のワークのうち前記複数の一方のワークに当接・加圧させ、
前記超音波溶着ホーンの先端で前記複数の一方のワークのフランジ部を加圧して、前記複数の一方のワークのフランジ部に設けられた突起と前記他方のワークの凹部の前記突起と干渉する部分とを、超音波溶着の溶着深さが1.5mm以上になるように、かつ、超音波溶着以後に、前記複数の一方のワークのフランジ部下面と、前記他方のワークの前記溶着ばり溜め部のまわりの、前記フランジ部下面に対向する面との間に、0.1mm以上の隙間が存在するように、超音波溶着する、超音波溶着方法。
An ultrasonic welding method of ultrasonically welding a plurality of one workpiece to the other workpiece simultaneously with an ultrasonic welding horn to which ultrasonic vibration is transmitted,
The plurality of one work and the other work are made of resin or fiber reinforced resin ,
A flange portion and a protrusion projecting from the lower surface of the flange portion are formed on one of the plurality of workpieces, and a concave portion where the protrusion enters the other workpiece while interfering and melting is located at an entrance of the concave portion. And forming a welding burre reservoir part,
The ultrasonic welding horn is formed in an outer shape having two or more symmetry axes and a plurality of sides, the tip portion passing through the central axis of the ultrasonic welding horn ,
When performing ultrasonic welding, the ultrasonic welding horn is contacted and pressed against the one of the plurality of workpieces and the other workpiece,
A portion that pressurizes the flange portion of the plurality of workpieces at the tip of the ultrasonic welding horn and interferes with the projection of the recess portion of the other workpiece and the projection of the recess portion of the other workpiece And after the ultrasonic welding, the lower surface of the flange portion of the plurality of workpieces and the welding pool portion of the other workpiece, so that the welding depth of ultrasonic welding is 1.5 mm or more. An ultrasonic welding method in which ultrasonic welding is performed such that there is a gap of 0.1 mm or more between a surface facing the lower surface of the flange portion around the surface.
前記超音波溶着ホーンと前記複数の一方のワークとの当接部全体にわたり超音波溶着ホーンの振幅をほぼ等しくして前記複数の一方のワークを他方のワークに超音波溶着する請求項1記載の超音波溶着方法。2. The ultrasonic welding horn of the ultrasonic welding horn and the plurality of one workpiece are substantially equal in amplitude over the entire contact portion of the ultrasonic welding horn, and the plurality of one workpiece are ultrasonically welded to the other workpiece. Ultrasonic welding method. 前記超音波溶着の周波数を30kHz以下とした請求項1記載の超音波溶着方法。The ultrasonic welding method according to claim 1, wherein a frequency of the ultrasonic welding is set to 30 kHz or less. 前記超音波溶着ホーンの振幅を、両振幅で、40μm以上とした請求項1記載の超音波溶着方法。The ultrasonic welding method according to claim 1, wherein the amplitude of the ultrasonic welding horn is 40 μm or more in both amplitudes. 超音波溶着ホーンの加圧力を、50〜200kgf/cm2 とした請求項1記載の超音波溶着方法。 2. The ultrasonic welding method according to claim 1, wherein the pressure of the ultrasonic welding horn is 50 to 200 kgf / cm < 2 >.
JP29236198A 1998-10-14 1998-10-14 Ultrasonic welding method Expired - Fee Related JP3617333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29236198A JP3617333B2 (en) 1998-10-14 1998-10-14 Ultrasonic welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29236198A JP3617333B2 (en) 1998-10-14 1998-10-14 Ultrasonic welding method

Publications (2)

Publication Number Publication Date
JP2000117834A JP2000117834A (en) 2000-04-25
JP3617333B2 true JP3617333B2 (en) 2005-02-02

Family

ID=17780818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29236198A Expired - Fee Related JP3617333B2 (en) 1998-10-14 1998-10-14 Ultrasonic welding method

Country Status (1)

Country Link
JP (1) JP3617333B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084963A1 (en) * 2011-12-06 2013-06-13 帝人株式会社 Method for manufacturing joint member
TWI617489B (en) 2013-04-09 2018-03-11 陶氏全球科技有限責任公司 Process for producing ultrasonic seal, and film structures and flexible containers with same
KR101961767B1 (en) * 2017-04-26 2019-03-26 현대모비스 주식회사 Camera module for vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139727A (en) * 1986-12-02 1988-06-11 Daicel Chem Ind Ltd Horn for ultrasonic welding
JPS63106628U (en) * 1986-12-27 1988-07-09
JPH0374930U (en) * 1989-11-24 1991-07-26
JPH0511342U (en) * 1992-01-30 1993-02-12 古橋電機株式会社 Substrates for electrical parts made by press-fitting terminal members
JPH08127071A (en) * 1994-10-31 1996-05-21 Tsuchiya Mfg Co Ltd Manufacture of hermetically closed container
JPH08230042A (en) * 1995-02-25 1996-09-10 Suzuki Motor Corp Ultrasonic stapler

Also Published As

Publication number Publication date
JP2000117834A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
US4576223A (en) Heat exchanger and process for its manufacture
EP0752926B1 (en) Friction stir welding
US7857192B2 (en) Friction stir welding tool and friction stir welding method
JP3617333B2 (en) Ultrasonic welding method
JP3503496B2 (en) Ultrasonic bonding method
JP4533847B2 (en) Manufacturing method of chassis frame
KR100454077B1 (en) connection duct
JPS6327909Y2 (en)
JP2008025354A (en) Weld joining structure and weld joining method of intake manifold
JP2002361745A (en) Vibration-welded structure of resin-made construction
CN217107265U (en) Leak-proof automobile oil pipe assembly
JP2004148592A (en) Article to which thermoplastic resin molding is welded and method for producing article
JPH04208435A (en) Vibration fusion joining method
JP4543668B2 (en) Hydraulic forming pipe and automotive structural member
JP2565201Y2 (en) Vehicle fuel tank
JPH1133712A (en) Junction structure for fluid tube
JP2006316637A (en) Cylinder block and method for manufacturing cylinder block
US20030111039A1 (en) Method and apparatus for laser welding hoses in an air induction system
JPH07178585A (en) Welding structure of pipe stock and welding method therefor
JPH04208436A (en) Vibration fusion joining method
JP3636730B2 (en) Vibration isolator
JPH0215065Y2 (en)
KR20170107174A (en) Car cross beam having conjunction structure made by different materials
JPH06210486A (en) Method for welding inclined joint
JP2002345135A (en) Stay guard and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees