Nothing Special   »   [go: up one dir, main page]

JP3612010B2 - Polarization control system and control method thereof - Google Patents

Polarization control system and control method thereof Download PDF

Info

Publication number
JP3612010B2
JP3612010B2 JP2000248207A JP2000248207A JP3612010B2 JP 3612010 B2 JP3612010 B2 JP 3612010B2 JP 2000248207 A JP2000248207 A JP 2000248207A JP 2000248207 A JP2000248207 A JP 2000248207A JP 3612010 B2 JP3612010 B2 JP 3612010B2
Authority
JP
Japan
Prior art keywords
polarization
terminal
antenna
sinr
sir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000248207A
Other languages
Japanese (ja)
Other versions
JP2002064321A (en
Inventor
一公 小宮
健太郎 西森
敬三 長
俊和 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000248207A priority Critical patent/JP3612010B2/en
Publication of JP2002064321A publication Critical patent/JP2002064321A/en
Application granted granted Critical
Publication of JP3612010B2 publication Critical patent/JP3612010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は干渉波が存在する環境において、干渉波を除去して所望の信号波(以下、「希望波」という)を受信できるようにした偏波制御システムと端末およびその制御方法に関する。
【0002】
【従来の技術】
無線伝搬路における干渉波やマルチパスフェージングに起因する通信品質の劣化を軽減し、システム容量を増大するための技術として、アレーアンテナの受信出力を制御して希望波に対して放射パターンの最大値を向け、干渉波に対して放射パターンの零点を向ける制御を行うことにより、出力信号の希望波信号対干渉波および雑音レベル比(以下出力SINRと記す)を最大にする機能を持つアダプティブ送受信機がある。
【0003】
従来、このような機能を実現できるようにした装置として、例えば図7に示すようにアンテナ素子をN素子(A1〜AN)配列し、その各素子Ai(i=1,2,…,N)の出力xiに対して到来波のレベル、方向などに対応する重み付けwi(i=1,2,…,N)を重み付け装置30で行い、その重み付けした出力を合成装置40で合成して所望の出力を得る。この図に示したものは、各アンテナ素子A1〜ANの各受信信号を送受信装置20でそれぞれ復調し、各アンテナ素子ごとのベースバンド信号を得、これらベースバンド信号と、合成装置40よりの合成信号を制御装置50に入力して、アンテナ素子A1〜ANのそれぞれと対応するベースバンド信号に対し、重み付け装置30で重みW1〜WNを乗算して、アンテナ素子A1〜ANよりなるアレーの放射パターンの最大値が希望波方向に向き、かつ零点が干渉波方向に向くように制御している。アレーアンテナの放射パターンを制御するにはアンテナ素子A1〜ANの対応の各ベースバンド信号に対し、重みW1〜WNを与える場合に限らず、アンテナ素子A1〜ANの各受信高周波信号に対して重みW1〜WNをそれぞれ与え、あるいは、送受信装置20内の各アンテナ素子A1〜AN対応の中間周波信号に対して重みを与えてもよい。このことはこの発明においても云えることである。
【0004】
また、この装置を陸上移動通信システムに適用した場合、各アンテナ素子Aiに用いる偏波は、簡単な構造で設置性にも優れたダイポール等の線状アンテナで容易に水平面内無指向性が得られるという理由から、垂直偏波が一般に用いられてきた。
ところが、垂直偏波素子のみを用いた従来技術では次のような問題が生じる。図8は従来技術の問題点の例を示す図である。移動通信方式における基地局は6垂直偏波素子・6ブランチ半波長間隔直線配列アンテナを有するアダプティブ送受信機を用い、移動端末は垂直偏波素子アンテナを有する送受信機を用いた。XPDとは伝搬路の交差偏波識別度を意味し、この例では5dBとしている。2端末に対して到来波を、120度セクタの範囲でランダムに生起させる試行回数を1000とした。到来角度差を、第2移動端末の到来方向と、第1移動端末の到来方向との差で定義し、これと出力SINRの関係を求めている。この図から、希望波の到来方向と干渉波の到来方向の差が小さくなるにつれ、干渉波に対して完全に放射パターンの零点を向けることができず、干渉電力を抑圧しきれないことに起因する出力SINRの劣化が生じることがわかる。同時アクセスする移動端末数が増加するにつれて、希望波の到来方向と干渉波の到来方向が接近する確率が高くなることから、従来システムにおける出力SINRの劣化は、通信品質の劣化およびシステム容量増大の観点から問題である。
【0005】
【発明が解決しようとする課題】
この発明が解決しようとする課題は、通信品質の劣化を軽減しシステム容量増大のための制御を実現する偏波制御システム、端末および制御方法を提供する点にある。
【0006】
【課題を解決するための手段】
上記課題を解決するため、この発明の無線端末は、所定の偏波特性を有する第1のアンテナ素子と、この第1のアンテナ素子の偏波特性に対して直交する偏波特性を有する第2のアンテナ素子と、送受信アンテナとして第1のアンテナ素子または該第2のアンテナ素子を選択する制御装置を有する。
この発明の偏波制御システムは所定の偏波特性を有する第1のアンテナと、第1のアンテナの偏波特性に対して直交する偏波特性を有する第2のアンテナと、第1のアンテナ及び第2のアンテナの出力信号を合成する合成装置と、その合成装置の出力信号SINR又は出力信号の希望波対干渉波レベル比(以下出力SIRと記す)を監視する監視部と端末の送信偏波を設定する端末送信偏波設定部と新規割当端末の受信偏波として、出力信号のSIR又はSINRが高くなる方の偏波を割当てる偏波割当部を包含する制御装置とを備える。
【0007】
この発明の偏波制御システムは、新規割当端末に対し、所定の偏波特性で送信させ、各既存端末の送信波に対するSIR又はSINRを測定し、この測定結果のSIR又はSINRの最小値SIR(V)又はSINR(V)を選択し、
新規割当端末に対し、所定の偏波特性と直交する偏波特性で送信させ、各既存端末の送信波に対するSIR又はSINRを測定し、この測定結果のSIR又はSINRの最小値SIR(H)又はSINR(H)を選択し、
SIR(V)又はSINR(V)とSIR(H)又はSINR(H)との大きい方と対応する偏波特性で送信するように、その新規割当端末に偏波特性を割当てる。
【0008】
【発明の実施の形態】
図1及び図2を参照してこの発明の実施例を説明する。
図1Aはこの発明の端末の構成を示す。端末は所定の偏波特性を有する第1のアンテナ素子10と、第1のアンテナ素子10の偏波特性に対して直交する偏波特性を有する第2のアテナ素子11と、送受信アンテナとして第1のアンテナ素子10または第2のアンテナ素子11を選択する制御装置13と、送受信装置14とから構成される。つまりこの例では第1のアンテナ素子10に対する送受信装置と、第2のアンテナ素子11に対する送受信装置とを制御装置13で切替えることができるようにされる。
【0009】
図2はこの発明の偏波制御システム(基地局)の構成を示す。この実施例はアダプティブアレーに適用した場合である。基地局は複数のアンテナ素子A1,A2,A3で構成され所定の偏波特性を有する第3のアレーアンテナ60と、複数のアンテナ素子A4,A5,A6で構成され、第3のアレーアンテナ60の偏波特性に対して直交する偏波特性を有する第4のアレーアンテナ61と、第3のアレーアンテナ60及び第4のアレーアンテナ61の各アンテナ素子A1〜A6の出力信号に対してそれぞれ重み付けを行う重み付け装置30と、重み付け装置30から出力される信号を合成する合成装置40と、合成装置40の出力信号のSINRを監視するSINR監視部71及び端末の送信偏波を設定する端末送信偏波設定部72、新規割当端末の送信偏波として出力信号のSINRが大きくなる方の偏波を割当てる偏波割当部73を包含し、合成装置40の出力信号を基に重み係数W1〜W6を計算する重み係数計算部74を包含し、重み付け装置30の重み係数W1〜W6を制御する制御装置70とから構成される。なお、端末の第1のアンテナ素子10と第2のアンテナ素子11、もしくは、基地局の第3のアレーアンテナ60と第4のアレーアンテナ61の各アンテ素子を、1つの素子において異なる点を給電点とすることで受信可能な電波の偏波方向を変化させ得るもので構成することも可能である。例えば、円形マイクロストリップアンテナである。これにより、第1のアンテナ素子10と第2のアンテナ素子11、もしくは、第3のアレーアンテナ60と第4のアレーアンテナ61が各素子で完全に共通化されるために、位置偏差に基づく不要波の除去効果の低下を防止することができる。
【0010】
例えば端末において、図1Bに示すように、円形マイクロストリップアンテナ10′を設け、その給電点を給電点切替部15で切替えて送受信装置14に接続することができるようにされ、その給電点切替部15の給電点の切替えは制御装置13により行うようにされる。また基地局においても第3のアレーアンテナ60と第4のアレーアンテナ61の各アンテナ素子としての前記円形マイクロストリップアンテナを用い、その前記二つの給電点に同時に給電して二つの偏波について同時に送受信するようにすることにより前記位置偏差に基づく不要波除去効果の低下を防止できる。
【0011】
図3はこの発明の偏波制御システムにかかる制御装置70における空間・偏波制御方法の処理手順の例を示す。
まず新規割当端末の番号k(kは1以上n以下の整数)を1に初期化し(S1)、予め決めた偏波で基地局と端末間の通信を行う(S2)、その時の合成装置40の出力信号(以下、単に出力信号と記す)のSINRを測定する(S3)。次に同時にアクセスする端末の数n(nは1以上の整数)が2以上であるかを調べ(S4)、2以上でなければ終了する。つまり同時アクセス端末数がその新規割当の第k端末の1個の場合は、基地局と端末間の通信はステップS2で割当てた所定の偏波で行う。
【0012】
次にステップS4で同時アクセス端末数nが2以上と判定されると、kを2に更新し(S5)、そのkがn以下かを調べ(S6)、n以下でなければ後述で明らかなように新規割当第k端末に対する偏波の割当てが終了したから、出力信号のSINRを測定して終了する(S7)。
kがn以下であれば、新規割当第k端末に、所定の偏波V、例えば垂直偏波を割当てる制御信号を例えば制御チャネルにより送信する(S8)。この送信に基づき、新規割当第k端末は偏波Vで送信する(S9)。この状態で既存端末を示すi(iは1以上k−1以下の整数)を1に初期化し(S10)、その第i端末はそれに割当られた所定の偏波で送信させ(S11)、その時の伝搬路の交差偏波識別度XPDに基づいた受信レベルで、所定偏波VとHの各電波を受信し(S12)、その時のSINR(i)を求める(S13)。その後iがk−1以下であるかを調べ(S14)、k−1以下であれば、つまり既存端末の電波との干渉状態を調べてない既存端末があればiを+1してステップS11に移り、次の第i端末についてSINR(i)の測定を行う(S15)。
【0013】
全ての既存端末、つまり第1〜第k−1既存端末の所定の偏波Vとについて新規割当第k端末の偏波Vとの干渉状態つまりSINR(i)の測定を終了すると、これら(k−1)個のSINR(i)中の最小値SINR(V)を選択する(S16)。
なおk+i=nである。
次に前記新規割当第k端末に、所定偏波Vと直交する偏波H(例えば水平偏波)を割当てる制御信号を送信する(S17)。よって新規割当第k端末は偏波Hで送信する(S18)。この状態でiを1に初期化し(S19)、第i既存端末に、それに割当てられた所定の偏波で送信させ(S20)、その時のXPDに基づいた受信レベルで所定偏波VとHの各電波を受信し(S21)、その時のSINR(i)を求める(S22)。iがk−1以下であるかを調べ(S23)、k−1であればiを+1して、ステップS20に戻り、次の第i端末についてSINR(i)を測定することを行う(S24)。このようにして全ての既存端末についてのSINR(i)を測定すると、これらSINR(i)中の最小値SINR(H)を選択する(S25)。
【0014】
このSINR(H)と先に選択したSINR(V)とを比較し(S26)そのSINRの高い方を選択し、つまり新規割当第k端末には高いSINRが得られた偏波を割当て、そのSINRを出力し(S27)、kを+1してステップS6に戻る。従ってkがnと等しくなるまで、つまり生じた新規割当端末の全てについて偏波の割当が済むまで同様のことを行う。
上記の結果から、XPDに基づいた受信レベルで所定の偏波およびこれと直交する偏波で受信する基地局において、新規割当第k端末に対して所定の偏波またはこれと直交する偏波を割当てた場合、k−1の既存端末の出力SINRの最小値を比較しそれが高くなる方の偏波を選択してその新規割当第k端末に割当てることにより、同時アクセス端末数がnである端末群と通信を行う基地局のシステム容量が増大する。
【0015】
以上図4に示した新規端末に対する偏波割当制御は図2中の偏波割当部73で行うが、これはコンピュータによりプログラムを解釈実行させて機能させることができる。つまり例えば図4に示すようにSINR監視部71、端末送信偏波設定部72、既存端末送信制御部81、記憶部82、偏波制御プログラムが格納されたメモリ83、基本プログラムメモリ84、CPU85がバス86に接続されている。図3中のステップS8、ステップS17における新規割当第k端末に対し、所定の偏波特性で送信させる制御信号の生成は端末送信偏波設定部72で行い、ステップS11、S20における第i既存端末に対しその割当偏波で送信させる制御信号の生成は既存端末送信制御部81で行い、ステップS13、S22で測定されたSIN監視部71からの各SINR(i)は記憶部82に記憶され、CPU85が偏波制御プログラムを解釈実行することにより、図3に示した処理が実行される。ステップS27で決定された偏波特性を送受信のために、その新規割当第k端末に割当てる制御信号も端末送信偏波設定部72で生成させる。
【0016】
図3に示した偏波制御の手順から理解されるように、この発明は必ずしもアレーアンテナを用いるアダプティブ送受信機に限らず、アダプティブ制御しない場合においても、各端末の送受信電波として所定の偏波特性と、これと直交した偏波特性とを、干渉がなるべく生じないように割当てることができ、それだけ同時アクセス端末数と通信する基地局のシステム容量を増大させることができる。
また上述において、SINRの代りにSIR(希望波対干渉波レベル比)を用いてもよい。更にこの発明は、TDMA,FDMA,CDMAなど何れのアクセス方式にも適用できる。更に従来の技術の項で述べたように、この発明をアダプティブ送受信機に適用する場合はその各アンテナ素子対応の信号に対する重み付与は、高周波段、中間周波段、ベースバンド段の何れで行ってもよい。
【0017】
【発明の効果】
以上述べたようにこの発明によれば、所望の偏波特性と、これと直交する偏波特性を、端末に干渉が少ないように選択的に割当てることにより同時アクセス可能な端末数を多くすることができ基地局のシステム容量を増大することができる。
次にこの発明をアダプティブ送受信機に適用した場合の電子計算機シミュレーションによる実験例を説明する。
【0018】
図5にその一例を示す。ここで、従来構成とは図7に示した6垂直偏波素子・6ブランチ半波長間隔直線配列のアダプティブ送受信機であり、提案構成とは図2に示したこの発明の3垂直偏波素子・3水平偏波素子・6ブランチ半波長間隔直線配列の空間・偏波制御システムである。XPDは5dBとしている。2端末に対して到来波を20度の範囲でランダムに生起させる試行回数を1000としている。到来角度差を第2端末の到来方向と第1端末の到来方向の差で定義し、これと出力SINRの関係を求めている。この図から垂直偏波素子のみを用いた従来技術では、希望波の到来方向と干渉波の到来方向の差が小さくなるにつれ、干渉波に対して完全に放射パターンの零点を向けることができず干渉電力を抑圧しきれないことに起因する出力SINRの劣化が生じることがわかる。ところが、提案構成では希望波の到来方向と干渉波の到来方向の差が小さい場合でも偏波成分の違いにより端末を分離できることがわかる。
【0019】
図6は他の実験例を示す。ここで、従来構成とは図7に示した6垂直偏波素子・6ブランチ半波長間隔直線配列のアダプティブ送受信装置であり、提案構成とは図2に示したこの発明の3垂直偏波素子・3水平偏波素子・6ブランチ半波長間隔直線配列の空間・偏波制御システムである。XPDは5dBとしている。各端末数に対して到来波を120度セクタの範囲でランダムに生起させる試行回数を1000とし、同時アクセス端末数と出力SINR累積確率50%値の関係を求めている。同時アクセス端末数が増加すると希望波と干渉波の到来方向が接近する確率が高くなる。図5で示したように提案構成では希望波の到来方向と干渉波の到来方向の差が小さい場合でも偏波成分の違いにより端末を分離できることから、図6から提案構成は端末数が多くなっても出力SINRの低下が従来構成よりも緩やかになっていることがわかる。
【0020】
以上述べたようにこの発明では、基地局において出力SINR又はSIRが高くなる方の偏波で送信するように端末に対して送受信を行う偏波を割当てることにより、垂直偏波素子のみを用いた従来技術では干渉電力を抑圧しきれないことに起因する出力SINR又はSIRの劣化を補償することが可能となる。この効果により、通信品質の劣化を軽減しシステム容量増大が実現できる。さらに、同一ブランチ数の垂直偏波素子のみの従来構成と比較してアンテナ設置空間の削減も実現できる。
【図面の簡単な説明】
【図1】この発明の移動通信端末の構成例を示す図。
【図2】この発明の偏波制御システムの構成例を示す図。
【図3】この発明の偏波制御方法の例を示す流れ図。
【図4】図3に示した処理をコンピュータに行わせる場合の構成例を示す図。
【図5】この発明の効果例としての2端末電波の到来角度差と出力SINRの関係例を示す図。
【図6】この発明の効果の他の例として、同時アクセス端末数と、出力SINRの関係例を示す図。
【図7】従来のアダプティブ送受信機の構成例を示す図。
【図8】従来技術の問題点の例を説明するための2端末電波の到来角度差と出力SINRの関係例を示す図。
【符号の説明】
20 送受信装置
30 重み付け装置
40 合成装置
60 第3のアレーアンテナ
61 第4のアレーアンテナ
70 制御装置
71 SINR監視部
72 端末送信偏波設定部
73 偏波割当部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polarization control system, a terminal, and a control method therefor, which can receive a desired signal wave (hereinafter referred to as “desired wave”) by removing the interference wave in an environment where the interference wave exists.
[0002]
[Prior art]
As a technique to reduce communication quality degradation due to interference waves and multipath fading in the radio propagation path and increase system capacity, the maximum value of the radiation pattern for the desired wave is controlled by controlling the array antenna reception output. Adaptive transmitter / receiver with the function of maximizing the desired signal to interference wave and noise level ratio (hereinafter referred to as output SINR) of the output signal by controlling the zero point of the radiation pattern with respect to the interference wave There is.
[0003]
Conventionally, as an apparatus capable of realizing such a function, for example, as shown in FIG. 7, antenna elements are arranged in N elements (A1 to AN), and each element Ai (i = 1, 2,..., N). Weight wi (i = 1, 2,..., N) corresponding to the level, direction, and the like of the incoming wave is output by the weighting device 30 and the weighted output is synthesized by the synthesis device 40. Get the output. In this figure, the received signals of the antenna elements A1 to AN are demodulated by the transmission / reception device 20 to obtain baseband signals for the respective antenna elements, and these baseband signals are combined with the synthesis device 40. A signal is input to the control device 50, and a baseband signal corresponding to each of the antenna elements A1 to AN is multiplied by the weights W1 to WN by the weighting device 30, and the radiation pattern of the array including the antenna elements A1 to AN is obtained. Is controlled so that the maximum value is directed to the desired wave direction and the zero point is directed to the interference wave direction. In order to control the radiation pattern of the array antenna, the weights W1 to WN are not given to the corresponding baseband signals of the antenna elements A1 to AN, but the received high frequency signals of the antenna elements A1 to AN are weighted. W1 to WN may be given, or weights may be given to intermediate frequency signals corresponding to the antenna elements A1 to AN in the transmission / reception device 20. This is also true in the present invention.
[0004]
In addition, when this apparatus is applied to a land mobile communication system, the polarization used for each antenna element Ai is easily obtained with a linear antenna such as a dipole that has a simple structure and excellent installation properties, and is easily omnidirectional in a horizontal plane. For this reason, vertical polarization has been generally used.
However, the following problems occur in the conventional technique using only the vertical polarization element. FIG. 8 is a diagram showing an example of a problem of the prior art. The base station in the mobile communication system used an adaptive transceiver having 6 vertical polarization elements and a 6-branch half-wavelength interval linear array antenna, and the mobile terminal used a transceiver having a vertical polarization element antenna. XPD means the cross polarization discrimination degree of the propagation path, and is 5 dB in this example. The number of trials for randomly generating incoming waves in the range of 120 degrees sector for two terminals was set to 1000. The arrival angle difference is defined as the difference between the arrival direction of the second mobile terminal and the arrival direction of the first mobile terminal, and the relationship between this difference and the output SINR is obtained. From this figure, as the difference between the arrival direction of the desired wave and the arrival direction of the interference wave becomes smaller, the zero point of the radiation pattern cannot be completely directed to the interference wave, and the interference power cannot be suppressed. It can be seen that the output SINR deteriorates. As the number of mobile terminals accessing simultaneously increases, the probability that the arrival direction of the desired wave and the arrival direction of the interference wave approach each other increases. Therefore, the degradation of the output SINR in the conventional system causes the degradation of the communication quality and the increase of the system capacity. It is a problem from the point of view.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a polarization control system, a terminal, and a control method that can realize a control for increasing the system capacity by reducing the deterioration of communication quality.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a wireless terminal of the present invention has a first antenna element having a predetermined polarization characteristic and a polarization characteristic orthogonal to the polarization characteristic of the first antenna element. A second antenna element, and a control device that selects the first antenna element or the second antenna element as a transmission / reception antenna.
The polarization control system according to the present invention includes a first antenna having a predetermined polarization characteristic, a second antenna having a polarization characteristic orthogonal to the polarization characteristic of the first antenna, Of the output signal SINR or the desired signal to interference wave level ratio (hereinafter referred to as output SIR) of the output signal of the combiner and the terminal A terminal transmission polarization setting unit for setting a transmission polarization and a control device including a polarization allocation unit for allocating a polarization having a higher SIR or SINR of an output signal as a reception polarization of a newly allocated terminal.
[0007]
The polarization control system of the present invention causes a newly assigned terminal to transmit with a predetermined polarization characteristic, measures the SIR or SINR for the transmission wave of each existing terminal, and the SIR or SINR minimum value SIR of this measurement result Select (V) or SINR (V),
The newly allocated terminal is transmitted with a polarization characteristic orthogonal to a predetermined polarization characteristic, and the SIR or SINR with respect to the transmission wave of each existing terminal is measured. The minimum value SIR (H ) Or SINR (H),
A polarization characteristic is assigned to the newly assigned terminal so that transmission is performed with a polarization characteristic corresponding to the larger of SIR (V) or SINR (V) and SIR (H) or SINR (H).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1A shows the configuration of the terminal of the present invention. The terminal includes a first antenna element 10 having a predetermined polarization characteristic, a second attenuator element 11 having a polarization characteristic orthogonal to the polarization characteristic of the first antenna element 10, and a transmission / reception antenna. As a control device 13 that selects the first antenna element 10 or the second antenna element 11 and a transmission / reception device 14. That is, in this example, the transmission / reception apparatus for the first antenna element 10 and the transmission / reception apparatus for the second antenna element 11 can be switched by the control device 13.
[0009]
FIG. 2 shows the configuration of the polarization control system (base station) of the present invention. This embodiment is applied to an adaptive array. The base station is composed of a plurality of antenna elements A1, A2, A3 and has a third array antenna 60 having a predetermined polarization characteristic, and a plurality of antenna elements A4, A5, A6. A fourth array antenna 61 having a polarization characteristic orthogonal to the polarization characteristics of the first and second antenna elements A1 to A6 of the third array antenna 60 and the fourth array antenna 61. Weighting device 30 for weighting, combining device 40 for combining signals output from weighting device 30, SINR monitoring unit 71 for monitoring the SINR of the output signal of combining device 40, and terminal for setting the transmission polarization of the terminal The transmission polarization setting unit 72 includes a polarization allocation unit 73 that allocates a polarization having a larger SINR of the output signal as a transmission polarization of the new allocation terminal. It includes a weighting factor calculator 74 for calculating a weighting factor W1~W6 based on force signals, and a control unit 70 which controls the weight coefficient W1~W6 weighting device 30. It should be noted that the first antenna element 10 and the second antenna element 11 of the terminal, or the antenna elements of the third array antenna 60 and the fourth array antenna 61 of the base station are fed in different points in one element. It is also possible to use a point that can change the polarization direction of a receivable radio wave. For example, a circular microstrip antenna. As a result, the first antenna element 10 and the second antenna element 11 or the third array antenna 60 and the fourth array antenna 61 are completely shared by the respective elements. A reduction in the wave removal effect can be prevented.
[0010]
For example, in the terminal, as shown in FIG. 1B, a circular microstrip antenna 10 'is provided, and the feeding point can be switched by the feeding point switching unit 15 to be connected to the transmission / reception device 14. The feeding point switching unit The control device 13 performs switching of the 15 feeding points. In the base station, the circular microstrip antenna is used as each antenna element of the third array antenna 60 and the fourth array antenna 61, and the two feeding points are fed simultaneously to transmit and receive two polarizations simultaneously. By doing so, it is possible to prevent a reduction in unnecessary wave removal effect based on the position deviation.
[0011]
FIG. 3 shows an example of the processing procedure of the space / polarization control method in the control device 70 according to the polarization control system of the present invention.
First, the number k (k is an integer from 1 to n) of a newly allocated terminal is initialized to 1 (S1), communication between the base station and the terminal is performed with a predetermined polarization (S2), and the combining device 40 at that time SINR of the output signal (hereinafter simply referred to as output signal) is measured (S3). Next, it is checked whether the number n (n is an integer greater than or equal to 1) of terminals that access simultaneously is 2 or more (S4). That is, when the number of simultaneously accessed terminals is one of the newly assigned k-th terminals, communication between the base station and the terminals is performed with the predetermined polarization assigned in step S2.
[0012]
Next, when it is determined in step S4 that the number n of simultaneous access terminals is 2 or more, k is updated to 2 (S5), and it is checked whether k is n or less (S6). Thus, since the allocation of the polarization to the new allocation k-th terminal is completed, the SINR of the output signal is measured and the process ends (S7).
If k is n or less, a control signal for assigning a predetermined polarization V, for example, a vertical polarization, is transmitted to the newly assigned k-th terminal by using, for example, a control channel (S8). Based on this transmission, the newly assigned k-th terminal transmits with polarization V (S9). In this state, i indicating an existing terminal (i is an integer not less than 1 and not more than k-1) is initialized to 1 (S10), and the i-th terminal transmits with a predetermined polarization assigned thereto (S11), The radio waves of predetermined polarizations V and H are received at the reception level based on the cross polarization discrimination degree XPD of the propagation path (S12), and the SINR (i) at that time is obtained (S13). Thereafter, it is checked whether i is equal to or less than k−1 (S14). If it is equal to or less than k−1, that is, if there is an existing terminal whose interference state with the radio wave of the existing terminal is not checked, i is incremented by 1 and the process proceeds to step S11. Then, SINR (i) is measured for the next i-th terminal (S15).
[0013]
When the measurement of the interference state, that is, SINR (i) with the polarization V of the newly assigned k-th terminal is completed for all the existing terminals, that is, the predetermined polarization V of the first to (k-1) -th existing terminals, these (k -1) The minimum SINR (V) is selected from the SINR (i) (S16).
Note that k + i = n.
Next, a control signal for allocating a polarization H (eg, horizontal polarization) orthogonal to the predetermined polarization V is transmitted to the new allocation k-th terminal (S17). Therefore, the newly assigned k-th terminal transmits with polarization H (S18). In this state, i is initialized to 1 (S19), and the i-th existing terminal is transmitted with the predetermined polarization assigned thereto (S20), and the predetermined polarizations V and H are received at the reception level based on the XPD at that time. Each radio wave is received (S21), and the SINR (i) at that time is obtained (S22). It is checked whether i is equal to or less than k−1 (S23). If k−1, i is incremented by 1, and the process returns to step S20 to measure SINR (i) for the next i-th terminal (S24). ). When SINR (i) is measured for all existing terminals in this way, the minimum value SINR (H) in these SINR (i) is selected (S25).
[0014]
This SINR (H) is compared with the previously selected SINR (V) (S26), and the higher SINR is selected, that is, the polarization having the higher SINR is assigned to the newly assigned k-th terminal. SINR is output (S27), k is incremented by 1, and the process returns to step S6. Therefore, the same operation is performed until k becomes equal to n, that is, until polarization allocation is completed for all the newly assigned terminals.
From the above results, in the base station that receives a predetermined polarization at a reception level based on XPD and a polarization orthogonal thereto, a predetermined polarization or a polarization orthogonal to the newly assigned k-th terminal is obtained. When assigned, the minimum number of output SINRs of the existing terminals of k−1 is compared, and the higher polarization is selected and assigned to the newly assigned k-th terminal, so that the number of simultaneous access terminals is n. The system capacity of the base station that communicates with the terminal group increases.
[0015]
The polarization allocation control for the new terminal shown in FIG. 4 is performed by the polarization allocation unit 73 in FIG. 2, which can be made to function by interpreting and executing the program by a computer. That is, for example, as shown in FIG. 4, the SINR monitoring unit 71, the terminal transmission polarization setting unit 72, the existing terminal transmission control unit 81, the storage unit 82, the memory 83 storing the polarization control program, the basic program memory 84, and the CPU 85 It is connected to the bus 86. In step S8 and step S17 in FIG. 3, the terminal transmission polarization setting unit 72 generates a control signal to be transmitted with a predetermined polarization characteristic for the newly assigned k-th terminal in step S8, and the i-th existing in steps S11 and S20. The control signal to be transmitted to the terminal with the allocated polarization is generated by the existing terminal transmission control unit 81, and each SINR (i) measured from the SIN monitoring unit 71 measured in steps S 13 and S 22 is stored in the storage unit 82. The CPU 85 interprets and executes the polarization control program, whereby the processing shown in FIG. 3 is executed. In order to transmit / receive the polarization characteristic determined in step S27, the terminal transmission polarization setting unit 72 also generates a control signal to be allocated to the newly allocated k-th terminal.
[0016]
As can be understood from the polarization control procedure shown in FIG. 3, the present invention is not necessarily limited to an adaptive transceiver using an array antenna, and even when adaptive control is not performed, a predetermined polarization characteristic is used as a transmission / reception radio wave of each terminal. And a polarization characteristic orthogonal thereto can be allocated so that interference does not occur as much as possible, and the system capacity of the base station communicating with the number of simultaneous access terminals can be increased accordingly.
In the above description, SIR (desired wave to interference wave level ratio) may be used instead of SINR. Furthermore, the present invention can be applied to any access method such as TDMA, FDMA, and CDMA. Furthermore, as described in the section of the prior art, when the present invention is applied to an adaptive transceiver, weighting for signals corresponding to each antenna element is performed at any of a high frequency stage, an intermediate frequency stage, and a baseband stage. Also good.
[0017]
【The invention's effect】
As described above, according to the present invention, it is possible to increase the number of terminals that can be simultaneously accessed by selectively assigning desired polarization characteristics and orthogonal polarization characteristics to the terminals so that there is less interference. The system capacity of the base station can be increased.
Next, an experimental example by computer simulation when the present invention is applied to an adaptive transceiver will be described.
[0018]
An example is shown in FIG. Here, the conventional configuration is an adaptive transmitter / receiver having 6 vertical polarization elements and a 6-branch half-wavelength linear array shown in FIG. 7, and the proposed configuration is the 3 vertical polarization elements of the present invention shown in FIG. This is a space / polarization control system with a linear arrangement of 3 horizontal polarization elements and a half-wavelength interval of 6 branches. XPD is 5 dB. The number of trials for randomly generating an incoming wave in the range of 20 degrees for two terminals is set to 1000. The arrival angle difference is defined as the difference between the arrival direction of the second terminal and the arrival direction of the first terminal, and the relationship between this difference and the output SINR is obtained. From this figure, in the conventional technology using only a vertical polarization element, the zero point of the radiation pattern cannot be completely directed to the interference wave as the difference between the arrival direction of the desired wave and the arrival direction of the interference wave becomes smaller. It can be seen that the output SINR is deteriorated due to the fact that the interference power cannot be suppressed. However, it can be seen that in the proposed configuration, terminals can be separated by the difference in polarization components even when the difference between the arrival direction of the desired wave and the arrival direction of the interference wave is small.
[0019]
FIG. 6 shows another experimental example. Here, the conventional configuration is an adaptive transmission / reception apparatus of 6 vertical polarization elements and a 6-branch half-wavelength linear array shown in FIG. 7, and the proposed configuration is the 3 vertical polarization elements of the present invention shown in FIG. This is a space / polarization control system with a linear arrangement of 3 horizontal polarization elements and a half-wavelength interval of 6 branches. XPD is 5 dB. The number of trials for randomly generating an incoming wave in the range of 120 degrees sector for each number of terminals is set to 1000, and the relationship between the number of simultaneous access terminals and the output SINR cumulative probability 50% is obtained. As the number of simultaneous access terminals increases, the probability that the arrival directions of the desired wave and the interference wave approach each other increases. As shown in FIG. 5, in the proposed configuration, even if the difference between the arrival direction of the desired wave and the arrival direction of the interference wave is small, the terminals can be separated by the difference in polarization components. However, it can be seen that the decrease in output SINR is more gradual than in the conventional configuration.
[0020]
As described above, in the present invention, only the vertical polarization element is used by allocating the polarization to be transmitted / received to the terminal so that the base station transmits with the polarization having the higher output SINR or SIR. In the prior art, it is possible to compensate for the degradation of the output SINR or SIR caused by the fact that the interference power cannot be suppressed. With this effect, it is possible to reduce communication quality degradation and increase system capacity. Furthermore, the antenna installation space can be reduced as compared with the conventional configuration in which only the vertically polarized elements having the same number of branches are used.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration example of a mobile communication terminal according to the present invention.
FIG. 2 is a diagram showing a configuration example of a polarization control system of the present invention.
FIG. 3 is a flowchart showing an example of a polarization control method according to the present invention.
4 is a diagram showing a configuration example in a case where a computer performs the processing shown in FIG. 3;
FIG. 5 is a diagram showing an example of the relationship between an arrival angle difference between two terminal radio waves and an output SINR as an effect example of the present invention;
FIG. 6 is a diagram showing an example of the relationship between the number of simultaneous access terminals and output SINR as another example of the effect of the present invention;
FIG. 7 is a diagram illustrating a configuration example of a conventional adaptive transceiver.
FIG. 8 is a diagram illustrating a relationship example between an arrival angle difference between two terminal radio waves and an output SINR for explaining an example of a problem of the conventional technology.
[Explanation of symbols]
20 Transmission / Reception Device 30 Weighting Device 40 Synthesizer 60 Third Array Antenna 61 Fourth Array Antenna 70 Control Device 71 SINR Monitoring Unit 72 Terminal Transmission Polarization Setting Unit 73 Polarization Allocation Unit

Claims (4)

複数の端末と基地局からなる偏波制御システムにおいて、
上記端末は、
所定の偏波特性を有する第1アンテナ素子と、
その第1アンテナ素子の偏波特性に対して直交する第2アンテナ素子と、
受信した端末送信偏波設定信号に応じて、送受信アンテナとして上記第1アンテナ素子又は上記第2アンテナ素子を上記基地局からの制御信号に基づいて選択する制御装置とを具備し、
上記基地局は、
所定の偏波特性を有する複数のアンテナ素子で構成されるアレーアンテナの第3アンテナと、
上記第3アンテナの偏波特性に対して直交する偏波特性の複数のアンテナ素子で構成されるアレーアンテナの第4アンテナと、
上記第3アンテナ及び上記第4アンテナの各アンテナ素子の出力信号に対して重み付けを行なう第1及び第2重み付け装置と、
上記第1重み付け装置の出力信号と上記第2重み付け装置の出力信号とを合成する合成装置と、
交差偏波識別度 XPD に基づいた受信レベルで受信した上記合成装置の出力信号の希望波信号対干渉波信号レベル比(以下 SIR と記す)又は希望波信号対干渉波信号及び雑音レベル比(以下 SINR と記す)を求める監視部、
端末の送信偏波を設定する制御信号を端末に送信する端末送信偏波設定部、
上記合成装置の出力信号を基に上記第1及び第2重み付け装置の重み係数を制御する重み係数生成部、
上記端末の送信偏波として設定したの所定の偏波と、これに直交する偏波における上記 SIR 又は SINR をそれぞれ求め、
上記求めた SIR 又は SINR の各最小値中の高い方と対応する偏波を新規割当端末の送信偏波として割当てる偏波割当部を有する制御装置とを具備する偏波制御システム。
In the polarization control system consisting of multiple terminals and base stations,
The terminal
A first antenna element having a predetermined polarization characteristic;
A second antenna element orthogonal to the polarization characteristics of the first antenna element;
A control device that selects the first antenna element or the second antenna element as a transmission / reception antenna based on a control signal from the base station according to a received terminal transmission polarization setting signal;
The base station
A third antenna of an array antenna composed of a plurality of antenna elements having a predetermined polarization characteristic;
A fourth antenna of an array antenna composed of a plurality of antenna elements having polarization characteristics orthogonal to the polarization characteristics of the third antenna;
First and second weighting devices for weighting output signals of the antenna elements of the third antenna and the fourth antenna;
A combining device for combining the output signal of the first weighting device and the output signal of the second weighting device;
The desired signal to interference signal level ratio (hereinafter referred to as SIR ) or the desired signal to interference signal and noise level ratio (hereinafter referred to as SIR ) of the output signal of the synthesis apparatus received at the reception level based on the cross polarization discrimination XPD. The monitoring department, seeking SINR )
A terminal transmission polarization setting unit that transmits a control signal for setting the transmission polarization of the terminal to the terminal;
A weighting factor generator for controlling the weighting factors of the first and second weighting devices based on the output signal of the synthesizer;
Obtain the predetermined polarization set as the transmission polarization of the terminal and the SIR or SINR in the polarization orthogonal thereto ,
A polarization control system comprising: a control device having a polarization allocation unit that allocates a polarization corresponding to a higher one of the obtained minimum values of SIR or SINR as a transmission polarization of a new allocation terminal.
上記第3アンテナの各アンテナ素子と上記第4アンテナの各アンテナ素子として、1つのアンテナ素子の異なる点を給電点とすることにより送受信可能な電波の偏波の偏波方向が変化するアンテナ素子が用いられ、その各アンテナ素子の前記両給電点に送受信装置が接続されていることを特徴とする請求項1記載の偏波制御システム。As each antenna element of the third antenna and each antenna element of the fourth antenna , there is an antenna element that changes the polarization direction of the radio wave that can be transmitted and received by using a different point of one antenna element as a feeding point. used is, claim 1 Symbol placement polarization control system wherein the transceiver is connected to the two feeding points of the respective antenna elements. 上記第1アンテナ素子と上記第2アンテナ素子は、1つのアンテナ素子の異なる点を給電点とすることにより送受信可能な電波の偏波方向が変化させられる1アンテナ素子として構成され、その給電点の切替えを上記制御装置により制御される給電点切替え部を備えることを特徴とする請求項1記載の偏波制御システム。The first antenna element and the second antenna element are configured as one antenna element that can change the polarization direction of radio waves that can be transmitted and received by using different points of one antenna element as a feeding point. The polarization control system according to claim 1, further comprising a feeding point switching unit whose switching is controlled by the control device. 偏波制御システムによる移動端末に対する送信偏波制御方法であって、
新規割当端末に対して、所定の偏波特性で送信するように偏波割当制御信号を送信する過程と、
上記新規割当端末に対し送信偏波を上記所定の偏波特性に設定した状態で各既存の端末の送信波に対する希望波信号対干渉波レベル比(以下SIRと記す)又は希望波信号対干渉波及び雑音レベル比(以下SINRと記す)を、その時の伝搬路の交差偏波識別度 XPD に基づいた受信レベルで測定する第1測定過程と、
その第1測定過程で測定したSIR又はSINRの最小SIR(V)又はSINR(V)を選択する過程と、
上記新規割当端末に対して、上記所定の偏波特性に対し直交する偏波特性で送信するように偏波割当制御信号を送信する過程と、
上記新規割当端末に対し送信偏波を上記所定偏波特性に対し直交する偏波特性に設定した状態で各既存の端末の送信波に対するSIR又はSINRを、その時の伝搬路の交差偏波識別度 XPD に基づいた受信レベルで測定する第2測定過程と、
その第2測定過程で測定したSIR又はSINRの最小値SIR(H)又はSINR(H)を選択する過程と、
上記最小SIR(V)又はSINR(V)と上記最小SIR(H)又はSINR(H)とを比較する過程と、
この比較においてSIR又はSINRの高い方に対応する偏波特性で送信するように偏波特性を割当てする偏波特性割当制御信号を上記新規割当端末に送信する過程と、を有する偏波制御システムの制御方法。
A transmission polarization control method for a mobile terminal by a polarization control system,
A process of transmitting a polarization allocation control signal to a new allocation terminal so as to transmit with a predetermined polarization characteristic;
A desired wave signal-to-interference wave level ratio (hereinafter referred to as SIR) or a desired wave signal-to-interference with respect to the transmission wave of each existing terminal with the transmission polarization set to the predetermined polarization characteristic for the newly assigned terminal A first measurement process of measuring a wave and noise level ratio (hereinafter referred to as SINR) at a reception level based on the cross polarization discrimination XPD of the propagation path at that time ;
Selecting a minimum SIR (SIR) or SINR (V) of SIR or SINR measured in the first measurement process;
A process of transmitting a polarization allocation control signal to the new allocation terminal so as to transmit with a polarization characteristic orthogonal to the predetermined polarization characteristic;
The SIR or SINR for the transmission wave of each existing terminal in the state where the transmission polarization for the newly allocated terminal is set to a polarization characteristic orthogonal to the predetermined polarization characteristic, and the cross polarization of the propagation path at that time A second measurement process for measuring at a reception level based on the degree of discrimination XPD ;
Selecting the minimum SIR or SINR value SIR (H) or SINR (H) measured in the second measurement process;
Comparing the minimum SIR (V) or SINR (V) with the minimum SIR (H) or SINR (H);
A polarization characteristic allocation control signal for allocating a polarization characteristic to be transmitted with a polarization characteristic corresponding to a higher SIR or SINR in this comparison, and transmitting the polarization characteristic allocation control signal to the new allocation terminal. Control system control method.
JP2000248207A 2000-08-18 2000-08-18 Polarization control system and control method thereof Expired - Fee Related JP3612010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000248207A JP3612010B2 (en) 2000-08-18 2000-08-18 Polarization control system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000248207A JP3612010B2 (en) 2000-08-18 2000-08-18 Polarization control system and control method thereof

Publications (2)

Publication Number Publication Date
JP2002064321A JP2002064321A (en) 2002-02-28
JP3612010B2 true JP3612010B2 (en) 2005-01-19

Family

ID=18738155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000248207A Expired - Fee Related JP3612010B2 (en) 2000-08-18 2000-08-18 Polarization control system and control method thereof

Country Status (1)

Country Link
JP (1) JP3612010B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080102776A1 (en) * 2004-12-30 2008-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Antenna for a Radio Base Station in a Mobile Cellular Telephony Network
JP4574563B2 (en) * 2006-02-08 2010-11-04 日本電信電話株式会社 Wireless communication system, wireless communication method, base station apparatus, and terminal apparatus
JP4827605B2 (en) * 2006-05-16 2011-11-30 三洋電機株式会社 Wireless device
JP4767880B2 (en) * 2007-02-23 2011-09-07 日本電信電話株式会社 Communication apparatus and communication method thereof
JP5040549B2 (en) 2007-09-20 2012-10-03 日本電気株式会社 Synthetic aperture radar, compact polarimetry SAR processing method, program
JP5493131B2 (en) 2010-09-08 2014-05-14 国立大学法人九州大学 Packet communication system, radiation control apparatus, antenna control method, and program
US8306479B1 (en) * 2012-07-06 2012-11-06 Metropcs Wireless, Inc. Polarization control for cell telecommunication system
US9716541B2 (en) * 2015-09-15 2017-07-25 Qualcomm Incorporated Systems and methods for reducing interference using polarization diversity
JP7064471B2 (en) * 2019-06-28 2022-05-10 株式会社東芝 Antenna device

Also Published As

Publication number Publication date
JP2002064321A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
US11503570B2 (en) Multi-antenna communication in a wireless network
KR100817620B1 (en) Method and apparatus for adapting antenna array using received predetermined signal
US6518920B2 (en) Adaptive antenna for use in same frequency networks
US8078113B2 (en) Adaptive antenna control method and adaptive antenna transmission/reception characteristic control method
JP5021146B2 (en) Mode switching in adaptive array communication systems
KR20100054876A (en) Mitigation of wireless transmit/receive unit (wtru) to wtru interference using multiple antennas or beams
AU2017417130B2 (en) Beam selection for a radio transceiver device
JP2005525016A (en) Adaptive pointing for directional antennas
KR20140092951A (en) Method and apparatus for fast beam-link construction scheme in the mobile communication system
US20160134015A1 (en) Antenna directivity control system
US20200229003A1 (en) Access Point Device and Communication Method
JP3612010B2 (en) Polarization control system and control method thereof
JP4040585B2 (en) Communication system and communication method using adaptive array antenna
JP2004080353A (en) Communication unit employing adaptive antenna array and communication control method
CN112020077A (en) Communication method and device
JP2001268004A (en) Antenna directivity control method and wireless system
JP3370621B2 (en) Mobile communication base station antenna device
JP3597694B2 (en) Adaptive antenna device
JP2021176227A (en) Wireless communication device and wireless communication method
US10111253B2 (en) Method and apparatus for interference alignment and multi-antenna signal process in wireless network
US20040235511A1 (en) Radio base apparatus, transmission power control method, and transmission power control program
WO2021186573A1 (en) Communication control method, control station, and communication control program
CN115604726A (en) Communication device performing beamforming and method of operating the same
CN115347345A (en) Flexible screen terminal, antenna adjusting method and storage medium
CN117156451A (en) Beam weight adjustment method, device, access network equipment and storage medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees