Nothing Special   »   [go: up one dir, main page]

JP3611495B2 - Reduced pressure moisture generator - Google Patents

Reduced pressure moisture generator Download PDF

Info

Publication number
JP3611495B2
JP3611495B2 JP33888299A JP33888299A JP3611495B2 JP 3611495 B2 JP3611495 B2 JP 3611495B2 JP 33888299 A JP33888299 A JP 33888299A JP 33888299 A JP33888299 A JP 33888299A JP 3611495 B2 JP3611495 B2 JP 3611495B2
Authority
JP
Japan
Prior art keywords
moisture
reactor
main body
gas
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33888299A
Other languages
Japanese (ja)
Other versions
JP2001158605A (en
Inventor
信一 池田
幸男 皆見
幸司 川田
克典 米華
晃夫 本井傳
暢 平井
明弘 森本
敏朗 成相
圭司 平尾
將暖 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP33888299A priority Critical patent/JP3611495B2/en
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to IL16104500A priority patent/IL161045A0/en
Priority to CA002343278A priority patent/CA2343278A1/en
Priority to KR10-2000-7014111A priority patent/KR100387731B1/en
Priority to CNB2004100033410A priority patent/CN1279582C/en
Priority to PCT/JP2000/004911 priority patent/WO2001010774A1/en
Priority to SG200202050A priority patent/SG94873A1/en
Priority to IL14119400A priority patent/IL141194A0/en
Priority to CA002479400A priority patent/CA2479400A1/en
Priority to EP00946457A priority patent/EP1138631A1/en
Priority to CNB008016267A priority patent/CN100341775C/en
Priority to TW089115809A priority patent/TW553900B/en
Priority to IL141194A priority patent/IL141194A/en
Priority to US09/773,605 priority patent/US7258845B2/en
Publication of JP2001158605A publication Critical patent/JP2001158605A/en
Priority to US10/724,101 priority patent/US7368092B2/en
Priority to IL161045A priority patent/IL161045A/en
Publication of JP3611495B2 publication Critical patent/JP3611495B2/en
Application granted granted Critical
Priority to US11/460,087 priority patent/US7553459B2/en
Priority to US11/760,330 priority patent/US20070231225A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、主として半導体製造装置において利用される水分発生供給装置に係り、更に詳細には、水分ガスを減圧状態で下流側に供給し、同時に水分発生用反応炉内の内圧を高めて水素の自然発火を防止できる減圧型水分発生供給装置に関する。
【0002】
【従来の技術】
例えば、半導体製造に於ける水分酸化法によるシリコンの酸化膜形成では、少なくとも1000cc/minを越える超高純度水を必要とする。そのため、本件出願人は先きに図5や図6に示す構造の水分発生用反応炉を開発し、特願平8−242246号(図5)及び特願平10−345500号(図6)として、これを公開している。
【0003】
即ち図5に示した反応炉本体21は、原料ガス供給用継手24を有する入口側炉本体部材22と水分ガス取出用継手25を備えた耐熱性の出口側炉本体部材23を対向状に組み合せて形成されている。この反応炉本体21の内部では、両炉本体部材22、23の原料ガス供給通路24a及び水分ガス出口通路25aと各々対向して入口側反射体29a及び出口側反射体29bが配置されている。反応炉本体21の内部中央にはフィルタ30が設けられ、出口側炉本体部材23の内壁面には白金コーティング触媒層32が形成されている。
【0004】
前記白金コーティング触媒層32は、炉本体部材23の内壁面に形成したTiN等の窒化物からなるバリヤー皮膜32aの上に、蒸着工法やイオンプレーティング工法等によって白金皮膜32bを固着することにより形成される。
【0005】
また、前記図6に示した反応炉本体21に於いては、反応炉本体21の内部に比較的厚い1枚の反射体29が設けられており、且つ出口側炉本体部材23の内周面には、バリヤー皮膜32aと白金皮膜32bとから成る白金コーティング触媒層32が形成されている。
尚、入口側炉本体部材22の外表面と反射体29の外表面にはバリヤー皮膜32aのみが設けられており、白金皮膜32bは形成されていない。入口側炉本体部材22や反射体9の表面が触媒作用を呈することにより、OとHの反応が起生して局部的な温度上昇が生ずるのを防止するためである。
【0006】
図5を参照して、原料ガス供給通路24aを通して反応炉本体21の内部へ供給された原料ガスである水素及び酸素は、入口側反射体29a、フィルタ30及び出口側反射体29bから成る拡散用部材によって内部空間26で拡散され、白金コーティング触媒層32と接触する。白金コーティング触媒層32と接触した酸素及び水素は、白金の触媒作用によって反応性が高められ、所謂ラジカル化された状態となる。ラジカル化された水素と酸素は、水素混合ガスの発火温度よりも低い温度で瞬時に反応し、高温燃焼をすることなしに水分を生成する。この水分ガスは水分ガス出口通路25aを介して下流側へ供給される。
【0007】
同様に、図6の反応炉本体21に於いては、原料ガス供給通路24aを通して反応炉本体21の内部へ供給された原料ガスである水素及び酸素は、反射体9と衝突することにより内部空間26で拡散される。また、拡散された原料ガスの水素と酸素は、白金コーティング触媒層32と接触することによりラジカル化された状態となり、前述と同様に高温燃焼をすることなしに瞬時に反応をし、水分を生成する。
【0008】
前記図5や図6等に示した構成の反応炉本体21は、水分発生装置の大幅な小型化が図れ、しかもより高い反応性と応答性の下で1000cc/minを越える量の高純度水や高純度水と酸素との混合ガスを得ることができ、半導体製造技術の分野に於いて画期的な注目を集めているものである。
また、これ等の水分発生用の反応炉本体21は、水素と酸素が炉内において自然発火を起さない温度範囲(例えば400℃)で使用され、触媒反応のみで水分を発生させることにより、安全に高純度の水分を生成供給することを特徴としている。
【0009】
更に、本願発明者等は、上記触媒反応を用いた水分発生に於ける触媒反応効率を高めるために、過去に幾多の開発を行なっており、例えば、特開平10−270437号および特開平10−297907号では、水分ガス中の残留水素を減らすために、反応炉の構造を改善して水素と酸素の反応率を高めている。また、特開平11−171503号では、供給する水素流量を徐々に増加させて水素と酸素の反応効率を高め、残留水素量を低減させている。更に、特開平11−11902号では、水素の供給開始時点を酸素より遅らせ、同時に水素の供給終了時点を酸素より早めて水素の反応効率を高めている。
その結果、前記図5や図6に示した構成の反応炉本体21は、高い触媒反応効率の下で残留水素量が略零に近い高純度の水分を生成供給できると云う特徴を備えている。
【0010】
【発明が解決しようとする課題】
ところが、半導体製造ラインにおいては、水分を減圧下(例えば数Torr)で供給して処理する工程が多く存在する。この場合、原料ガス供給通路24aから減圧した水素と酸素を反応炉本体21に供給すると、水素の発火温度が低下し、反応炉内で水素が自然発火を生起する可能性がある。
【0011】
図7は、半径7.4cmの球形容器における体積比2:1のH−O混合気体の発火限界曲線である。この曲線は化学便覧基礎編改定3版(日本化学会編、丸善)II−406から得られ、縦軸は混合気体の全圧、横軸は発火温度を示している。
【0012】
反応炉の内部温度が400℃に設定されているときに、水素と酸素の混合気体の全圧が数Torrにまで減圧されたと考えよう。図7から圧力が数Torrに対応する発火温度は約400℃である。従って、この条件では発火温度が設定温度に接近するため、反応炉内で水素が自然発火してしまう。設定温度を更に高く設定すると、発火は確実に起こる。
【0013】
このように、水素と酸素の混合気体の全圧が低下するに連れて水素の発火温度は急激に低下する。全圧が高いときに水素が発火しないように温度設計されていても、全圧が低下すると突然発火する事態が出現する。反応炉内で発火すると、その火炎が原料ガス供給通路24aを介して上流側に逆流し、水素ボンベの爆発の危険性が生じる。
【0014】
本発明は、上述の如き水素と酸素の混合気体の全圧が低下した場合の発火の危険を完全に抑制し、水分ガスの減圧供給を実現すると同時に、水分発生用反応炉の内圧を高く保持して水素の自然発火を完全に防止できるようにした安全な減圧型水分発生供給装置を提供することを、発明の主たる目的とするものである。
【0015】
【課題を解決するための手段】
請求項1の発明は、水素と酸素から触媒反応により水分ガスを発生する水分発生用反応炉と、この水分発生用反応炉の下流側に設けられた減圧手段とから構成され、この減圧手段により水分ガスを減圧して下流側に供給すると同時に反応炉内の内圧を高く保持することを特徴とする減圧型水分発生供給装置である。
【0016】
請求項2の発明は、前記減圧手段がオリフィス又はバルブ、キャピラリー、フィルターである請求項1に記載の減圧型水分発生供給装置である。
【0017】
請求項3の発明は、前記水分発生用反応炉が、原料ガス供給口を有する入口側本体部材と水分ガス取出口を有する出口側炉本体部材とを対向状に組合せて形成した反応炉本体と、この反応炉本体の内部空間内にガス供給口と対向状に配設した入口側反射体と、前記内部空間内に水分ガス取出口と対向状に配設した出口側反射体と、前記出口側炉本体部材の内壁面に形成した白金コーティング触媒層とから形成される請求項1又は請求項2に記載の減圧型水分発生供給装置である。
【0018】
請求項4の発明は、前記水分発生用反応炉を、原料ガス供給口を有する入口側本体部材と水分ガス取出口を有する出口側炉本体部材とを対向状に組合せて形成した反応炉本体と、この反応炉本体の内部空間内に配設した反射体と、前記炉本体部材の内壁面に形成した白金コーティング触媒層とから成る水分発生用反応炉とした請求項1又は請求項2に記載の減圧型水分発生供給装置である。
【0019】
【発明の実施の形態】
前述したように、本発明が達成すべき課題は二つあり、第1は高純度の水分ガスを下流側に低圧で供給でき、第2は水分発生用反応炉の内圧を高く保持して水素の発火温度を高く保持することである。このようにして、水分生成を行う反応炉の実際設定温度と発火温度の差を大きくして発火を防止する。
【0020】
本発明者等は上記課題を解決するために鋭意研究した結果、2種の課題を同時的に解決する方法を着想するに到った。即ち、水分発生用反応炉の下流位置にオリフィスやバルブ等の減圧手段を配置すれば、水分発生用反応炉では高圧で水分ガスを生成し、この水分ガスを減圧手段で絞って下流側に低圧で供給することが可能となる。
【0021】
例えば、水分発生用反応炉の設定温度を350℃とする。水素と酸素の混合ガスの全圧を100〜1000Torrに調整して水分発生用反応炉に供給すると、図7からその発火温度は540〜580℃であることが分る。このようにすれば発火温度と設定温度との差は190〜230℃にも達し、水素が自然発火することは有り得ない。この温度差を大きく保持することが水素発火を防止し、水分ガスの安全供給を実現する。
【0022】
以下に、本発明に係る減圧型水分発生供給装置の実施形態を図面に従って詳細に説明する。
図1は減圧型水分発生供給装置の実施形態の構成図である。H、O、Nの3種類のガスがバルブV1、V4、V7により選択されながら流入し、マスフローコントローラMFC1、MFC2、MFC3により流量制御されながら、バルブV3、V6、V9を介して水分発生用反応炉WVGに供給される。バルブV2、V5、V8は排気用バルブである。
【0023】
水分発生用反応炉WVGは図5に示されているのでその説明を省略する。反応炉WVGで生成された水分ガスの圧力は圧力計P1で計測されてレコーダRで記録される。この水分ガスは減圧手段RM(図1ではオリフィス)で絞られて減圧され、水素センサーS1、S2で残留水素を計測されながら、フィルターFを介してプロセスチャンバーCに送られる。残留水素量もレコーダRに記録される。また、記録で示す領域BAは140℃で加熱され、管内面でのガス吸着を防止している。
【0024】
フィルターFから送られる水分ガスはサンプリングバルブSVを介して質量分析器Mで成分分析される。プロセスチャンバーCは例えば半導体製造装置であり、バルブV10を介して真空ポンプRPで引かれ、その内圧は圧力計P2で計測される。不用なガスはバルブ11で排気される。
【0025】
マスフローコントローラMFC1〜MFC3に入る原料ガスのガス圧は2(kg/cmG)であるが、流量調節される結果、それらの流量はNで1SLM、Hで0.2〜1SLM、Oで0.5〜1SLMである。プロセスチャンバーCの内圧は真空ポンプRPで1Torrに調整される。減圧手段RMとして用いられるオリフィスの直径は0.6mmで、水分発生用反応炉WVGの内部温度は350℃に設定されている。
【0026】
図2は水分発生用反応炉圧力のNガス流量依存性を示している。真空ポンプRPを停止し、バルブ11を開放して、プロセスチャンバーCを大気圧に設定する。この状態で、Nガスだけで図1の装置をパージする。Nガス流量を1000〜5000sccmの範囲で増加したとき、反応炉圧力は約900〜1900Torrの範囲で直線的に増加することが分かる。
【0027】
減圧手段RMとしてオリフィスが配置されているから、Nガスの流量を増加すると、オリフィスによる下流側への流通規制により、反応炉内にNガスが滞溜するため反応炉圧力が増加する。Nガスで圧力増加が生じるから、当然に他の混合ガスでも圧力増加が期待できる。
【0028】
図3は水分発生用反応炉圧力のH−O混合ガス流量依存性を示している。図1において真空ポンプRPを作動させてプロセスチャンバーCの圧力を1Torrに設定する。Hガス流量を1000sccmに固定し、Oガス流量を600〜1500sccmにまで増加させる。
【0029】
ガス1000sccmと反応するOガスの化学量論的流量は500sccmであり、生成する水分ガス流量の理論値は1000sccmである。しかし、実際の反応では理論通りゆかず、Hガスが少量残留する結果、水分ガスは1000sccmより少なくなる。また、流量増加では、悪作用のないOガス流量を増加させて、H−O混合ガスの全圧を増加させる。
【0030】
図3から明らかなように、Oガス流量を600〜1500sccmの範囲で増加させると、反応炉圧力は約400〜740Torrの範囲で直線的に増加することが分る。この圧力範囲であれば、反応炉内における水素の発火温度は約560℃であることが図6から分かり、炉内設定温度350℃に対して発火温度は約210℃上回っている。従って、反応炉内では水素の発火は起り得ない。
【0031】
図4は図3におけるOガス流量変化時の未反応Hガス濃度を示している。図3のように酸素リッチ条件で反応させても、未反応のHガスは多くても約0.08%の微量であり、しかも本発明の減圧手段により反応炉内は高圧に保持できる。その結果、発火温度の上昇により水素の発火は強力に防止され、安全に水分を生成することができる。
【0032】
図1では減圧手段RMとしてオリフィスが使用されているが、バルブでも構わない。バルブでは開口部が可変できるから、流量調整が可能となり、水分発生用反応炉内の圧力調整が自在となる。また、減圧手段RMとしては絞り機構を有して圧力調整できるものや圧力損失を生じるものなら何でもよく、ノズル、ベンチュリー管、キャピラリー、フィルター等の公知のものでも利用できる。
【0033】
本発明は上記実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例、設計変更等をその技術的範囲内に包含するものである。
【0034】
【発明の効果】
請求項1の発明によれば、水分発生用反応炉の下流側に設けられた減圧手段により、水分ガスを減圧して下流側に供給でき、また反応炉の内圧を高く保持できるので水素の発火を確実に防止でき、安全で安定な水分供給を実現できる。
【0035】
請求項2の発明によれば、オリフィスという簡単な減圧手段で減圧と発火防止を実現でき、また減圧手段としてバルブを用いた場合には、開閉動作だけで減圧と発火防止の程度を可変調整できる。
【0036】
請求項3及び請求項4の発明によれば、白金コーティング触媒層により水素と酸素の水分発生反応を高効率に実現できるため、水分ガス中に含まれる未反応水素量を極少化でき、減圧手段と共に安全性を一層高めることができる。
【図面の簡単な説明】
【図1】本発明に係る減圧型水分発生供給装置の実施形態の構成図である。
【図2】水分発生用反応炉圧力のNガス流量依存性を示すグラフである。
【図3】水分発生用反応炉圧力のH−O混合ガス流量依存性を示すグラフである。
【図4】図3におけるOガス流量変化時の未反応Hガス濃度を示すグラフである。
【図5】水分発生用反応炉の一例を示す断面図である。
【図6】水分発生用反応炉の他の例を示す断面図である。
【図7】体積比2:1のH−O混合気体の発火限界曲線である。
【符号の説明】
21は反応炉本体、22は入口側炉本体部材、23は出口側炉本体部材、24は原料ガス供給用継手、24aは原料ガス供給通路、25は水分ガス取出用継手
25aは水分ガス出口通路、26は内部空間、29aは入口側反射体、29bは出口側反射体、32は白金コーティング触媒層、32aはバリヤー皮膜、32bは白金皮膜、BAは加熱領域、Cはプロセスチャンバー、Fはフィルター、Mは質量分析器、MFC1〜MFC3はマスフローコントローラ、P1・P2は圧力検出器、Rはレコーダ、RMは減圧手段、RPは真空ポンプ、S1・S2は水素センサー、SVはサンプリングバルブ、V1〜V11はバルブ、WVGは水分発生用反応炉。
[0001]
[Industrial application fields]
The present invention relates to a moisture generation and supply apparatus mainly used in a semiconductor manufacturing apparatus. More specifically, the present invention supplies moisture gas to a downstream side in a reduced pressure state, and at the same time, increases the internal pressure in a moisture generation reactor to increase the amount of hydrogen. The present invention relates to a reduced pressure type moisture generating and supplying apparatus capable of preventing spontaneous ignition.
[0002]
[Prior art]
For example, formation of a silicon oxide film by a moisture oxidation method in semiconductor manufacturing requires ultra-high purity water exceeding at least 1000 cc / min. Therefore, the present applicant has previously developed a reactor for generating moisture having the structure shown in FIGS. 5 and 6, and Japanese Patent Application No. 8-242246 (FIG. 5) and Japanese Patent Application No. 10-345500 (FIG. 6). As this is published.
[0003]
That is, the reactor main body 21 shown in FIG. 5 is configured by combining an inlet-side furnace main body member 22 having a raw material gas supply joint 24 and a heat-resistant outlet-side furnace main body member 23 having a moisture gas extraction joint 25 in an opposing manner. Is formed. Inside the reactor main body 21, an inlet-side reflector 29a and an outlet-side reflector 29b are arranged so as to face the raw material gas supply passage 24a and the moisture gas outlet passage 25a of both the furnace main body members 22, 23, respectively. A filter 30 is provided in the inner center of the reaction furnace main body 21, and a platinum coating catalyst layer 32 is formed on the inner wall surface of the outlet-side furnace main body member 23.
[0004]
The platinum coating catalyst layer 32 is formed by fixing the platinum coating 32b on the barrier coating 32a made of nitride such as TiN formed on the inner wall surface of the furnace body member 23 by vapor deposition or ion plating. Is done.
[0005]
In the reactor main body 21 shown in FIG. 6, a relatively thick reflector 29 is provided inside the reactor main body 21, and the inner peripheral surface of the outlet-side furnace main body member 23 is provided. A platinum coating catalyst layer 32 composed of a barrier film 32a and a platinum film 32b is formed.
Note that only the barrier film 32a is provided on the outer surface of the inlet-side furnace body member 22 and the outer surface of the reflector 29, and the platinum film 32b is not formed. This is because the surface of the inlet-side furnace main body member 22 and the reflector 9 exhibits a catalytic action, thereby preventing a reaction between O 2 and H 2 from occurring and causing a local temperature increase.
[0006]
Referring to FIG. 5, hydrogen and oxygen, which are source gases supplied to the inside of the reactor main body 21 through the source gas supply passage 24a, are for diffusion composed of an inlet side reflector 29a, a filter 30 and an outlet side reflector 29b. The member diffuses in the internal space 26 and comes into contact with the platinum coating catalyst layer 32. The oxygen and hydrogen in contact with the platinum coating catalyst layer 32 are increased in reactivity by the catalytic action of platinum, and are in a so-called radicalized state. The radicalized hydrogen and oxygen react instantaneously at a temperature lower than the ignition temperature of the hydrogen mixed gas, and generate moisture without performing high-temperature combustion. This moisture gas is supplied downstream via the moisture gas outlet passage 25a.
[0007]
Similarly, in the reactor main body 21 of FIG. 6, hydrogen and oxygen, which are source gases supplied to the inside of the reactor main body 21 through the source gas supply passage 24 a, collide with the reflector 9 to cause an internal space. 26 is diffused. The diffused source gas hydrogen and oxygen are brought into a radicalized state by contacting with the platinum coating catalyst layer 32, and react instantly without generating high-temperature combustion as described above to generate moisture. To do.
[0008]
The reactor main body 21 having the structure shown in FIGS. 5 and 6 and the like can greatly reduce the size of the moisture generator, and has a high purity water in an amount exceeding 1000 cc / min under higher reactivity and responsiveness. As a result, it is possible to obtain a mixed gas of high-purity water and oxygen, which has attracted epoch-making attention in the field of semiconductor manufacturing technology.
Moreover, the reaction furnace main body 21 for generating water such as this is used in a temperature range where hydrogen and oxygen do not spontaneously ignite in the furnace (for example, 400 ° C.), and by generating water only by catalytic reaction, It is characterized by producing and supplying high-purity moisture safely.
[0009]
Furthermore, the inventors of the present application have made many developments in the past in order to increase the catalytic reaction efficiency in water generation using the above catalytic reaction. For example, Japanese Patent Laid-Open Nos. 10-270437 and 10- In No. 297907, the reaction rate of hydrogen and oxygen is increased by improving the structure of the reactor in order to reduce the residual hydrogen in the moisture gas. In JP-A-11-171503, the hydrogen flow rate to be supplied is gradually increased to increase the reaction efficiency between hydrogen and oxygen, and the residual hydrogen amount is reduced. Furthermore, in Japanese Patent Laid-Open No. 11-11902, the hydrogen supply efficiency is increased by delaying the hydrogen supply start time from oxygen and at the same time bringing the hydrogen supply end time earlier than oxygen.
As a result, the reactor main body 21 having the configuration shown in FIGS. 5 and 6 has a feature that it can generate and supply high-purity water with a residual hydrogen amount of nearly zero under high catalytic reaction efficiency. .
[0010]
[Problems to be solved by the invention]
However, in the semiconductor production line, there are many processes for supplying and processing moisture under reduced pressure (for example, several Torr). In this case, if hydrogen and oxygen decompressed from the source gas supply passage 24a are supplied to the reaction furnace main body 21, the ignition temperature of hydrogen is lowered, and hydrogen may spontaneously ignite in the reaction furnace.
[0011]
FIG. 7 is an ignition limit curve of a 2: 1 volume ratio H 2 —O 2 gas mixture in a spherical container having a radius of 7.4 cm. This curve is obtained from Chemical Handbook Basic Revised Edition 3 (Chemical Society of Japan, Maruzen) II-406, where the vertical axis indicates the total pressure of the mixed gas and the horizontal axis indicates the ignition temperature.
[0012]
Consider that the total pressure of the mixed gas of hydrogen and oxygen was reduced to several Torr when the internal temperature of the reactor was set to 400 ° C. From FIG. 7, the ignition temperature corresponding to a pressure of several Torr is about 400 ° C. Therefore, under this condition, the ignition temperature approaches the set temperature, so hydrogen spontaneously ignites in the reactor. If the set temperature is set higher, ignition will surely occur.
[0013]
Thus, as the total pressure of the mixed gas of hydrogen and oxygen decreases, the ignition temperature of hydrogen rapidly decreases. Even if the temperature is designed so that hydrogen does not ignite when the total pressure is high, when the total pressure decreases, there will be a situation where a sudden ignition occurs. When ignited in the reaction furnace, the flame flows back to the upstream side via the source gas supply passage 24a, and there is a risk of explosion of the hydrogen cylinder.
[0014]
The present invention completely suppresses the risk of ignition when the total pressure of the mixed gas of hydrogen and oxygen as described above is reduced, realizes a reduced supply of moisture gas, and at the same time keeps the internal pressure of the reactor for moisture generation high. Accordingly, it is a main object of the present invention to provide a safe reduced pressure type moisture generating and supplying apparatus capable of completely preventing spontaneous ignition of hydrogen.
[0015]
[Means for Solving the Problems]
The invention of claim 1 comprises a water generation reactor for generating a water gas by catalytic reaction from hydrogen and oxygen, and a decompression means provided on the downstream side of the water generation reactor. A depressurized moisture generation and supply device characterized in that the internal pressure in a reaction furnace is kept high at the same time that the moisture gas is depressurized and supplied downstream.
[0016]
A second aspect of the present invention is the reduced pressure type moisture generating and supplying apparatus according to the first aspect, wherein the pressure reducing means is an orifice or a valve, a capillary, or a filter.
[0017]
According to a third aspect of the present invention, there is provided a reactor main body in which the moisture generating reaction furnace is formed by combining an inlet side main body member having a source gas supply port and an outlet side furnace main body member having a moisture gas outlet in an opposing manner. An inlet-side reflector disposed in the internal space of the reaction furnace so as to face the gas supply port; an outlet-side reflector disposed in the internal space so as to face the moisture gas outlet; and the outlet It is a pressure reduction type | mold moisture generation supply apparatus of Claim 1 or Claim 2 formed from the platinum coating catalyst layer formed in the inner wall surface of a side furnace main body member.
[0018]
According to a fourth aspect of the present invention, there is provided a reactor main body formed by combining the moisture generating reaction furnace with an inlet side main body member having a source gas supply port and an outlet side furnace main body member having a moisture gas outlet facing each other. 3. A moisture generating reaction furnace comprising a reflector disposed in an internal space of the reactor main body and a platinum coating catalyst layer formed on an inner wall surface of the furnace main body member. This is a reduced pressure type moisture generating and supplying apparatus.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
As described above, there are two problems to be achieved by the present invention. First, high-purity moisture gas can be supplied to the downstream side at a low pressure, and second, the internal pressure of the reactor for moisture generation is kept high to maintain hydrogen. Is to keep the ignition temperature high. In this way, ignition is prevented by increasing the difference between the actually set temperature and the ignition temperature of the reactor that generates moisture.
[0020]
As a result of intensive studies to solve the above problems, the present inventors have come up with a method for simultaneously solving two kinds of problems. That is, if a pressure reducing means such as an orifice or a valve is arranged downstream of the moisture generating reactor, the moisture generating reactor generates moisture gas at a high pressure, and the moisture gas is throttled by the pressure reducing means, and the pressure is reduced to the downstream side. It becomes possible to supply with.
[0021]
For example, the set temperature of the moisture generation reactor is set to 350 ° C. When the total pressure of the mixed gas of hydrogen and oxygen is adjusted to 100 to 1000 Torr and supplied to the water generation reactor, it can be seen from FIG. 7 that the ignition temperature is 540 to 580 ° C. In this way, the difference between the ignition temperature and the set temperature reaches 190 to 230 ° C., and hydrogen cannot spontaneously ignite. Keeping this temperature difference large prevents hydrogen ignition and realizes safe supply of moisture gas.
[0022]
Hereinafter, embodiments of a reduced pressure type moisture generating and supplying apparatus according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of a reduced pressure type moisture generating and supplying apparatus. Three types of gases, H 2 , O 2 , and N 2 , flow in while being selected by valves V1, V4, and V7, and moisture is controlled through valves V3, V6, and V9 while the flow rate is controlled by mass flow controllers MFC1, MFC2, and MFC3. It is supplied to the reactor for generation WVG. Valves V2, V5, and V8 are exhaust valves.
[0023]
The moisture generation reactor WVG is shown in FIG. The pressure of the moisture gas generated in the reaction furnace WVG is measured by the pressure gauge P1 and recorded by the recorder R. The moisture gas is reduced by the pressure reducing means RM (orifice in FIG. 1), and sent to the process chamber C through the filter F while the residual hydrogen is measured by the hydrogen sensors S1 and S2. The residual hydrogen amount is also recorded in the recorder R. The area BA shown in the record is heated at 140 ° C. to prevent gas adsorption on the inner surface of the tube.
[0024]
The moisture gas sent from the filter F is subjected to component analysis by the mass analyzer M through the sampling valve SV. The process chamber C is, for example, a semiconductor manufacturing apparatus, and is pulled by a vacuum pump RP through a valve V10, and its internal pressure is measured by a pressure gauge P2. Unnecessary gas is exhausted by the valve 11.
[0025]
The gas pressure of the raw material gas entering the mass flow controllers MFC1 to MFC3 is 2 (kg / cm 2 G). As a result of adjusting the flow rate, these flow rates are 1 SLM for N 2 , 0.2 to 1 SLM for H 2 , O 2 is 0.5-1 SLM. The internal pressure of the process chamber C is adjusted to 1 Torr with the vacuum pump RP. The diameter of the orifice used as the decompression means RM is 0.6 mm, and the internal temperature of the water generation reactor WVG is set to 350 ° C.
[0026]
FIG. 2 shows the N 2 gas flow rate dependence of the reactor pressure for moisture generation. The vacuum pump RP is stopped, the valve 11 is opened, and the process chamber C is set to atmospheric pressure. In this state, the apparatus of FIG. 1 is purged with only N 2 gas. It can be seen that when the N 2 gas flow rate is increased in the range of 1000-5000 sccm, the reactor pressure increases linearly in the range of about 900-1900 Torr.
[0027]
Since the orifice as a pressure reducing means RM is disposed, increasing the flow rate of N 2 gas, the flow control to the downstream side by the orifice, N 2 gas is the reactor pressure increases to Todokotamari into the reactor. Since an increase in pressure occurs with N 2 gas, naturally an increase in pressure can be expected with other mixed gases.
[0028]
FIG. 3 shows the H 2 —O 2 mixed gas flow rate dependence of the moisture generation reactor pressure. In FIG. 1, the vacuum pump RP is activated to set the pressure in the process chamber C to 1 Torr. The H 2 gas flow rate is fixed at 1000 sccm, and the O 2 gas flow rate is increased to 600-1500 sccm.
[0029]
The stoichiometric flow rate of O 2 gas that reacts with 1000 sccm of H 2 gas is 500 sccm, and the theoretical value of the generated water gas flow rate is 1000 sccm. However, the actual reaction does not work as theoretically, and as a result of a small amount of H 2 gas remaining, the moisture gas becomes less than 1000 sccm. Further, in increasing the flow rate, the O 2 gas flow rate without adverse effects is increased, and the total pressure of the H 2 —O 2 mixed gas is increased.
[0030]
As can be seen from FIG. 3, when the O 2 gas flow rate is increased in the range of 600-1500 sccm, the reactor pressure increases linearly in the range of about 400-740 Torr. In this pressure range, it can be seen from FIG. 6 that the ignition temperature of hydrogen in the reaction furnace is about 560 ° C., and the ignition temperature is about 210 ° C. higher than the set temperature in the furnace of 350 ° C. Therefore, hydrogen cannot ignite in the reactor.
[0031]
FIG. 4 shows the unreacted H 2 gas concentration when the O 2 gas flow rate is changed in FIG. As shown in FIG. 3, even if the reaction is performed under oxygen-rich conditions, the amount of unreacted H 2 gas is a very small amount of about 0.08%, and the inside of the reaction furnace can be maintained at a high pressure by the decompression means of the present invention. As a result, hydrogen ignition is strongly prevented by raising the ignition temperature, and moisture can be generated safely.
[0032]
In FIG. 1, an orifice is used as the pressure reducing means RM, but a valve may be used. Since the opening of the valve can be varied, the flow rate can be adjusted, and the pressure in the moisture generating reactor can be adjusted. The decompression means RM may be anything that has a throttling mechanism and can adjust the pressure, or that causes a pressure loss, and may be a known one such as a nozzle, a venturi tube, a capillary, or a filter.
[0033]
The present invention is not limited to the above-described embodiments, and includes various modifications, design changes, and the like within the technical scope without departing from the technical idea of the present invention.
[0034]
【The invention's effect】
According to the first aspect of the present invention, the depressurization means provided on the downstream side of the moisture generating reaction furnace can reduce the moisture gas and supply it to the downstream side, and the internal pressure of the reaction furnace can be kept high. Can be reliably prevented, and a safe and stable water supply can be realized.
[0035]
According to the invention of claim 2, pressure reduction and ignition prevention can be realized by a simple pressure reduction means called an orifice, and when a valve is used as the pressure reduction means, the degree of pressure reduction and ignition prevention can be variably adjusted only by opening and closing operations. .
[0036]
According to the invention of claim 3 and claim 4, since the water generation reaction of hydrogen and oxygen can be realized with high efficiency by the platinum coating catalyst layer, the amount of unreacted hydrogen contained in the moisture gas can be minimized, and the pressure reducing means At the same time, safety can be further enhanced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of a reduced-pressure type moisture generating and supplying apparatus according to the present invention.
FIG. 2 is a graph showing the N 2 gas flow rate dependency of moisture generation reactor pressure.
FIG. 3 is a graph showing the H 2 —O 2 mixed gas flow rate dependence of moisture generation reactor pressure.
4 is a graph showing the unreacted H 2 gas concentration when the O 2 gas flow rate is changed in FIG. 3;
FIG. 5 is a cross-sectional view showing an example of a water generation reactor.
FIG. 6 is a cross-sectional view showing another example of a moisture generating reactor.
FIG. 7 is an ignition limit curve of a H 2 —O 2 mixed gas having a volume ratio of 2: 1.
[Explanation of symbols]
21 is a reactor main body, 22 is an inlet side furnace main body member, 23 is an outlet side furnace main body member, 24 is a raw material gas supply joint, 24a is a raw material gas supply passage, 25 is a moisture gas extraction joint 25a is a moisture gas outlet passage , 26 is an internal space, 29a is an inlet side reflector, 29b is an outlet side reflector, 32 is a platinum coating catalyst layer, 32a is a barrier coating, 32b is a platinum coating, BA is a heating region, C is a process chamber, and F is a filter. , M is a mass analyzer, MFC1 to MFC3 are mass flow controllers, P1 and P2 are pressure detectors, R is a recorder, RM is a decompression means, RP is a vacuum pump, S1 and S2 are hydrogen sensors, SV is a sampling valve, V1 V11 is a valve, WVG is a reactor for moisture generation.

Claims (4)

水素と酸素から触媒反応により水分ガスを発生する水分発生用反応炉と、この水分発生用反応炉の下流側に設けられた減圧手段とから構成され、この減圧手段により水分ガスを減圧して下流側に供給すると同時に反応炉内の内圧を高く保持することを特徴とする減圧型水分発生供給装置。The reactor is composed of a moisture generation reactor that generates moisture gas from hydrogen and oxygen by a catalytic reaction, and a decompression device provided downstream of the moisture generation reactor. A reduced pressure type moisture generating and supplying apparatus characterized in that the internal pressure in the reaction furnace is kept high at the same time as the supply to the side. 前記減圧手段をオリフィス、バルブ、キャピラリー、及びフィルターの中の一又は二以上とした請求項1に記載の減圧型水分発生供給装置。The reduced pressure type moisture generating and supplying apparatus according to claim 1, wherein the pressure reducing means is one or more of an orifice, a valve, a capillary, and a filter. 前記水分発生用反応炉を、原料ガス供給口を有する入口側本体部材と水分ガス取出口を有する出口側炉本体部材とを対向状に組合せて形成した反応炉本体と、この反応炉本体の内部空間内にガス供給口と対向状に配設した入口側反射体と、前記内部空間内に水分ガス取出口と対向状に配設した出口側反射体と、前記出口側炉本体部材の内壁面に形成した白金コーティング触媒層とから成る水分発生用反応炉とした請求項1又は請求項2に記載の減圧型水分発生供給装置。A reactor main body formed by combining the reactor for generating moisture with an inlet-side main body member having a raw material gas supply port and an outlet-side furnace main body member having a moisture gas outlet, and the inside of the reactor main body. An inlet-side reflector disposed in the space so as to face the gas supply port, an outlet-side reflector disposed in the inner space so as to face the moisture gas outlet, and an inner wall surface of the outlet-side furnace body member The reduced pressure type moisture generation and supply device according to claim 1 or 2, wherein the reactor is a moisture generation reaction furnace comprising a platinum coating catalyst layer formed on the substrate. 前記水分発生用反応炉を、原料ガス供給口を有する入口側本体部材と水分ガス取出口を有する出口側炉本体部材とを対向状に組合せて形成した反応炉本体と、この反応炉本体の内部空間内に配設した反射体と、前記炉本体部材の内壁面に形成した白金コーティング触媒層とから成る水分発生用反応炉とした請求項1又は請求項2に記載の減圧型水分発生供給装置。A reactor main body formed by combining the reactor for generating moisture with an inlet side main body member having a raw material gas supply port and an outlet side furnace main body member having a moisture gas outlet, and the inside of the reactor main body. The reduced pressure type moisture generating and supplying apparatus according to claim 1 or 2, wherein the reactor is a moisture generating reaction furnace comprising a reflector disposed in a space and a platinum coating catalyst layer formed on an inner wall surface of the furnace body member. .
JP33888299A 1999-08-06 1999-11-30 Reduced pressure moisture generator Expired - Fee Related JP3611495B2 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
JP33888299A JP3611495B2 (en) 1999-11-30 1999-11-30 Reduced pressure moisture generator
EP00946457A EP1138631A1 (en) 1999-08-06 2000-07-21 Moisture generating/supplying device and moisture generating reactor
CA002343278A CA2343278A1 (en) 1999-08-06 2000-07-21 Apparatus and reactor for generating and feeding high purity moisture
CNB2004100033410A CN1279582C (en) 1999-08-06 2000-07-21 Water content generation supply device and reaction stove for water content generation
PCT/JP2000/004911 WO2001010774A1 (en) 1999-08-06 2000-07-21 Moisture generating/supplying device and moisture generating reactor
SG200202050A SG94873A1 (en) 1999-08-06 2000-07-21 Reactor for generating high purity moisture
IL14119400A IL141194A0 (en) 1999-08-06 2000-07-21 Apparatus and reactor for generating and feeding high purity moisture
CA002479400A CA2479400A1 (en) 1999-08-06 2000-07-21 Apparatus and reactor for generating and feeding high purity moisture
KR10-2000-7014111A KR100387731B1 (en) 1999-08-06 2000-07-21 Apparatus for generating and feeding moisture and reactor for generating moisture
CNB008016267A CN100341775C (en) 1999-08-06 2000-07-21 Moisture generating-supplying device and moisture generating reactor
IL16104500A IL161045A0 (en) 1999-08-06 2000-07-21 Reactor for generating moisture
TW089115809A TW553900B (en) 1999-08-06 2000-08-05 Moisture generating/supplying device and moisture generating reactor
IL141194A IL141194A (en) 1999-08-06 2001-01-31 Apparatus and reactor for generating and feeding high purity moisture
US09/773,605 US7258845B2 (en) 1999-08-06 2001-02-02 Apparatus and reactor for generating and feeding high purity moisture
US10/724,101 US7368092B2 (en) 1999-08-06 2003-12-01 Apparatus and reactor for generating and feeding high purity moisture
IL161045A IL161045A (en) 1999-08-06 2004-03-24 Reactor for generating moisture
US11/460,087 US7553459B2 (en) 1999-08-06 2006-07-26 Apparatus and reactor for generating and feeding high purity moisture
US11/760,330 US20070231225A1 (en) 1999-08-06 2007-06-08 Apparatus and reactor for generating and feeding high purity moisture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33888299A JP3611495B2 (en) 1999-11-30 1999-11-30 Reduced pressure moisture generator

Publications (2)

Publication Number Publication Date
JP2001158605A JP2001158605A (en) 2001-06-12
JP3611495B2 true JP3611495B2 (en) 2005-01-19

Family

ID=18322281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33888299A Expired - Fee Related JP3611495B2 (en) 1999-08-06 1999-11-30 Reduced pressure moisture generator

Country Status (1)

Country Link
JP (1) JP3611495B2 (en)

Also Published As

Publication number Publication date
JP2001158605A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
US6733732B2 (en) Reactor for generating moisture
WO2000024049A9 (en) Method of oxidizing a substrate in the presence of nitride and oxynitride films
EP0922667B1 (en) Method for generating water for semiconductor production
JP2007511902A (en) Reactor for thin film growth
JP2010171442A (en) Flame-free wet oxidation
JP7113862B2 (en) Semiconductor device manufacturing method, substrate processing method, program, and substrate processing apparatus
US6306776B1 (en) Catalytic breakdown of reactant gases in chemical vapor deposition
JPS62104038A (en) Steam-containing oxygen gas supplying device
JP4276845B2 (en) Method and apparatus for processing a substrate
JP3611495B2 (en) Reduced pressure moisture generator
WO2001010774A1 (en) Moisture generating/supplying device and moisture generating reactor
JP3563950B2 (en) Hydrogen-containing exhaust gas treatment equipment
JP3644810B2 (en) Low flow rate water supply method
JP4238812B2 (en) Oxidizer for workpiece
EP1104012B1 (en) Method for forming an oxide layer on semiconductor wafers
JP3447334B2 (en) Oxide film forming apparatus and oxide film forming method
US5352615A (en) Denuding a semiconductor substrate
KR0170717B1 (en) Gas scrubber having double exhaust gas inlet pipe
JP5801632B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
KR0125311B1 (en) Silicon-nitride film forming method of semiconductor device
IL141729A (en) Method for generating water for semiconductor production
JP3516635B2 (en) Heat treatment equipment
KR100266375B1 (en) Wet oxidation device
JPS61207023A (en) Manufacturing equipment for semiconductor device
JPS60227415A (en) Vapor growth apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041019

R150 Certificate of patent or registration of utility model

Ref document number: 3611495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees