Nothing Special   »   [go: up one dir, main page]

JP3607821B2 - Inclination angle measuring machine - Google Patents

Inclination angle measuring machine Download PDF

Info

Publication number
JP3607821B2
JP3607821B2 JP29809998A JP29809998A JP3607821B2 JP 3607821 B2 JP3607821 B2 JP 3607821B2 JP 29809998 A JP29809998 A JP 29809998A JP 29809998 A JP29809998 A JP 29809998A JP 3607821 B2 JP3607821 B2 JP 3607821B2
Authority
JP
Japan
Prior art keywords
laser
measured
inclination angle
screen
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29809998A
Other languages
Japanese (ja)
Other versions
JP2000121340A (en
Inventor
耕三 多田
Original Assignee
ミヨタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミヨタ株式会社 filed Critical ミヨタ株式会社
Priority to JP29809998A priority Critical patent/JP3607821B2/en
Publication of JP2000121340A publication Critical patent/JP2000121340A/en
Application granted granted Critical
Publication of JP3607821B2 publication Critical patent/JP3607821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は面傾斜角度測定機に関するものである。
【0002】
【従来の技術】
従来、物体の面傾斜角度を測定する方法は、様々なものがあるが、電子部品の小型化、細密化により、光を用いて非接触で測定することが多くなってきている。量産品の物体の面傾斜角度を効率よく測定するものとして、レーザー変位計が、小型化、低価格化により、高速かつ安価な非接触の面傾斜角度測定機として採用されている。
【0003】
図1を使用して従来の面傾斜角度測定機の説明をする。図1は従来の面傾斜角度測定機の単純な構成図である。図中の符号について説明する。1はレーザー変位計センサヘッド部、2は面傾斜角度を測定される対象物、3は対象物2をXY方向に動かすためのXYテーブル、4はレーザー変位計アンプ、5はXYテーブルコントローラ、6はレーザー変位計アンプ4とXYテーブルコントローラ5と通信し、システム全体をコントロールするコンピュータ、7はモニタである。
【0004】
前記構成による面傾斜角度測定機で具体的に対象物2の面傾斜角度の測定方法について説明する。
1.コンピュータ6がXYテーブルコントローラ5に指令を出してXYテーブル3を動作させ、載置されている対象物2を位置決めする。この点をXY1とする。2.コンピュータ6がレーザー変位計アンプ4に指令を出してレーザー変位計センサヘッド部1を動作させ、対象物2とレーザー変位計センサヘッド部1との距離を測定させ結果をメモリに取り込む。この距離をZ1とする。
3.コンピュータ6がXYテーブルコントローラ5に指令を出してXYテーブル3を移動させ、載置されている対象物2を移動する。この点をXY2とする。
4.コンピュータ6がレーザー変位計アンプ4に指令を出してレーザー変位計センサヘッド部1を動作させ、対象物2とレーザー変位計センサヘッド部1との距離を測定させ結果をメモリに取り込む。この距離をZ2とする。
5.Z1とZ2の差をhとし、XY1とXY2間の距離をlとする。
【0005】
対象物2がXY1に在る時にレーザー光1−1が被測定面2−1に入射した点と対象物2がXY2に在る時にレーザー光1−1が被測定面2−1に入射した点を結んだ線の角度θはθ=tan−1h/l(式1)で求められる。XYテーブル3の動作面とレーザー光1−1は垂直であるとする。
【0006】
次に前述のレーザー変位計の測定原理について説明する。図2は測定原理を説明するための模式図である。レーザー変位計センサヘッド部1は、ボディ10、半導体レーザー11、レンズ12、レンズ17、受光素子18により構成されている。半導体レーザー11から出射されたレーザー光はレンズ12で被測定面14−1の前後で焦点を結ぶように絞られレーザー入射光13となる。レーザー入射光13は被測定面14−1で反射し、レーザー反射光15−1となり、レンズ17で受光素子18に焦点を結ぶように絞られ、受光素子18の入射位置19に到達する。被測定面が14−2の位置に変位した時は、レーザー反射光は15−2となり、受光素子18の入射位置20に到達する。受光素子18上のレーザー光の到達位置の違いによりレーザー変位計は被測定面のレーザー入射光軸方向の変位量を知ることができる。
【0007】
【発明が解決しようとする課題】
レーザー反射光は被測定面での乱反射光である。図3は受光素子18上のレーザー光の入射分布を示す図であり、実線はレーザー反射光15−1、点線はレーザー反射光15−2の分布である。入射位置19、入射位置20はピークの位置を示している。ここで、被測定面が乱反射しにくい表面である場合について考えてみる。レーザー変位計の構造上、受光素子に到達する光成分は少なくなり、被測定面が鏡面の場合は測定できなくなる。また、鏡面でなくとも完全に乱反射せず正反射成分の強い面の場合、被測定面が図2の紙面に垂直な軸まわりに回転してしまうと、測定結果に違いが発生する。
【0008】
図4を使用して説明する。図4は図2の被測定面14−1が、被測定面14−1とレーザー入射光13との交点を回転中心として時計方向に少し回転した場合の図である。被測定面は14−3となる。被測定面14−3のレーザー入射光13に対する反射の様子に変化がないため、受光素子18に向かうレーザー反射光は15−3となり、受光素子18上への入射位置は21にずれることになる。そのため、測定点の高さに変位が無いにもかかわらず、受光素子上の入射位置に違いが出て、結果としてレーザー変位計は変位量を出力してしまうことになる。
【0009】
この事は、被測定面が金属表面のように正反射し易いものである場合、被測定面の僅かな面のうねりによって変位量hが出力され式1によって計算された測定結果に誤差が出ることになる。また式1のlを小さくしたとき、レーザー変位計の精度が同じ場合、計算したθの誤差が大きくなってしまう。従来の面傾斜角度測定機は、測定面が乱反射する面である場合には有効であるが、面が仕上の良い金属表面である場合や、測定範囲lが小さい場合には誤差が大きくなる欠点を有していた。本発明は前記欠点を解消するものであり、測定範囲が小さく表面が正反射し易い被測定物でも測定誤差の少なくできる面傾斜角度測定機を提供するものである。
【0010】
【課題を解決するための手段】
予め設定された基準傾斜角度を有する被測定物の被測定面に所定の照射面積を有するレーザー光を照射するレーザー光源部と、前記被測定面より反射された前記レーザー光の反射光軸上に置かれたスクリーンと、該スクリーンを観察する画像処理用CCDカメラとを具備し、前記スクリーンに投射された前記レーザー反射光のパターンを前記画像処理用CCDカメラで撮影し、画像処理・演算して比較し、前記レーザー反射光の前記スクリーン上での移動量を求め、前記被測定物の面傾斜角度の変化を測定する面傾斜角度測定機とする。
【0011】
【発明の実施の形態】
図5は本発明の一実施形態を説明するためのものであり、本発明に使用するレーザー光源より出射されたレーザー光に垂直な方向より見た概略図である。22はレーザー光源であり、23はレーザー入射光である。24−1は被測定面であり、25−1は被測定面24−1によるレーザー反射光である。24−2は被測定面24−1が時計と逆方向に少し回転した時の被測定面であり、25−2は被測定面24−2によるレーザー反射光である。レーザー反射光の光路上には半透明のスクリーン26がレーザー反射光に垂直に配置されており、スクリーン26に投射されたレーザー反射光をCCDカメラ27で撮影する。CCDカメラ27はスクリーン26を垂直に見る位置に配置されている。レーザー光は平行光線に近いものであり、ビームはあまり広がることはなくスクリーン26に投射されるレーザー反射光は被測定面の正反射成分が強ければ強いほど鮮明になる。レーザー入射光23を測定したい面の形状に加工(例えば所望形状の穴を通過させる)しておいて、被測定面に入射させれば、レーザー反射光は面の形状をそのままスクリーン26に投射する。これは本発明が正反射し易い面を測定対象にしていることによる。
【0012】
被測定面24−2が被測定面24−1より反時計方向にθ1だけ回転した時にレーザー反射光25−2はレーザー反射光25−1より2θ1だけ回転する。被測定面24−1とレーザー入射光23との交点とスクリーン26とのおおよその距離をLとする。スクリーン26上での投射位置の移動量l1は
l1=L・tan2θ1で求められるので、移動量l1よりθ1は
2θ1=tan−1l1/Lで求められる。
【0013】
被測定面24−1からのレーザー反射光25−1がスクリーン26に投影されたパターンと被測定面24−2からのレーザー反射光25−2がスクリーン26に投影されたパターンをCCDカメラ27で撮影して画像処理・演算して比較し、そのスクリーン上での移動量を求め面傾斜角度の変化を推定する。本発明の面傾斜角度測定機では、レーザー入射光を法線とする平面に対する絶対角度を測定することはできないが、被測定面を基準とし、そこからどの程度面が傾斜しているかを正確に測定できるものである。
【0014】
本発明では、被測定面の比較的大きな面積部分レーザー光線を当て、被測定面によるレーザー反射光をCCDカメラにより撮影、画像処理して面傾斜角度を測定するので、被測定面の細かいうねりや汚れ等は測定の大きな障害にはならない。
【0015】
図6は本発明の更に具体的な実施形態を説明する概略図である。への字形に成形された測定対象物30はXYテーブル34に固定された治具33に取付けられている。レーザー光源22はHeNeレーザーである。レーザー光線はコリメータレンズ31を透過し、直径2mmの平行光線束のレーザー入射光23となっている。レーザー入射光23は45度ハーフミラー32を透過し、被測定物30に照射される。本実施形態では被測定物30の基準傾斜角面がレーザー入射光に垂直になるように設定されている。すなわち、基準傾斜角面でレーザー入射光23は垂直に反射され、45度ハーフミラー32で反射されスクリーン26の原点Oに到達する。基準傾斜角面からスクリーンまでの距離はA+Bである。
【0016】
への字形の成形に誤差が生じ点線で示すように測定傾斜各面が反時計方向にθ2回転していると、レーザー反射光25−2はθ2だけ回転し、スクリーン26に到達した時は原点OからL2離れている。θ2=tan−1L/(A+B)で基準傾斜角面からの回転角度が求められる。
【0017】
本発明ではレーザー入射光に所定の面積をもたせて測定を安定化しているが、画像処理の手法により、例えば、レーザー入射光を複数にして傾斜角度を測定することも可能である。
【0018】
【発明の効果】
本発明は被測定面の高さの変化を測定して面傾斜角度を計算するのではなく、予め設定した基準傾斜面との比較による面傾斜角度の測定なので精度の高い面傾斜角度の測定ができる。
【図面の簡単な説明】
【図1】従来の面傾斜角度測定機の単純な構成図
【図2】レーザー変位計の測定原理を説明するための模式図
【図3】受光素子上のレーザー光の入射分布を示す図
【図4】図2の被測定面14−1が、被測定面14−1とレーザー入射光13との交点を回転中心として時計方向に少し回転した場合の図
【図5】本発明の一実施形態を説明するためのものであり、本発明に使用するレーザー光源より出射されたレーザー光に垂直な方向より見た概略図
【図6】本発明の具体的な実施形態を説明する概略図
【符号の説明】
1 レーザー変位計センサヘッド部
2 測定される対象物
3 XYテーブル
4 レーザー変位計アンプ
5 XYテーブルコントローラ
6 コンピュータ
7 モニタ
10 ボディ
11 半導体レーザー
12 レンズ
14−1 被測定面
14−2 被測定面
14−3 被測定面
15−1 レーザー反射光
15−2 レーザー反射光
15−3 レーザー反射光
17 レンズ
18 受光素子
19 入射位置
20 入射位置
21 入射位置
22 レーザー光源
23 レーザー入射光
24−1 被測定面
24−2 被測定面
25−1 レーザー反射光
25−2 レーザー反射光
26 スクリーン
27 CCDカメラ
30 測定対象物
31 コリメータレンズ
32 45度ハーフミラー
33 治具
34 XYテーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface inclination angle measuring machine.
[0002]
[Prior art]
Conventionally, there are various methods for measuring the surface inclination angle of an object, but due to the miniaturization and miniaturization of electronic components, the measurement is often performed in a non-contact manner using light. Laser displacement meters have been adopted as high-speed and inexpensive non-contact surface tilt angle measuring instruments due to the miniaturization and cost reduction as a means for efficiently measuring the surface tilt angles of mass-produced objects.
[0003]
A conventional surface inclination measuring machine will be described with reference to FIG. FIG. 1 is a simple configuration diagram of a conventional surface inclination angle measuring machine. Reference numerals in the figure will be described. DESCRIPTION OF SYMBOLS 1 is a laser displacement meter sensor head part, 2 is the target object whose surface inclination angle is measured, 3 is an XY table for moving the target object 2 in the XY direction, 4 is a laser displacement meter amplifier, 5 is an XY table controller, 6 Is a computer that communicates with the laser displacement meter amplifier 4 and the XY table controller 5 to control the entire system, and 7 is a monitor.
[0004]
A method of measuring the surface inclination angle of the target object 2 will be specifically described with the surface inclination angle measuring machine having the above-described configuration.
1. The computer 6 issues a command to the XY table controller 5 to operate the XY table 3 to position the mounted object 2. This point is assumed to be XY1. 2. The computer 6 issues a command to the laser displacement meter amplifier 4 to operate the laser displacement meter sensor head unit 1, measures the distance between the object 2 and the laser displacement meter sensor head unit 1, and loads the result into the memory. This distance is Z1.
3. The computer 6 issues a command to the XY table controller 5 to move the XY table 3 and move the object 2 placed thereon. This point is defined as XY2.
4). The computer 6 issues a command to the laser displacement meter amplifier 4 to operate the laser displacement meter sensor head unit 1, measures the distance between the object 2 and the laser displacement meter sensor head unit 1, and loads the result into the memory. This distance is Z2.
5. Let h be the difference between Z1 and Z2, and let l be the distance between XY1 and XY2.
[0005]
The point where the laser beam 1-1 is incident on the measurement surface 2-1 when the object 2 is on XY1, and the laser beam 1-1 is incident on the surface 2-1 when the object 2 is on XY2. The angle θ of the line connecting the points is obtained by θ = tan −1 h / l (Equation 1). It is assumed that the operation surface of the XY table 3 and the laser beam 1-1 are perpendicular.
[0006]
Next, the measurement principle of the laser displacement meter will be described. FIG. 2 is a schematic diagram for explaining the measurement principle. The laser displacement meter sensor head unit 1 includes a body 10, a semiconductor laser 11, a lens 12, a lens 17, and a light receiving element 18. Laser light emitted from the semiconductor laser 11 is focused by the lens 12 so as to be focused before and after the measurement surface 14-1 and becomes laser incident light 13. The laser incident light 13 is reflected by the measurement surface 14-1, becomes laser reflected light 15-1, is focused by the lens 17 so as to focus on the light receiving element 18, and reaches the incident position 19 of the light receiving element 18. When the surface to be measured is displaced to the position 14-2, the laser reflected light becomes 15-2 and reaches the incident position 20 of the light receiving element 18. The laser displacement meter can know the amount of displacement of the surface to be measured in the laser incident optical axis direction based on the difference in the arrival position of the laser beam on the light receiving element 18.
[0007]
[Problems to be solved by the invention]
Laser reflected light is irregularly reflected light on the surface to be measured. FIG. 3 is a diagram showing the incident distribution of the laser light on the light receiving element 18, where the solid line is the distribution of the laser reflected light 15-1, and the dotted line is the distribution of the laser reflected light 15-2. The incident position 19 and the incident position 20 indicate peak positions. Here, consider the case where the surface to be measured is a surface that is difficult to diffusely reflect. Due to the structure of the laser displacement meter, the light component reaching the light receiving element is reduced, and measurement is impossible when the surface to be measured is a mirror surface. Further, in the case of a surface that is not specularly reflected but has a strong regular reflection component even if it is not a mirror surface, if the surface to be measured rotates around an axis perpendicular to the paper surface of FIG.
[0008]
This will be described with reference to FIG. FIG. 4 is a diagram in the case where the measured surface 14-1 in FIG. 2 is slightly rotated clockwise about the intersection of the measured surface 14-1 and the laser incident light 13 as the rotation center. The surface to be measured is 14-3. Since there is no change in the reflection state of the measurement target surface 14-3 with respect to the laser incident light 13, the laser reflected light toward the light receiving element 18 becomes 15-3, and the incident position on the light receiving element 18 shifts to 21. . Therefore, although there is no displacement in the height of the measurement point, the incident position on the light receiving element is different, and as a result, the laser displacement meter outputs a displacement amount.
[0009]
This means that if the surface to be measured is easily specularly reflected like a metal surface, the displacement h is output by the slight undulation of the surface to be measured, and an error occurs in the measurement result calculated by Equation 1. It will be. Also, when l in Equation 1 is reduced, if the accuracy of the laser displacement meter is the same, the calculated error of θ will increase. Conventional surface inclination angle measuring machines are effective when the measurement surface is a diffusely reflecting surface, but the error becomes large when the surface is a fine metal surface or when the measurement range l is small. Had. The present invention eliminates the above-mentioned drawbacks, and provides a surface inclination angle measuring machine that can reduce a measurement error even for an object to be measured that has a small measurement range and whose surface is easily regularly reflected.
[0010]
[Means for Solving the Problems]
A laser light source unit for irradiating a measurement surface of a measurement object having a preset reference inclination angle with a laser beam having a predetermined irradiation area, and a reflected optical axis of the laser beam reflected from the measurement surface An image processing CCD camera for observing the screen, and photographing the laser reflected light pattern projected on the screen with the image processing CCD camera; In comparison, the amount of movement of the laser reflected light on the screen is obtained, and the surface inclination angle measuring device is used to measure the change in the surface inclination angle of the object to be measured.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 5 is a schematic diagram for explaining an embodiment of the present invention, as viewed from a direction perpendicular to the laser beam emitted from the laser light source used in the present invention. Reference numeral 22 denotes a laser light source, and reference numeral 23 denotes laser incident light. 24-1 is a surface to be measured, and 25-1 is laser reflected light from the surface to be measured 24-1. 24-2 is a surface to be measured when the surface to be measured 24-1 is slightly rotated counterclockwise, and 25-2 is laser reflected light from the surface to be measured 24-2. A translucent screen 26 is arranged perpendicular to the laser reflected light on the optical path of the laser reflected light, and the laser reflected light projected on the screen 26 is photographed by the CCD camera 27. The CCD camera 27 is disposed at a position where the screen 26 is viewed vertically. The laser beam is close to a parallel beam, and the beam does not spread so much. The reflected laser beam projected on the screen 26 becomes clearer as the specular reflection component of the surface to be measured is stronger. When the laser incident light 23 is processed into the shape of the surface to be measured (for example, passing through a hole having a desired shape) and is incident on the surface to be measured, the laser reflected light directly projects the shape of the surface onto the screen 26. . This is due to the fact that the present invention makes the surface subject to regular reflection easy to measure.
[0012]
When the measured surface 24-2 is rotated counterclockwise by θ1 from the measured surface 24-1, the laser reflected light 25-2 is rotated by 2θ1 from the laser reflected light 25-1. Let L be the approximate distance between the point of intersection of the measured surface 24-1 and the laser incident light 23 and the screen 26. Since the movement amount l1 of the projection position on the screen 26 is obtained by l1 = L · tan2θ1, θ1 is obtained by 2θ1 = tan −1 l1 / L from the movement amount l1.
[0013]
A pattern in which the laser reflected light 25-1 from the surface to be measured 24-1 is projected on the screen 26 and a pattern in which the laser reflected light 25-2 from the surface to be measured 24-2 is projected onto the screen 26 are obtained by the CCD camera 27. A photograph is taken, image processing / calculation and comparison are performed, a movement amount on the screen is obtained, and a change in the surface inclination angle is estimated. The surface inclination angle measuring machine of the present invention cannot measure the absolute angle with respect to a plane normal to the laser incident light, but it can accurately measure how much the surface is inclined from the measured surface. It can be measured.
[0014]
In the present invention, a relatively large area laser beam on the surface to be measured is applied, and the laser reflected light from the surface to be measured is photographed with a CCD camera, image processing is performed, and the surface inclination angle is measured. Etc. will not be a major obstacle to measurement.
[0015]
FIG. 6 is a schematic diagram for explaining a more specific embodiment of the present invention. The measuring object 30 formed in a U-shape is attached to a jig 33 fixed to an XY table 34. The laser light source 22 is a HeNe laser. The laser beam passes through the collimator lens 31 and becomes a laser incident beam 23 of a parallel light beam having a diameter of 2 mm. The laser incident light 23 passes through the 45 degree half mirror 32 and is irradiated to the object 30 to be measured. In the present embodiment, the reference tilt angle surface of the DUT 30 is set to be perpendicular to the laser incident light. That is, the laser incident light 23 is reflected perpendicularly at the reference tilt angle plane, reflected by the 45-degree half mirror 32, and reaches the origin O of the screen 26. The distance from the reference inclined surface to the screen is A + B.
[0016]
If an error occurs in the shape of the letter H and each measurement tilt surface rotates θ2 counterclockwise as indicated by the dotted line, the laser reflected light 25-2 rotates by θ2, and when it reaches the screen 26, it is the origin. L2 away from O. The rotation angle from the reference tilt angle plane is obtained by θ2 = tan −1 L / (A + B).
[0017]
In the present invention, the measurement is stabilized by giving a predetermined area to the laser incident light, but it is also possible to measure the tilt angle by using a plurality of laser incident light, for example, by an image processing technique.
[0018]
【The invention's effect】
The present invention does not calculate the surface inclination angle by measuring the change in the height of the surface to be measured, but measures the surface inclination angle by comparison with a preset reference inclination surface. it can.
[Brief description of the drawings]
FIG. 1 is a simple configuration diagram of a conventional surface tilt angle measuring machine. FIG. 2 is a schematic diagram for explaining the measurement principle of a laser displacement meter. FIG. 3 is a diagram showing an incident distribution of laser light on a light receiving element. 4 is a diagram in the case where the measured surface 14-1 in FIG. 2 is slightly rotated clockwise around the intersection of the measured surface 14-1 and the laser incident light 13. FIG. FIG. 6 is a schematic diagram for explaining the embodiment and is viewed from a direction perpendicular to the laser beam emitted from the laser light source used in the present invention. FIG. 6 is a schematic diagram illustrating a specific embodiment of the present invention. Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Laser displacement meter sensor head part 2 Measured object 3 XY table 4 Laser displacement meter amplifier 5 XY table controller 6 Computer 7 Monitor 10 Body 11 Semiconductor laser 12 Lens 14-1 Measurement surface 14-2 Measurement surface 14- 3 Measurement surface 15-1 Laser reflected light 15-2 Laser reflected light 15-3 Laser reflected light 17 Lens 18 Light receiving element 19 Incident position 20 Incident position 21 Incident position 22 Laser light source 23 Laser incident light 24-1 Measuring surface 24 -2 Measurement surface 25-1 Laser reflected light 25-2 Laser reflected light 26 Screen 27 CCD camera 30 Measurement object 31 Collimator lens 32 45 degree half mirror 33 Jig 34 XY table

Claims (1)

予め設定された基準傾斜角度を有する被測定物の被測定面に所定の照射面積を有するレーザー光を照射するレーザー光源部と、前記被測定面より反射された前記レーザー光の反射光軸上に置かれたスクリーンと、該スクリーンを観察する画像処理用CCDカメラとを具備し、前記スクリーンに投射された前記レーザー反射光のパターンを前記画像処理用CCDカメラで撮影し、画像処理・演算して比較し、前記レーザー反射光の前記スクリーン上での移動量を求め、前記被測定物の面傾斜角度の変化を測定することを特徴とする面傾斜角度測定機。A laser light source unit that irradiates a measurement surface of a measurement object having a preset reference inclination angle with a laser beam having a predetermined irradiation area, and a reflection optical axis of the laser light reflected from the measurement surface A screen placed and an image processing CCD camera for observing the screen. The laser reflected light pattern projected on the screen is photographed by the image processing CCD camera, and subjected to image processing and calculation. A surface inclination angle measuring machine characterized in that the amount of movement of the laser reflected light on the screen is determined and a change in the surface inclination angle of the object to be measured is measured.
JP29809998A 1998-10-20 1998-10-20 Inclination angle measuring machine Expired - Fee Related JP3607821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29809998A JP3607821B2 (en) 1998-10-20 1998-10-20 Inclination angle measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29809998A JP3607821B2 (en) 1998-10-20 1998-10-20 Inclination angle measuring machine

Publications (2)

Publication Number Publication Date
JP2000121340A JP2000121340A (en) 2000-04-28
JP3607821B2 true JP3607821B2 (en) 2005-01-05

Family

ID=17855152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29809998A Expired - Fee Related JP3607821B2 (en) 1998-10-20 1998-10-20 Inclination angle measuring machine

Country Status (1)

Country Link
JP (1) JP3607821B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104634281A (en) * 2015-02-15 2015-05-20 上海理工大学 Drum machine and measuring method
CN107345793A (en) * 2017-06-22 2017-11-14 四川大学 The angle measurement unit of ccd image sensor measuring instrument of microdisplacement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314943C (en) * 2005-10-12 2007-05-09 浙江大学 Micro angular displacement measuring device based on linear array charge-coupled device
CN104180778B (en) * 2014-09-17 2017-01-18 中国科学院光电技术研究所 Structured light method for small angle measurement
CN114577179B (en) * 2022-02-25 2024-05-14 烟台帝峰信息技术有限公司 Laser mapping method, system, device and storage medium based on image recognition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128807A (en) * 1994-10-31 1996-05-21 Kobe Steel Ltd Method and apparatus for displacement measurement of roll of rolling mill
JPH10227624A (en) * 1997-02-13 1998-08-25 Fuji Elelctrochem Co Ltd Parallelism measuring method of parallel double refraction plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104634281A (en) * 2015-02-15 2015-05-20 上海理工大学 Drum machine and measuring method
CN107345793A (en) * 2017-06-22 2017-11-14 四川大学 The angle measurement unit of ccd image sensor measuring instrument of microdisplacement

Also Published As

Publication number Publication date
JP2000121340A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
JP3511450B2 (en) Position calibration method for optical measuring device
US6577405B2 (en) Phase profilometry system with telecentric projector
JP4493272B2 (en) Backside alignment system and method
JP2779242B2 (en) Optoelectronic angle measurement system
US7508529B2 (en) Multi-range non-contact probe
JP3607821B2 (en) Inclination angle measuring machine
JP3768822B2 (en) 3D measuring device
JP2010256151A (en) Shape measuring method
JP7120247B2 (en) SURFACE PROFILE MEASURING DEVICE, SURFACE PROFILE MEASURING METHOD, STRUCTURE MANUFACTURING SYSTEM, STRUCTURE MANUFACTURING METHOD, AND SURFACE PROFILE MEASURING PROGRAM
JPH03264804A (en) Surface-shape measuring apparatus
JP4545580B2 (en) In-plane displacement meter
JP2597711B2 (en) 3D position measuring device
JP3235782B2 (en) Position detecting method, semiconductor substrate and exposure mask
JP3966800B2 (en) Surface inspection device
JPH0216965B2 (en)
JPH05267117A (en) Method and device for detecting and setting gap between mask and substrate
JPS62272107A (en) Inspecting method for packaging component
JP3003671B2 (en) Method and apparatus for detecting height of sample surface
JPH0783619A (en) Laser displacement meter
JPH0626841A (en) One-dimensional scanning type surface displacement meter
JP2536821Y2 (en) 3D position measuring device
JP2004061383A (en) Shape measuring device
JP4230758B2 (en) Non-contact sectional shape measuring method and apparatus
JPH0626842A (en) One-dimensional scanning type surface displacement meter
CN112902838A (en) Zero sensor and detection system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees