Nothing Special   »   [go: up one dir, main page]

JP3606492B2 - Diaphragm for electroacoustic transducer - Google Patents

Diaphragm for electroacoustic transducer Download PDF

Info

Publication number
JP3606492B2
JP3606492B2 JP11551796A JP11551796A JP3606492B2 JP 3606492 B2 JP3606492 B2 JP 3606492B2 JP 11551796 A JP11551796 A JP 11551796A JP 11551796 A JP11551796 A JP 11551796A JP 3606492 B2 JP3606492 B2 JP 3606492B2
Authority
JP
Japan
Prior art keywords
diaphragm
electroacoustic transducer
speaker
fiber
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11551796A
Other languages
Japanese (ja)
Other versions
JPH09284884A (en
Inventor
昭浩 野々垣
Original Assignee
フオスター電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フオスター電機株式会社 filed Critical フオスター電機株式会社
Priority to JP11551796A priority Critical patent/JP3606492B2/en
Publication of JPH09284884A publication Critical patent/JPH09284884A/en
Application granted granted Critical
Publication of JP3606492B2 publication Critical patent/JP3606492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気音響変換器に使用されるスピーカやマイクロホン等の電気音響変換器用振動板に関し、詳しくは比弾性率が大きく適度な内部損失を有し、耐候性等に優れた電気音響変換器用振動板に関する。
【0002】
【従来の技術】
スピーカやマイクロホン等に使用される電気音響変換器用振動板に要求される物性として、比弾性率が大きく、適当な内部損失を有し、機械的疲労が少なく、耐候性に優れている等の点が挙げられる。このような要望に応えるべく従来より種々の金属、セラミックス、合成樹脂、合成繊維、植物セルローズ(木材、非木材パルプ)、微生物セルローズ繊維等の素材が提案され、種々の加工法を用いて加工され使用されてきた。
【0003】
その中で、金属やセラミックスは弾性率は大きいものの、密度が高く内部損失が小さいため、高域再生用としては比較的優れているが、軽量高剛性が求められる中低音域や全帯域用には不適当である。
【0004】
また、各種セルローズ繊維を主体とした紙製振動板は、適当な内部損失を有しているものの比弾性率がそれぼど大きくなく、また、水や湿度に対して弱いため、雨のかかる屋外用や、さらに洗浄時に水のかかる車載用としては問題があった。
【0005】
一方、合成繊維を用いた振動板は、合成樹脂単体もしくはベースになる樹脂にフィラー(filler)を混合したもの、他の樹脂とアロイ(alloy )したもの等をシート化し、これを成形加工(主に真空成形)したものや、ペレットにして射出成形機にて射出成形したもの等がある。これらの樹脂振動板は、比弾性率も高く、適当な内部損失も有しており、また、水や湿度にも強く、量産時のバラツキも小さいことから比較的優れた性能を有した振動板と言える。
【0006】
その中で特にポリオレフィン系重合体(主にポリプロピレン)を基材とした合成樹脂に繊維状のフィラーを混合したものは、射出成形において繊維の配向を利用し、特に優れた性能を有した振動板を得ている。さらにその性能(主に弾性率)が添加するフィラーの性能に依存することから、現在ではカーボン繊維を用いたものが比較的優れた振動板となっている。
【0007】
【発明が解決しようとする課題】
しかしながら、カーボン繊維を用いたものは、カーボンの導電性がスピーカの構造上それ自体では致命的ではないものの特にスピーカ製造時の絶縁処理はコスト面で障害となっている。さらに高弾性タイプのカーボン繊維には強度が十分でないものが多く、樹脂との混合及び射出成形時に繊維の折れが発生することが多く製品のバラツキにもなるという問題がある。
【0008】
本発明はこのような点に鑑みてなされたものであり、高弾性率、高強度、高内部損失、高靱性を有し、導電性のない繊維を用いた電気音響変換器用振動板を提供することを目的とする。
【0009】
【課題を解決するための手段】
弾性率がカーボン繊維と略同等(アラミド繊維の約2倍)で高強度、高内部損失、高靱性を有した有機繊維であるポリパラフェニレンベンズビスチアゾール(PBT)やポリパラフェニレンベンズビスオキサゾール(PBO)等のポリベンザゾール(PBZ)繊維をポリオレフィン系重合体に混合し、射出成形法を用いて電気音響変換器用振動板を成形する。
【0010】
【発明の実施の形態】
本発明による電気音響変換器用振動板は、ポリオレフィン系重合体にポリベンザゾール繊維を5重量%以上混合し、射出成形法により成形したことに特徴を有している。
【0011】
また、本発明による電気音響変換器用振動板は、前記ポリオレフィン系重合体がポリプロピレン、ポリ(4−メチルペンテン−1)、ポリエチレン等の脂肪族オレフィンの重合体もしくはこれらのアロイ、さらには上記重合体の構成モノマーを主成分とする共重合体であることに特徴を有している。
【0012】
さらに、本発明による電気音響変換器用振動板は、前記ポリベンザゾール繊維が引張強度4.0GPa以上で、初期引張弾性率140GPa以上であることに特徴を有している。
【0013】
【実施例】
以下、本発明の一実施例を図面に基づいて説明する。図1は、本発明による振動板の片側断面の正面図である。1は振動板、2はエッジである。
1.繊維長3mmにカットされた引張弾性率250GPaのポリパラフェニレンベンズビスオキサゾール(PBO)繊維20重量%とポリプロピレン(三菱ポリプロBC2A)80重量%を1軸押出機を用いて230℃で溶融混合しペレットを作製した。
2.上記1で得られたペレットを樹脂温度240℃、射出圧力100MPa、射出時間1秒、金型温度60℃、冷却時間10秒で所定の形状(今回は図1のコーン形とした)に射出成形した。
3.上記2で得られた振動板1にエッジ2を取付けた。
【0014】
上記の振動板作製時に作製した3種類のペレット(PBO繊維20重量%入、カーボン繊維20重量%入、ポリプロピレン100%)について音速(比弾性率の平方根)と内部損失(tanδ)を測定した。表1にその値を示す。今回は、コーン形状の振動板を作製したが、ドーム形振動板や平板振動板,センターキャップなどの作製も可能である。なお、測定方法は振動リード法である。

Figure 0003606492
【0015】
図2は、本発明による振動板を使用したスピーカの音圧とポリプロピレン100%の振動板を使用したスピーカの音圧の周波数特性図である。
図における実線Aは、先に説明した繊維長3mmにカットされた引張弾性率250GPaのポリパラフェニレンベンズビスオキサゾール(PBO)繊維20重量%とポリプロピレン(三菱ポリプロBC2A)80重量%からなる本発明による振動板を用いた口径13cmのスピーカの音圧−周波数特性である。
また、破線Bは、フィラーの全く入っていないポリプロピレン(三菱ポリプロBC2A)100%を用いて作製した同形状の振動板を用いた口径13cmのスピーカの音圧−周波数特性である。
実線Aは破線Bに対し、比弾性率が大きいため、高域の再生限界が延びている。
【0016】
図3は、本発明による振動板を使用したスピーカの音圧とカーボン繊維20%,ポリプロピレン80%の振動板を使用したスピーカの音圧の周波数特性図である。
図における実線Aは、先に説明した繊維長3mmにカットされた引張弾性率250GPaのポリパラフェニレンベンズビスオキサゾール(PBO)繊維20重量%とポリプロピレン(三菱ポリプロBC2A)80重量%からなる本発明による振動板を用いた口径13cmのスピーカの音圧−周波数特性である。
また、破線Cは、PBO繊維の代わりにカーボン繊維(三菱ダイアリードK223,引張弾性率220GPa)を用いて同一工程にて作製した同形状の振動板を用いた口径13cmのスピーカの音圧−周波数特性である。
両者の比弾性率に殆ど差がないため、高域の再生限界はほぼ同じだが、実線Aの方が内部損失が大きいため、よりフラット(平坦)なレスポンスを得ている。
【0017】
【発明の効果】
以上説明したように、本発明による電気音響変換器用振動板は、ポリオレフィン系重合体にポリベンザゾール繊維を5重量%以上混合し、射出成形法により成形したので、
また、本発明による電気音響変換器用振動板は、前記ポリオレフィン系重合体がポリプロピレン、ポリ(4−メチルペンテン−1)、ポリエチレン等の脂肪族オレフィンの重合体もしくはこれらのアロイ、さらには上記重合体の構成モノマーを主成分とする共重合体であるので、
さらに、本発明による電気音響変換器用振動板は、前記ポリベンザゾール繊維が引張強度4.0GPa以上で、初期引張弾性率140GPa以上であるので、比弾性率が大きく、内部損失も比較的大きいため、分割振動がおきにくく、低域から高域まで平坦で、高域再生限界の高いスピーカを得ることができ、また、導電性がないため、スピーカ製造時に絶縁処理が不要となり、製造コストが安価となる。さらに、振動板の製造においては、カーボン繊維の様な折れが発生しないため、物性のバラツキの少ない安定した振動板が得られる。
【図面の簡単な説明】
【図1】本発明による振動板の片側断面の正面図である。
【図2】本発明による振動板を使用したスピーカの音圧とポリプロピレン100%の振動板を使用したスピーカの音圧の周波数特性図である。
【図3】本発明による振動板を使用したスピーカの音圧とカーボン繊維20%,ポリプロピレン80%の振動板を使用したスピーカの音圧の周波数特性図である。
【符号の説明】
1 振動板
2 エッジ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diaphragm for an electroacoustic transducer such as a speaker or a microphone used in an electroacoustic transducer, and more specifically, the vibration for an electroacoustic transducer having a large specific elastic modulus, an appropriate internal loss, and excellent weather resistance. Regarding the board.
[0002]
[Prior art]
Physical properties required for diaphragms for electroacoustic transducers used in speakers, microphones, etc., such as high specific elastic modulus, appropriate internal loss, low mechanical fatigue, and excellent weather resistance Is mentioned. In order to meet these demands, materials such as various metals, ceramics, synthetic resins, synthetic fibers, plant cellulose (wood, non-wood pulp), and microbial cellulose fibers have been proposed and processed using various processing methods. Have been used.
[0003]
Among them, although metal and ceramics have a large elastic modulus, they are relatively excellent for high-frequency reproduction because of their high density and low internal loss, but they are suitable for medium to low frequencies and all bands where lightweight and high rigidity is required. Is inappropriate.
[0004]
In addition, paper diaphragms mainly composed of various cellulose fibers have appropriate internal loss, but their specific elastic modulus is not so large and they are weak against water and humidity. In addition, there was a problem for in-vehicle use that requires water during cleaning.
[0005]
On the other hand, a diaphragm using synthetic fibers is formed into a sheet of a synthetic resin alone or a base resin mixed with a filler, an alloy with other resins, and the like (mainly). Vacuum molded) and pellets that have been injection molded with an injection molding machine. These resin diaphragms have a relatively high performance because they have a high specific elastic modulus, have an appropriate internal loss, are resistant to water and humidity, and have little variation during mass production. It can be said.
[0006]
Among them, especially those in which a fibrous filler is mixed with a synthetic resin based on a polyolefin polymer (mainly polypropylene) uses a fiber orientation in injection molding and has a particularly excellent performance. Have gained. Furthermore, since the performance (mainly elastic modulus) depends on the performance of the filler to be added, at present, the one using carbon fiber is a relatively excellent diaphragm.
[0007]
[Problems to be solved by the invention]
However, in the case of using carbon fiber, although the conductivity of carbon is not fatal in itself due to the structure of the speaker, the insulation treatment at the time of manufacturing the speaker is an obstacle in terms of cost. Further, many high-elasticity carbon fibers have insufficient strength, and there is a problem that fiber breakage often occurs during mixing with resin and injection molding, resulting in product variations.
[0008]
This invention is made | formed in view of such a point, and provides the diaphragm for electroacoustic transducers using the fiber which has a high elastic modulus, high intensity | strength, high internal loss, high toughness, and has no electroconductivity. For the purpose.
[0009]
[Means for Solving the Problems]
Polyparaphenylene benzbisthiazole (PBT) and polyparaphenylene benzbisoxazole (PBT), which are organic fibers that have almost the same modulus of elasticity as carbon fibers (about twice that of aramid fibers) and have high strength, high internal loss, and high toughness. A polybenzazole (PBZ) fiber such as PBO) is mixed with a polyolefin polymer, and a diaphragm for an electroacoustic transducer is formed using an injection molding method.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The diaphragm for an electroacoustic transducer according to the present invention is characterized in that 5% by weight or more of polybenzazole fiber is mixed with a polyolefin polymer and molded by an injection molding method.
[0011]
In the electroacoustic transducer diaphragm according to the present invention, the polyolefin polymer is a polymer of an aliphatic olefin such as polypropylene, poly (4-methylpentene-1) or polyethylene, or an alloy thereof, or the above polymer. It is characterized in that it is a copolymer comprising as a main component a constituent monomer of
[0012]
Further, the electroacoustic transducer diaphragm according to the present invention is characterized in that the polybenzazole fiber has a tensile strength of 4.0 GPa or more and an initial tensile elastic modulus of 140 GPa or more.
[0013]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a front view of one-side cross section of a diaphragm according to the present invention. Reference numeral 1 is a diaphragm, and 2 is an edge.
1. 20% by weight of polyparaphenylene benzbisoxazole (PBO) fibers with a tensile modulus of 250 GPa cut to a fiber length of 3 mm and 80% by weight of polypropylene (Mitsubishi Polypro BC2A) are melt-mixed at 230 ° C. using a single screw extruder and pellets Was made.
2. The pellets obtained in 1 above are injection molded into a predetermined shape (this time the cone shape in FIG. 1) at a resin temperature of 240 ° C., an injection pressure of 100 MPa, an injection time of 1 second, a mold temperature of 60 ° C., and a cooling time of 10 seconds. did.
3. The edge 2 was attached to the diaphragm 1 obtained in 2 above.
[0014]
The speed of sound (square root of specific elastic modulus) and internal loss (tan δ) were measured for three types of pellets (20% by weight of PBO fiber, 20% by weight of carbon fiber, and 100% of polypropylene) prepared at the time of manufacturing the diaphragm. Table 1 shows the values. This time, a corn-shaped diaphragm was produced, but a dome-shaped diaphragm, a flat diaphragm, a center cap, etc. can also be produced. The measurement method is a vibration lead method.
Figure 0003606492
[0015]
FIG. 2 is a frequency characteristic diagram of the sound pressure of a speaker using a diaphragm according to the present invention and the sound pressure of a speaker using a diaphragm made of 100% polypropylene.
The solid line A in the figure is according to the present invention comprising 20% by weight of polyparaphenylene benzbisoxazole (PBO) fiber having a tensile modulus of 250 GPa cut to a fiber length of 3 mm, and 80% by weight of polypropylene (Mitsubishi Polypro BC2A). It is a sound pressure-frequency characteristic of a speaker having a diameter of 13 cm using a diaphragm.
A broken line B is a sound pressure-frequency characteristic of a speaker having a diameter of 13 cm using a diaphragm having the same shape manufactured using 100% polypropylene (Mitsubishi Polypro BC2A) containing no filler.
Since the solid line A has a higher specific elastic modulus than the broken line B, the reproduction limit in the high range is extended.
[0016]
FIG. 3 is a frequency characteristic diagram of the sound pressure of the speaker using the diaphragm according to the present invention and the sound pressure of the speaker using the diaphragm made of 20% carbon fiber and 80% polypropylene.
The solid line A in the figure is according to the present invention comprising 20% by weight of polyparaphenylene benzbisoxazole (PBO) fiber having a tensile modulus of 250 GPa cut to a fiber length of 3 mm, and 80% by weight of polypropylene (Mitsubishi Polypro BC2A). It is a sound pressure-frequency characteristic of a speaker having a diameter of 13 cm using a diaphragm.
A broken line C indicates a sound pressure-frequency of a speaker having a caliber of 13 cm using a diaphragm having the same shape manufactured in the same process using carbon fiber (Mitsubishi Dialead K223, tensile elastic modulus 220 GPa) instead of PBO fiber. It is a characteristic.
Since there is almost no difference in the specific elastic modulus between them, the reproduction limit in the high range is almost the same, but since the internal loss is larger in the solid line A, a flat (flat) response is obtained.
[0017]
【The invention's effect】
As described above, the diaphragm for an electroacoustic transducer according to the present invention is a mixture of 5 wt% or more of polybenzazole fibers in a polyolefin polymer and molded by an injection molding method.
In the electroacoustic transducer diaphragm according to the present invention, the polyolefin polymer is a polymer of an aliphatic olefin such as polypropylene, poly (4-methylpentene-1) or polyethylene, or an alloy thereof, or the above polymer. Because the copolymer has a constituent monomer of
Furthermore, since the polybenzazole fiber has a tensile strength of 4.0 GPa or more and an initial tensile elastic modulus of 140 GPa or more, the electroacoustic transducer diaphragm according to the present invention has a large specific elastic modulus and a relatively large internal loss. In addition, it is difficult to generate divided vibrations, and it is possible to obtain a speaker that is flat from low to high and has a high reproduction limit. Also, since there is no electrical conductivity, there is no need for insulation when manufacturing the speaker, and the manufacturing cost is low. It becomes. Furthermore, in the manufacture of the diaphragm, since a fold like carbon fiber does not occur, a stable diaphragm with little variation in physical properties can be obtained.
[Brief description of the drawings]
FIG. 1 is a front view of one-side cross section of a diaphragm according to the present invention.
FIG. 2 is a frequency characteristic diagram of the sound pressure of a speaker using a diaphragm according to the present invention and the sound pressure of a speaker using a diaphragm made of 100% polypropylene.
FIG. 3 is a frequency characteristic diagram of sound pressure of a speaker using a diaphragm according to the present invention and sound pressure of a speaker using a diaphragm made of 20% carbon fiber and 80% polypropylene.
[Explanation of symbols]
1 Diaphragm 2 Edge

Claims (3)

ポリオレフィン系重合体にポリベンザゾール繊維を5重量%以上混合し、射出成形法により成形したことを特徴とする電気音響変換器用振動板。A diaphragm for an electroacoustic transducer, wherein 5% by weight or more of polybenzazole fiber is mixed with a polyolefin-based polymer and molded by an injection molding method. 前記ポリオレフィン系重合体がポリプロピレン、ポリ(4−メチルペンテン−1)、ポリエチレン等の脂肪族オレフィンの重合体もしくはこれらのアロイ、さらには上記重合体の構成モノマーを主成分とする共重合体であることを特徴とする請求項1記載の電気音響変換器用振動板。The polyolefin polymer is a polymer of an aliphatic olefin such as polypropylene, poly (4-methylpentene-1), polyethylene, or an alloy thereof, and further a copolymer having a constituent monomer of the polymer as a main component. The diaphragm for an electroacoustic transducer according to claim 1. 前記ポリベンザゾール繊維が引張強度4.0GPa以上で、初期引張弾性率140GPa以上であることを特徴とする請求項1記載の電気音響変換器用振動板。The diaphragm for an electroacoustic transducer according to claim 1, wherein the polybenzazole fiber has a tensile strength of 4.0 GPa or more and an initial tensile elastic modulus of 140 GPa or more.
JP11551796A 1996-04-11 1996-04-11 Diaphragm for electroacoustic transducer Expired - Fee Related JP3606492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11551796A JP3606492B2 (en) 1996-04-11 1996-04-11 Diaphragm for electroacoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11551796A JP3606492B2 (en) 1996-04-11 1996-04-11 Diaphragm for electroacoustic transducer

Publications (2)

Publication Number Publication Date
JPH09284884A JPH09284884A (en) 1997-10-31
JP3606492B2 true JP3606492B2 (en) 2005-01-05

Family

ID=14664490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11551796A Expired - Fee Related JP3606492B2 (en) 1996-04-11 1996-04-11 Diaphragm for electroacoustic transducer

Country Status (1)

Country Link
JP (1) JP3606492B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322140A (en) * 2000-05-16 2001-11-20 Foster Electric Co Ltd Resin molding
KR20080084270A (en) * 2007-03-15 2008-09-19 주식회사 이엠텍 Diaphragm, frame and protector of acoustic transducer, acoustic transducer having the same, method for manufacturing diaphragm of acoustic transducer, and mold for molding diaphragm
JP5338136B2 (en) * 2008-05-26 2013-11-13 日本精工株式会社 Reduction gear mechanism for electric power steering device, electric power steering device
WO2010095704A1 (en) * 2009-02-23 2010-08-26 三菱電機株式会社 Speaker diaphragm, speaker, and speaker diaphragm manufacturing method
JP7263358B2 (en) * 2018-07-27 2023-04-24 ヤマハ株式会社 Speaker diaphragm and method for manufacturing speaker diaphragm

Also Published As

Publication number Publication date
JPH09284884A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
JPH04367198A (en) Speaker diaphragm
JP3606492B2 (en) Diaphragm for electroacoustic transducer
EP1450580B1 (en) Manufacturing methods of Speaker Diaphragms
JP2018152740A (en) Speaker diaphragm and manufacturing method thereof, and a speaker using the same
US7527124B2 (en) Loudspeaker diaphragm
CN104301849A (en) Solid guide microphone
JP4179037B2 (en) Molding composition, speaker unit mounting member using the same, and speaker system using the same
JP2000004496A (en) Diaphragm for electroacoustic transducer
JPH09107595A (en) Diaphragm for electroacoustic transducer
JP4008559B2 (en) Method for manufacturing diaphragm for electroacoustic transducer and diaphragm for electroacoustic transducer
JP3241514B2 (en) Method for manufacturing speaker vibration member
CN114143671A (en) Edge material for vibrating piece for electroacoustic transducer, micro-speaker vibrating piece, and film
JP2506498Y2 (en) Vibration plate for electro-acoustic transducer
JP4043631B2 (en) Diaphragm for electroacoustic transducer
JP2000165985A (en) Member for speaker
JP2710830B2 (en) Vibration system members for sound
KR100254889B1 (en) Speaker's diaphragm and its manufacturing method
JPH0156600B2 (en)
JPS5896492A (en) Diaphragm for electroacoustic transducer
US20210297782A1 (en) Speaker Diaphragm and Headphone
JP3882769B2 (en) Dynamic speaker
JPS6359640B2 (en)
JP2961200B2 (en) Speaker diaphragm
KR100187000B1 (en) Diaphragm for speaker
JP2024156571A (en) Speaker diaphragm and speaker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350