JP3606147B2 - Chlorine production method - Google Patents
Chlorine production method Download PDFInfo
- Publication number
- JP3606147B2 JP3606147B2 JP2000004538A JP2000004538A JP3606147B2 JP 3606147 B2 JP3606147 B2 JP 3606147B2 JP 2000004538 A JP2000004538 A JP 2000004538A JP 2000004538 A JP2000004538 A JP 2000004538A JP 3606147 B2 JP3606147 B2 JP 3606147B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- reaction zone
- reaction
- hydrogen chloride
- chlorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/20—Improvements relating to chlorine production
Landscapes
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、塩素の製造方法に関するものである。更に詳しくは、本発明は、塩化水素を含むガス中の塩化水素を、酸素を含むガスを用いて酸化する塩素の製造方法であって、触媒充填層の過度のホットスポットを抑制し、触媒充填層を有効に活用することによって、触媒の安定した活性が維持され、かつ塩素を安定して高収率で得ることができ、よって触媒コスト、設備コスト、運転コスト、運転の安定性及び容易性の観点から極めて有利な塩素の製造方法に関するものである。
【0002】
【従来の技術】
塩素は塩化ビニル、ホスゲンなどの原料として有用であり、塩化水素の酸化によって得られることもよく知られている。たとえば、塩化水素を触媒を用いて分子状酸素で接触酸化し、塩素を製造する方法としては、従来からDeacon触媒と呼ばれる銅系の触媒が従来優れた活性を有するとされ、塩化銅と塩化カリウムに第三成分として種々の化合物を添加した触媒が多数提案されている。また、Deacon触媒以外にも、酸化クロム又はこの化合物を触媒として用いる方法、酸化ルテニウム又はこの化合物を触媒として用いる方法も提案されている。
【0003】
しかしながら、塩化水素の酸化反応は59kJ/mol−塩素の発熱反応であり、触媒充填層での過度のホットスポットを抑制することは、触媒の熱劣化を低減し、運転の安定性及び容易性を確保する観点からも重要である。また、過度のホットスポットは、最悪の場合には暴走反応を引き起こすこともあり、塩化水素及び/又は塩素による装置材料の高温ガス腐食を起こす問題もある。
【0004】
雑誌「触媒」(Vol.33 No.1(1991))には、酸化クロムを触媒とした純塩化水素と純酸素の反応では、固定床反応形式ではホットスポットの除去が困難であり、実装置では流動床反応器の採用が必要であることが記載されている。
【0005】
【発明が解決しようとする課題】
かかる状況において、本発明が解決しようとする課題は、塩化水素を含むガス中の塩化水素を、酸素を含むガスを用いて酸化する塩素の製造方法であって、触媒充填層の過度のホットスポットを抑制し、触媒充填層を有効に活用することによって、触媒の安定した活性が維持され、かつ塩素を安定して高収率で得ることができ、よって触媒コスト、設備コスト、運転コスト、運転の安定性及び容易性の観点から極めて有利な塩素の製造方法を提供する点に存するものである。
【0006】
【課題を解決するための手段】
すなわち、本発明は、触媒の存在下、塩化水素を含むガス中の塩化水素を、酸素を含むガスを用いて酸化する塩素の製造方法であって、少なくとも二の直列に配列された触媒充填層からなる反応域を有し、かつ該反応域のうちの少なくとも一の反応域の温度制御を熱交換方式によって行う塩素の製造方法に係るものである。
【0007】
【発明の実施の形態】
本発明において用いられる塩化水素を含むガスとしては、塩素化合物の熱分解反応や燃焼反応、有機化合物のホスゲン化反応、脱塩化水素反応又は塩素化反応、焼却炉の燃焼等において発生した塩化水素を含むいかなるものを使用することができる。塩化水素を含むガスとしては、通常、該ガス中の塩化水素の濃度は通常10体積%以上、好ましくは50体積%以上、更に好ましくは80体積%以上のものが用いられる。該濃度が10体積%よりも低い場合には、生成した塩素の分離、及び/又は未反応酸素をリサイクルする場合に、リサイクルが煩雑になることがある。塩化水素を含むガス中の塩化水素以外の成分としては、オルトジクロロベンゼン、モノクロロベンゼン等の塩素化芳香族炭化水素、及びトルエン、ベンゼン等の芳香族炭化水素、及び塩化ビニル、1,2−ジクロロエタン、塩化メチル、塩化エチル、塩化プロピル、塩化アリル等の塩素化脂肪族炭化水素、及びメタン、アセチレン、エチレン、プロピレン等の脂肪族炭化水素、及び窒素、アルゴン、二酸化炭素、一酸化炭素、ホスゲン、水素、硫化カルボニル、硫化水素等の無機ガスがあげられる。塩化水素と酸素との反応において、塩素化芳香族炭化水素及び塩素化脂肪族炭化水素は、二酸化炭素と水と塩素に酸化され、芳香族炭化水素及び脂肪族炭化水素は、二酸化炭素と水に酸化され、一酸化炭素は二酸化炭素に酸化され、ホスゲンは、二酸化炭素と塩素に酸化される。
【0008】
酸素を含むガスとしては、酸素又は空気が使用される。酸素は、空気の圧力スイング法や深冷分離などの通常の工業的な方法によって得ることができる。
【0009】
塩化水素1モルに対する酸素の理論モル量は0.25モルであるが、理論量以上供給することが好ましく、塩化水素1モルに対し酸素0.25〜2モルが更に好ましい。酸素の量が過小であると、塩化水素の転化率が低くなる場合があり、一方酸素の量が過多であると生成した塩素と未反応酸素の分離が困難になる場合がある。
【0010】
本発明においては、少なくとも二の直列に配列された触媒充填層からなる反応域に、酸素を含むガスを分割して導入することが好ましい。酸素を含むガスを分割して導入する方法としては、塩化水素を含むガスの全量と、酸素を含むガスの一部分を第1反応域に導入し、その反応物と残りの酸素を含むガスを第2反応域以降の反応域に導入する方法があげられる。ここで、第1反応域は原料ガスの流れについての最も上流側の反応域を意味し、第2反応域は第1反応域の下流側の反応域を意味する。第1反応域に導入される酸素を含むガスの分割量は、全体量の5〜90%、好ましくは10〜80%、更に好ましくは30〜60%である。該分割量が少なすぎる場合は、第2反応域以降の反応域の温度制御が困難になることがある。
【0011】
本発明においては、反応域のうちの少なくとも一の反応域の温度制御を熱交換方式によって行う必要がある。このことにより、反応域の過度のホットスポットを抑制し、反応域を有効に活用することによって、触媒の安定した活性が維持され、かつ塩素を安定して高収率で得ることができるために、触媒コスト、設備コスト、運転コスト、運転の安定性及び容易性を確保しうる。
【0012】
少なくとも二の直列に配列された触媒充填層からなる反応域は、反応管内に少なくとも二種の触媒を充填すること、及び/又は反応域の温度を少なくとも二の方式で温度制御させることによって形成される。ここで、触媒充填層からなる反応域は、固定床反応器を形成するものであり、流動層反応器及び移動層反応器を形成するものではない。少なくとも二種の触媒を充填する方法としては、反応管内の触媒充填層を管軸方向に少なくとも二の区分に分割して、活性、組成及び/又は粒径の異なる触媒を充填する方法、又は触媒を不活性物質及び/又は担体のみで成型した充填物で少なくとも二の方式で希釈する方法、又は触媒と触媒を不活性物質及び/又は担体のみで成型した充填物で希釈したものを充填する方法をあげることができる。触媒を不活性物質及び/又は担体のみで成型した充填物で希釈した場合は、充填された触媒と不活性物質及び/又は担体のみで成型した充填物の全体が、触媒充填層からなる反応域を意味する。通常、連続する反応域は直接に接している状態にあるが、反応域の間に不活性物質を充填してもよい。ただし、不活性物質のみからなる充填層は、触媒充填層とは見なさない。触媒充填層からなる反応域の温度を少なくとも二の方式で温度制御させる方法としては、少なくとも二の独立した方式での温度制御を行う方法をあげることができる。この場合、少なくとも一の方式の温度制御は、熱交換方式で行う必要がある。
【0013】
本発明の熱交換方式とは、触媒が充填された反応管の外側にジャケット部を有し、反応で生成した反応熱をジャケット内の熱媒体によって除去する方式を意味する。熱交換方式では、反応管内の触媒充填層からなる反応域の温度が、ジャケット内の熱媒体によって制御される。工業的には、直列に配列された触媒充填層からなる反応域を有する反応管を並列に配列し、外側にジャケット部を有する多管式熱交換器型の固定床多管式反応器を用いることもできる。熱交換方式以外の方法としては、電気炉方式があげられるが、反応域の温度制御が難しいといった問題がある。
【0014】
本発明においては、反応域のうちの少なくとも二の反応域の温度制御を熱交換方式によって行うことが好ましい。この方法としては、少なくとも二の独立したジャケット部に独立に熱媒体を循環させて該反応域の温度制御を行う方法、及び/又は仕切り板によってジャケット部を少なくとも二に分割して、仕切られた部分に独立して熱媒体を循環させて該反応域の温度制御を行う方法をあげることができる。仕切り板は、反応管に溶接などにより直接固定されていてもよいが、仕切り板や反応管に熱的な歪みが生じることを防ぐために、実質的に独立して熱媒体を循環できる範囲内において、仕切り板と反応管との間に適当な間隔を設けることができる。ジャッケト内の熱媒体の流れは、下方から上方に流れるようにするのが好ましい。
【0015】
本発明においては、全反応域の温度制御を熱交換方式によって行う方法が、反応熱が良好に除去され、運転の安定性及び容易性が確保されるために好ましい。
【0016】
熱媒体としては、溶融塩、スチーム、有機化合物又は溶融金属をあげることができるが、熱安定性や取り扱いの容易さ等の点から溶融塩又はスチームが好ましく、より良好な熱安定性の点から溶融塩が更に好ましい。溶融金属は、コストが高く、取り扱いが難しいといった問題がある。溶融塩の組成としては、硝酸カリウム50重量%と亜硝酸ナトリウム50重量%の混合物、硝酸カリウム53重量%と亜硝酸ナトリウム40重量%と硝酸ナトリウム7重量%の混合物などをあげることができる。有機化合物としては、ダウサムA(ジフェニルオキサイドとジフェニルの混合物)をあげることができる。
【0017】
反応域の数は多くするほど、該反応域を有効に利用することができるが、工業的には通常2〜20反応域、好ましくは2〜8反応域、更に好ましくは2〜4反応域で実施される。該反応域が多すぎる場合は、充填する触媒の種類が多くなる、及び/又は温度制御のための機器が多くなるといったことがあり、経済的に不利になることがある。
【0018】
本発明においては、少なくとも二の直列に配列された触媒充填層からなる反応域の、第1反応域の割合を70体積%以下とすることが好ましく、30体積%以下が更に好ましい。また、第1反応域の割合を70体積%以下、好ましくは30体積%以下とし、かつ第2反応域の温度を第1反応域よりも通常は5℃以上、好ましくは10℃以上高くする、及び/又は第2反応域の活性が第1反応域よりも通常は1.1倍以上、好ましくは1.5倍以上高くなるように、触媒又は触媒と不活性物質及び/又は担体のみで成型した充填物を充填することが更に好ましい。ここで、反応域の活性(mol−HCl/ml−反応域・min)とは、単位触媒重量及び時間当りの塩化水素反応活性( mol−HCl/g−触媒・min)と触媒充填量(g)の積を、反応域の体積(ml)で除した計算値を意味する。単位触媒重量及び時間当りの塩化水素反応活性は、触媒の体積と標準状態(0℃、0.1MPa)における塩化水素の供給速度との比が4400〜4800h−1で、塩化水素1モルに対し酸素0.5モルを供給し、反応圧力0.1MPa、反応温度280℃で反応させ、この時に生成した塩素量から計算された値である。第1反応域では、反応物質である塩化水素と酸素の濃度が高いために反応速度が大きく、該第1反応域の入口側にホットスポットが生じる。一方、該第1反応域の出口側はジャケット内の熱媒体の温度に近い温度となる。第1反応域の割合が70体積%より大きい場合には、該反応域において、ジャケット内の熱媒体の温度に近い温度の触媒充填層部分が多くなり、触媒を有効に活用することができない。
【0019】
本発明の酸化反応の触媒としては、塩化水素を酸化して塩素を製造する触媒として知られる公知の触媒を用いることができる。該触媒の一例として、塩化銅と塩化カリウムに第三成分として種々の化合物を添加した触媒、酸化クロムを主成分とする触媒、酸化ルテニウムを含有する触媒などをあげることができる。中でも酸化ルテニウムを含有する触媒が好ましく、酸化ルテニウム及び酸化チタンを含む触媒が更に好ましい。酸化ルテニウムを含む触媒は、たとえば特開平10−182104号公報、ヨーロッパ特許第936184号公報に記載されている。酸化ルテニウム及び酸化チタンを含む触媒は、たとえば、特開平10−194705号公報、特開平10−338502号公報に記載されている。触媒中の酸化ルテニウムの含有量は、0.1〜20重量%が好ましい。酸化ルテニウムの量が過小であると触媒の活性が低く塩化水素の転化率が低くなる場合があり、一方、酸化ルテニウムの量が過多であると触媒価格が高くなる場合がある。
【0020】
触媒の形状は、球形粒状、円柱形ペレット状、押し出し形状、リング形状、ハニカム状あるいは成型後に粉砕分級した適度の大きさの顆粒状等で用いられる。この際、触媒直径としては10mm以下が好ましい。触媒直径が10mmを越えると、活性が低下する場合がある。触媒直径の下限は特に制限はないが、過度に小さくなると、触媒充填層での圧力損失が大きくなるため、通常は0.1mm以上のものが用いられる。なお、ここでいう触媒直径とは、球形粒状では球の直径、円柱形ペレット状では断面の直径、その他の形状では断面の最大直径を意味する。
【0021】
本発明においては、第1反応域の熱伝導度が最も高くなるように、触媒又は触媒と不活性物質及び/又は担体のみで成型した充填物を充填することが好ましく、第1反応域から最終反応域に向かって、ガスの流れ方向に、反応域の熱伝導度が順次低くなるように充填することが更に好ましい。ここで、最終反応域はガスの流れについての最も下流側の反応域を意味する。反応域の熱伝導度は、反応域に充填された充填物の熱伝導度を意味する。原料の入口側の反応域では、反応物質である塩化水素と酸素の濃度が高いために反応速度が大きく、酸化反応による発熱が大きい。したがって、入口側の反応域に触媒の熱伝導度が比較的高い触媒を充填することにより、触媒充填層の過度なホットスポットを抑制することができる。
【0022】
本発明においては、第1反応域から最終反応域に向かって、ガスの流れ方向に、反応域の活性が順次高くなるように触媒又は触媒と不活性物質及び/又は担体のみで成型した充填物を充填することにより、連続する反応域の温度差を小さくすることができ、したがって、運転を安定して容易に行うことができるために好ましい。
【0023】
本発明においては、最終反応域の活性を、その直前の反応域の活性よりも高くなるように、触媒又は触媒と不活性物質及び/又は担体のみで成型した充填物を充填し、かつ最終反応域のホットスポットを、その直前の反応域のホットスポットよりも低くする方法が好ましい。最終反応域の活性がその直前の活性よりも低く、かつ最終反応域のホットスポットがその直前の反応域のホットスポットよりも高い場合は、塩化水素を酸素で酸化して塩素と水に変換する反応が平衡反応であるために、塩化水素の転化率が化学平衡組成に支配されて低くなる場合がある。
【0024】
触媒の使用量(体積)は、標準状態(0℃、0.1MPa)における塩化水素の供給速度との比(GHSV)で表すと、通常10〜20000h−1で行われる。原料を反応域に流す方向は、上向きでも下向きでもよい。反応圧力は、通常0.1〜5MPaで行われる。反応温度は、好ましくは200〜500℃、更に好ましくは200〜380℃である。反応温度が低すぎる場合は、塩化水素の転化率が低くなる場合があり、一方反応温度が高すぎる場合は、触媒成分が揮発する場合がある。
【0025】
本発明においては、最終反応域の出口のガス温度を200〜350℃とする方法が好ましく、200〜320℃とする方法が更に好ましい。最終反応域の出口のガス温度が350℃よりも高い場合は、塩化水素を酸素で酸化して塩素と水に変換する反応が平衡反応であるために、塩化水素の転化率が化学平衡組成に支配されて低くなる場合がある。
【0026】
本発明においては、空塔基準のガス線速度を0.2〜10m/sとすることが好ましく、0.2〜5m/sが更に好ましい。ガス線速度が低すぎる場合は、工業用反応装置で塩化水素の満足いく処理量を得るためには、過剰数の反応管が必要とされるので不利益である場合があり、ガス線速度が高すぎる場合は、触媒充填層の圧力損失が大きくなる場合がある。なお、本発明の空塔基準のガス線速度とは、標準状態(0℃、0.1MPa)における塩化水素を含むガスと酸素を含むガスの供給速度の合計と反応管の断面積の比を意味する。
【0027】
反応管の内径は、通常10〜50mm、好ましくは10〜40mm、更に好ましくは10〜30mmである。反応管の内径が小さすぎる場合は、工業用反応装置で塩化水素の満足いく処理量を得るためには、過剰数の反応管が必要とされるので不利益である場合があり、反応管の内径が大きすぎる場合は、触媒充填層に過度のホットスポットを生じさせる場合がある。
【0028】
反応管の内径(D)と触媒直径(d)の比率(D/d)は、通常5/1〜100/1、好ましくは5/1〜50/1、更に好ましくは5/1〜20/1である。比率が小さすぎる場合は、触媒充填層に過度のホットスポットを生じさせる場合があり、比率が大きすぎる場合は、触媒充填層の圧力損失が大きくなる場合がある。
【0029】
【実施例】
以下、本発明を実施例により説明する。
実施例1
反応器には、溶融塩(硝酸カリウム/亜硝酸ナトリウム=1/1重量比)を熱媒体とするジャケットを備えた内径18mm及び長さ1mの反応管(外径5mmの温度測定用鞘管)からなる固定床反応器を用いた。反応管の上部側に、直径1.5mmのα−Al2O3担持6.6重量%酸化ルテニウム押し出し触媒80.2g(60.0ml)を充填し、第1反応域とした。なお、この触媒は、塩化水素の酸化反応に約260h使用したものを再使用した。第1反応域の下部側に、直径1〜2mmのアナターゼ結晶形TiO2担持6.6重量%酸化ルテニウム球形粒状触媒35.9g(35.6ml)と、直径2mmのα−Al2O3球(ニッカト(株)製、SSA995)37.6g(17.8ml)を十分に混合して充填し、第2反応域とした。触媒充填長は、第1反応域/第2反応域=0.280m/0.235mであった。触媒充填体積は、第1反応域/第2反応域=66ml/55mlで、第1反応域の割合は54体積%と計算される。なお、直径1.5mmのα−Al2O3担持6.6重量%酸化ルテニウム押し出し触媒は、次の方法により調製した。すなわち、市販のα−Al2O3粉末(住友化学(株)製、AES−12)と塩化ルテニウムと純水及びアルミナゾル(日産化学(株)製、アルミナゾル200)をよく混合した。混合したものに室温で乾燥空気を吹きかけ、適当な粘度になるまで乾燥させた。この混合物を直径1.5mmに押し出し成型した。次いで、空気中、60℃で4時間乾燥した。得られた固体を室温から350℃まで1時間で昇温し、同温度で3時間焼成し、直径1.5mmのα−Al2O3担持6.6重量%酸化ルテニウム押し出し触媒を得た。直径1〜2mmのアナターゼ結晶形TiO2担持6.6重量%酸化ルテニウム球形粒状触媒は、特開平10−338502号公報に記載された方法に準拠して調製された。
また、本実施例で用いたα−Al2O3担持6.6重量%酸化ルテニウム押し出し触媒の単位触媒重量及び時間当りの塩化水素反応活性は1.3×10−4mol−HCl/g−触媒・minであり、以下の方法で測定した。内径14mmのパイレックスガラス製反応管(外径4mmの温度測定用鞘管)に触媒を4.0g(3.3ml)充填し、温度280℃の溶融塩バス中に入れ、塩化水素0.26l/min(標準状態)、酸素0.13l/min(標準状態)を上部から下部へダウンフローで流通させ、1.5h後に出口ガスをよう化カリウム水溶液にサンプリングして、生成した塩素と未反応の塩化水素と生成水を吸収させ、よう素滴定法及び中和滴定法によって、それぞれ塩素の生成量及び未反応塩化水素量を測定した。アナターゼ結晶形TiO2担持6.6重量%酸化ルテニウム球形粒状触媒の単位触媒重量及び時間当りの塩化水素反応活性は4.8×10−4mol−HCl/g−触媒・minであり、触媒の使用量を1.9g(2.0ml)、塩化水素0.16l/min(標準状態)、酸素0.08l/min(標準状態)とした以外は、α−Al2O3担持6.6重量%酸化ルテニウム押し出し触媒に準拠にて行った。第1反応域の活性は1.6×10−4mol−HCl/ml−反応域・min、第2反応域の活性は3.1×10−4mol−HCl/ml−反応域・minと計算される。
塩化水素を含むガス6.1l/min(標準状態、塩化水素:99体積%以上)、酸素3.05l/min(標準状態、酸素:99体積%以上)をNi製反応管の上部から下部へダウンフローで流通させ、ジャケット内の溶融塩の温度を326℃として反応を行った。空塔基準のガス線速度は、0.65m/sと計算される。第1反応域の反応温度は入口332℃、出口335℃、ホットスポット347℃であった。第2反応域の反応温度は入口335℃、出口338℃、ホットスポット344℃であった。第2反応域の出口ガスをよう化カリウム水溶液にサンプリングして、生成した塩素と未反応の塩化水素と生成水を吸収させ、よう素滴定法及び中和滴定法によって、それぞれ塩素の生成量及び未反応塩化水素量を測定した。塩化水素の塩素への転化率は30.6%であった。
【0030】
実施例2
反応器には、電気炉を備えた内径26mm及び長さ2.0mのNi製反応管(外径6mmの温度測定用鞘管)1本と、溶融塩(硝酸カリウム/亜硝酸ナトリウム=1/1重量比)を熱媒体とするジャケットを備えた内径18mm及び長さ2.5mの反応管(外径6mmの温度測定用鞘管)2本からなる合計3本の反応管が直列に連結された固定床反応器を用いた。内径26mmの反応管には、直径1.5mmのα−Al2O3担持6.6重量%酸化ルテニウム押し出し触媒69g(60ml)と直径2mmのα−Al2O3球132g(60ml)を十分に混合して充填し、第1反応域とした。内径18mmの反応管の1本目には、直径1〜2mmのアナターゼ結晶形TiO2担持6.6重量%酸化ルテニウム球形粒状触媒300g(300ml)と直径2mmのα−Al2O3球340g(150ml)を十分に混合して充填し、第2反応域とした。内径18mmの反応管の2本目には、直径1〜2mmのアナターゼ結晶形TiO2担持6.6重量%酸化ルテニウム球形粒状触媒297g(294ml)を充填し、第3反応域とした。触媒充填長は、第1反応域/第2反応域/第3反応域=0.21m/1.98m/1.37mであった。触媒充填体積は、第1反応域/第2反応域/第3反応域=103ml/447ml/309mlで、第1反応域の割合は12体積%と計算される。なお、α−Al2O3担持6.6重量%酸化ルテニウム押し出し触媒は、実施例1に準拠して調製し、触媒の使用量を4.0g(3.5ml)とした以外は実施例1に準拠して測定された単位触媒重量及び時間当りの塩化水素反応活性は2.5×10−4mol−HCl/g−触媒・minであった。第1反応域の活性は1.7×10−4mol−HCl/ml−反応域・min、第2反応域の活性は3.2×10−4mol−HCl/ml−反応域・min、第3反応域の活性は4.6×10−4mol−HCl/ml−反応域・minと計算される。
塩化水素を含むガス6l/min(標準状態、塩化水素:99体積%以上)、酸素1.13l/min(標準状態、酸素:99体積%以上)、及び塩素を分離後に得られた未反応酸素を主成分とするガス2.15l/min(標準状態、酸素:86.0体積%、塩素:8.9体積%(計算値)、窒素:2.3体積%、アルゴン:2.7体積%、二酸化炭素:0.1体積%)をNi製反応管の上部から下部へダウンフローで流通させ、反応器の入口圧力を1.19kg/cm2−G(0.22MPa相当)とし、電気炉の温度を342℃、ジャケット内の溶融塩の温度を345℃及び332℃として反応を行った。空塔基準のガス線速度は、内径26mmの反応管で0.31m/s、内径18mmの反応管で0.68m/sと計算される。第1反応域の反応温度は入口322℃、出口343℃、ホットスポット344℃であった。第2反応域の反応温度は入口336℃、出口348℃、ホットスポット362℃であった。第3反応域の反応温度は入口325℃、出口338℃、ホットスポット350℃であった。
反応で得られたガスを冷却し、続いて吸収塔内にフィ−ドした。吸収塔には、純水用タンクと純水フィ−ド用ポンプ、20重量%塩酸フィ−ド用ポンプ及び塔内塩酸の循環用ポンプを設置した。純水は、純水フィ−ド用ポンプを用いて0.15kg/h(29℃)で純水用タンクへフィ−ドし、吸収塔へのフィ−ド前に、純水タンク内で吸収塔の塔頂部から得られたガスと接触させた後、タンク内から吸収塔の塔底部へオーバーフローでフィ−ドした。20重量%塩酸0.355kg/h(29℃)は、20重量%塩酸フィ−ド用ポンプを用いて吸収塔の上部からフィ−ドし、ガスと向流式に接触させた。塩化水素と水を主成分とする塔内の塩酸の溶液(塩化水素24.7重量%、塩素:0.39重量%)は、循環ポンプで吸収塔の上部に循環させ、ガスと向流式に接触させた。また、該溶液は、循環ポンプ出口から0.736kg/hの流量で抜き出した。塔頂部からは、温度は28℃の常圧のガスが得られた。
吸収塔の塔頂部から得られたガスを硫酸乾燥塔に流通させた。硫酸乾燥塔には、硫酸フィード用ポンプを設置した。硫酸乾燥塔には、硫酸フィード用ポンプを用いて98重量%硫酸 0.145kg/hをフィードし、塔内の硫酸はオーバーフローで0.172kg/hで抜き出された。得られた乾燥ガス(水:0.05mg/l以下)をミストセパレータでミストを分離後、圧縮機にフィードし、9.25kg/cm2−G(1.01MPa相当)に昇圧し、続いて−20℃に冷却して、塩素を主成分とする液体と未反応酸素を主成分とするガスに分離した。得られた塩素の組成は、塩素:98.6体積%(計算値)、酸素:1.1体積%、窒素:0.17体積%、アルゴン:0.07体積%、二酸化炭素:0.09体積%であった。未反応酸素を主成分とするガスを反応へリサイクルした。
【0031】
【発明の効果】
以上説明したとおり、本発明により、塩化水素を含むガス中の塩化水素を、酸素を含むガスを用いて酸化する塩素の製造方法であって、触媒充填層の過度のホットスポットを抑制し、触媒充填層を有効に活用することによって、触媒の安定した活性が維持され、かつ塩素を安定して高収率で得ることができ、よって触媒コスト、設備コスト、運転コスト、運転の安定性及び容易性の観点から極めて有利な塩素の製造方法を提供することができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing chlorine. More specifically, the present invention relates to a method for producing chlorine in which hydrogen chloride in a gas containing hydrogen chloride is oxidized using a gas containing oxygen, which suppresses excessive hot spots in the catalyst packed bed and By utilizing the layer effectively, stable activity of the catalyst can be maintained and chlorine can be stably obtained in high yield, and therefore catalyst cost, equipment cost, operation cost, operational stability and ease It is related with the manufacturing method of chlorine very advantageous from a viewpoint of this.
[0002]
[Prior art]
It is well known that chlorine is useful as a raw material for vinyl chloride, phosgene and the like, and is obtained by oxidation of hydrogen chloride. For example, as a method for producing chlorine by catalytic oxidation of hydrogen chloride with molecular oxygen using a catalyst, a copper-based catalyst conventionally called Deacon catalyst is said to have excellent activity, and copper chloride and potassium chloride. Many catalysts have been proposed in which various compounds are added as a third component. Besides the Deacon catalyst, a method using chromium oxide or this compound as a catalyst, or a method using ruthenium oxide or this compound as a catalyst has also been proposed.
[0003]
However, the oxidation reaction of hydrogen chloride is an exothermic reaction of 59 kJ / mol-chlorine, and suppressing excessive hot spots in the catalyst packed bed reduces the thermal deterioration of the catalyst, and improves the stability and ease of operation. It is also important from the viewpoint of ensuring. Excessive hot spots can also cause runaway reactions in the worst case and can cause hot gas corrosion of equipment materials by hydrogen chloride and / or chlorine.
[0004]
In the magazine “Catalyst” (Vol. 33 No. 1 (1991)), in the reaction of pure hydrogen chloride and pure oxygen using chromium oxide as a catalyst, it is difficult to remove hot spots in a fixed bed reaction system. Describes that it is necessary to employ a fluidized bed reactor.
[0005]
[Problems to be solved by the invention]
In such a situation, the problem to be solved by the present invention is a method for producing chlorine in which hydrogen chloride in a gas containing hydrogen chloride is oxidized using a gas containing oxygen, and an excessive hot spot in the catalyst packed bed By effectively using the catalyst packed bed, the stable activity of the catalyst can be maintained, and chlorine can be stably obtained in a high yield. Therefore, the catalyst cost, equipment cost, operation cost, operation The present invention is to provide a chlorine production method that is extremely advantageous from the viewpoint of the stability and ease of the production.
[0006]
[Means for Solving the Problems]
That is, the present invention is a method for producing chlorine in which hydrogen chloride in a gas containing hydrogen chloride is oxidized using a gas containing oxygen in the presence of a catalyst, and the catalyst packed bed is arranged in at least two in series And a chlorine production method in which temperature control of at least one of the reaction zones is performed by a heat exchange system.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the gas containing hydrogen chloride used in the present invention include pyrolysis reaction and combustion reaction of chlorine compounds, phosgenation reaction of organic compounds, dehydrochlorination reaction or chlorination reaction, combustion of incinerators, etc. Anything can be used. As the gas containing hydrogen chloride, a gas having a hydrogen chloride concentration of usually 10% by volume or more, preferably 50% by volume or more, more preferably 80% by volume or more is used. When the concentration is lower than 10% by volume, recycling may be complicated when separating generated chlorine and / or recycling unreacted oxygen. Components other than hydrogen chloride in the gas containing hydrogen chloride include chlorinated aromatic hydrocarbons such as orthodichlorobenzene and monochlorobenzene, aromatic hydrocarbons such as toluene and benzene, vinyl chloride, and 1,2-dichloroethane. , Chlorinated aliphatic hydrocarbons such as methyl chloride, ethyl chloride, propyl chloride, and allyl chloride, and aliphatic hydrocarbons such as methane, acetylene, ethylene, propylene, and nitrogen, argon, carbon dioxide, carbon monoxide, phosgene, Examples thereof include inorganic gases such as hydrogen, carbonyl sulfide, and hydrogen sulfide. In the reaction between hydrogen chloride and oxygen, chlorinated aromatic hydrocarbons and chlorinated aliphatic hydrocarbons are oxidized to carbon dioxide, water and chlorine, and aromatic hydrocarbons and aliphatic hydrocarbons are converted to carbon dioxide and water. Oxidized, carbon monoxide is oxidized to carbon dioxide, and phosgene is oxidized to carbon dioxide and chlorine.
[0008]
As the gas containing oxygen, oxygen or air is used. Oxygen can be obtained by ordinary industrial methods such as air pressure swing method or cryogenic separation.
[0009]
Although the theoretical molar amount of oxygen with respect to 1 mol of hydrogen chloride is 0.25 mol, it is preferable to supply more than the theoretical amount, and more preferably 0.25 to 2 mol of oxygen with respect to 1 mol of hydrogen chloride. If the amount of oxygen is too small, the conversion rate of hydrogen chloride may be low. On the other hand, if the amount of oxygen is excessive, it may be difficult to separate generated chlorine and unreacted oxygen.
[0010]
In the present invention, it is preferable to divide and introduce oxygen-containing gas into the reaction zone composed of at least two catalyst packed beds arranged in series. As a method of dividing and introducing the gas containing oxygen, the entire amount of the gas containing hydrogen chloride and a part of the gas containing oxygen are introduced into the first reaction zone, and the reactant and the gas containing the remaining oxygen are first introduced. Examples thereof include a method of introducing into the reaction zone after the second reaction zone. Here, the first reaction zone means the most upstream reaction zone in the flow of the raw material gas, and the second reaction zone means the reaction zone downstream of the first reaction zone. The division amount of the gas containing oxygen introduced into the first reaction zone is 5 to 90%, preferably 10 to 80%, more preferably 30 to 60% of the total amount. When the amount of division is too small, it may be difficult to control the temperature of the reaction zone after the second reaction zone.
[0011]
In the present invention, it is necessary to control the temperature of at least one of the reaction zones by a heat exchange system. Because of this, by suppressing excessive hot spots in the reaction zone and effectively utilizing the reaction zone, stable activity of the catalyst can be maintained, and chlorine can be stably obtained in high yield. The catalyst cost, the equipment cost, the operation cost, the stability and ease of operation can be ensured.
[0012]
A reaction zone comprising at least two catalyst packed beds arranged in series is formed by charging at least two types of catalysts in the reaction tube and / or controlling the temperature of the reaction zone in at least two ways. The Here, the reaction zone composed of the catalyst packed bed forms a fixed bed reactor, and does not form a fluidized bed reactor and a moving bed reactor. As a method of charging at least two kinds of catalysts, a method is used in which a catalyst packed bed in a reaction tube is divided into at least two sections in the tube axis direction, and catalysts having different activities, compositions and / or particle sizes are packed, or catalysts A method of diluting a catalyst and a catalyst diluted with a packing molded only with an inert substance and / or a carrier, or a method of filling a catalyst and a catalyst diluted with a packing molded only with an inert substance and / or a carrier Can give. When the catalyst is diluted with a packing formed only with an inert substance and / or a support, the entire packing formed with only the packed catalyst and the inert substance and / or the support consists of a catalyst packed bed. Means. Usually, continuous reaction zones are in direct contact with each other, but an inert substance may be filled between the reaction zones. However, a packed bed made of only an inert substance is not regarded as a catalyst packed bed. Examples of a method for controlling the temperature of the reaction zone formed of the catalyst packed bed by at least two methods include a method of performing temperature control by at least two independent methods. In this case, the temperature control of at least one method needs to be performed by a heat exchange method.
[0013]
The heat exchange system of the present invention means a system having a jacket portion outside the reaction tube filled with a catalyst and removing reaction heat generated by the reaction with a heat medium in the jacket. In the heat exchange system, the temperature of the reaction zone composed of the catalyst packed bed in the reaction tube is controlled by the heat medium in the jacket. Industrially, a multi-pipe heat exchanger type fixed-bed multi-pipe reactor having a reaction zone made up of catalyst packed beds arranged in series and having a jacket portion on the outside is used. You can also. As a method other than the heat exchange method, there is an electric furnace method, but there is a problem that it is difficult to control the temperature of the reaction zone.
[0014]
In the present invention, it is preferable to control the temperature of at least two of the reaction zones by a heat exchange system. This method includes a method of controlling the temperature of the reaction zone by circulating a heat medium independently through at least two independent jacket parts, and / or dividing the jacket part into at least two parts by a partition plate. A method of controlling the temperature of the reaction zone by circulating a heat medium independently in the part can be mentioned. The partition plate may be directly fixed to the reaction tube by welding or the like. However, in order to prevent thermal distortion from occurring in the partition plate and the reaction tube, the partition plate can be substantially circulated independently. An appropriate interval can be provided between the partition plate and the reaction tube. It is preferable that the flow of the heat medium in the jacket flows from below to above.
[0015]
In the present invention, a method in which the temperature of the entire reaction zone is controlled by a heat exchange system is preferable because the heat of reaction is well removed and the stability and ease of operation are ensured.
[0016]
As the heat medium, a molten salt, steam, an organic compound, or a molten metal can be exemplified, but a molten salt or steam is preferable from the viewpoint of thermal stability and ease of handling, etc. From the viewpoint of better thermal stability. Molten salts are more preferred. Molten metal has problems of high cost and difficulty in handling. Examples of the composition of the molten salt include a mixture of 50% by weight of potassium nitrate and 50% by weight of sodium nitrite, and a mixture of 53% by weight of potassium nitrate, 40% by weight of sodium nitrite and 7% by weight of sodium nitrate. An example of the organic compound is dowsam A (a mixture of diphenyl oxide and diphenyl).
[0017]
The larger the number of reaction zones, the more effectively the reaction zones can be utilized, but industrially usually 2 to 20 reaction zones, preferably 2 to 8 reaction zones, more preferably 2 to 4 reaction zones. To be implemented. When there are too many reaction zones, there may be an increase in the number of types of catalyst to be packed and / or an increase in equipment for temperature control, which may be disadvantageous economically.
[0018]
In the present invention, the proportion of the first reaction zone in the reaction zone comprising at least two catalyst packed layers arranged in series is preferably 70% by volume or less, and more preferably 30% by volume or less. Further, the ratio of the first reaction zone is 70% by volume or less, preferably 30% by volume or less, and the temperature of the second reaction zone is usually 5 ° C. or higher, preferably 10 ° C. or higher, higher than the first reaction zone. And / or molding with catalyst or catalyst and inert substance and / or carrier only so that the activity of the second reaction zone is usually 1.1 times or more, preferably 1.5 times or more higher than that of the first reaction zone. More preferably, the filled material is filled. Here, the activity in the reaction zone (mol-HCl / ml-reaction zone / min) means the unit catalyst weight and hydrogen chloride reaction activity per hour (mol-HCl / g-catalyst · min) and the catalyst loading (g ) Product divided by the reaction zone volume (ml). The unit catalyst weight and the hydrogen chloride reaction activity per hour were such that the ratio of the catalyst volume to the hydrogen chloride feed rate in the standard state (0 ° C., 0.1 MPa) was 4400 to 4800 h. -1 Thus, 0.5 mol of oxygen is supplied to 1 mol of hydrogen chloride, the reaction is performed at a reaction pressure of 0.1 MPa and a reaction temperature of 280 ° C., and the value is calculated from the amount of chlorine generated at this time. In the first reaction zone, the reaction rate is high due to the high concentration of the reactant hydrogen chloride and oxygen, and a hot spot is generated on the inlet side of the first reaction zone. On the other hand, the outlet side of the first reaction zone has a temperature close to the temperature of the heat medium in the jacket. When the ratio of the first reaction zone is larger than 70% by volume, the catalyst packed bed portion at a temperature close to the temperature of the heat medium in the jacket increases in the reaction zone, and the catalyst cannot be effectively used.
[0019]
As the catalyst for the oxidation reaction of the present invention, a known catalyst known as a catalyst for producing chlorine by oxidizing hydrogen chloride can be used. Examples of the catalyst include a catalyst obtained by adding various compounds as a third component to copper chloride and potassium chloride, a catalyst containing chromium oxide as a main component, and a catalyst containing ruthenium oxide. Of these, a catalyst containing ruthenium oxide is preferable, and a catalyst containing ruthenium oxide and titanium oxide is more preferable. Catalysts containing ruthenium oxide are described, for example, in JP-A-10-182104 and European Patent 936184. Catalysts containing ruthenium oxide and titanium oxide are described, for example, in JP-A-10-194705 and JP-A-10-338502. The content of ruthenium oxide in the catalyst is preferably 0.1 to 20% by weight. If the amount of ruthenium oxide is too small, the activity of the catalyst may be low and the conversion rate of hydrogen chloride may be low. On the other hand, if the amount of ruthenium oxide is excessive, the catalyst price may be high.
[0020]
The catalyst may be used in the form of a spherical particle, a cylindrical pellet, an extruded shape, a ring shape, a honeycomb shape, or an appropriately sized granule that has been pulverized and classified after molding. At this time, the catalyst diameter is preferably 10 mm or less. If the catalyst diameter exceeds 10 mm, the activity may decrease. The lower limit of the catalyst diameter is not particularly limited, but if it is excessively small, the pressure loss in the catalyst packed bed is increased. The catalyst diameter here means the diameter of a sphere in the case of spherical particles, the diameter of a cross section in the case of a cylindrical pellet, and the maximum diameter of a cross section in other shapes.
[0021]
In the present invention, it is preferable to fill a catalyst or a packing formed only with a catalyst and an inert substance and / or a support so that the thermal conductivity of the first reaction zone is the highest. It is more preferable to fill the reaction zone in such a manner that the thermal conductivity of the reaction zone sequentially decreases toward the reaction zone. Here, the final reaction zone means the most downstream reaction zone in the gas flow. The thermal conductivity of the reaction zone means the thermal conductivity of the packing filled in the reaction zone. In the reaction zone on the inlet side of the raw material, the reaction rate is high because of the high concentration of hydrogen chloride and oxygen, which are reactants, and the heat generated by the oxidation reaction is large. Therefore, by filling the reaction zone on the inlet side with a catalyst having a relatively high thermal conductivity, excessive hot spots in the catalyst packed bed can be suppressed.
[0022]
In the present invention, a packing formed by only a catalyst or a catalyst and an inert substance and / or a carrier so that the activity of the reaction zone is sequentially increased in the gas flow direction from the first reaction zone to the final reaction zone. Is preferable because the temperature difference between successive reaction zones can be reduced, and therefore the operation can be performed stably and easily.
[0023]
In the present invention, the final reaction zone is filled with a catalyst or a packing formed only with a catalyst and an inert substance and / or a support so that the activity of the last reaction zone is higher than that of the immediately preceding reaction zone, and the final reaction is performed. A method is preferred in which the hot spot in the zone is made lower than the hot spot in the reaction zone immediately before. If the activity in the final reaction zone is lower than that in the previous reaction zone and the hot spot in the final reaction zone is higher than the hot spot in the previous reaction zone, hydrogen chloride is oxidized with oxygen and converted to chlorine and water. Since the reaction is an equilibrium reaction, the conversion rate of hydrogen chloride is sometimes controlled by the chemical equilibrium composition and becomes low.
[0024]
The amount (volume) of the catalyst used is usually 10 to 20000 h in terms of the ratio (GHSV) to the supply rate of hydrogen chloride in the standard state (0 ° C., 0.1 MPa). -1 Done in The direction of flowing the raw material into the reaction zone may be upward or downward. The reaction pressure is usually 0.1 to 5 MPa. The reaction temperature is preferably 200 to 500 ° C, more preferably 200 to 380 ° C. If the reaction temperature is too low, the conversion rate of hydrogen chloride may be low, while if the reaction temperature is too high, the catalyst component may volatilize.
[0025]
In the present invention, a method of setting the gas temperature at the outlet of the final reaction zone to 200 to 350 ° C is preferable, and a method of 200 to 320 ° C is more preferable. When the gas temperature at the outlet of the final reaction zone is higher than 350 ° C., the reaction of oxidizing hydrogen chloride with oxygen and converting it into chlorine and water is an equilibrium reaction, so the conversion rate of hydrogen chloride becomes a chemical equilibrium composition. May be controlled and lowered.
[0026]
In the present invention, the gas linear velocity based on the empty column is preferably 0.2 to 10 m / s, and more preferably 0.2 to 5 m / s. If the gas linear velocity is too low, an excessive number of reaction tubes may be required to obtain a satisfactory throughput of hydrogen chloride in an industrial reactor, which may be disadvantageous. If it is too high, the pressure loss in the catalyst packed bed may increase. The superficial gas linear velocity of the present invention is the ratio of the total supply rate of the gas containing hydrogen chloride and the gas containing oxygen in the standard state (0 ° C., 0.1 MPa) to the cross-sectional area of the reaction tube. means.
[0027]
The inner diameter of the reaction tube is usually 10 to 50 mm, preferably 10 to 40 mm, and more preferably 10 to 30 mm. If the inner diameter of the reaction tube is too small, it may be disadvantageous because an excessive number of reaction tubes are required to obtain a satisfactory throughput of hydrogen chloride in an industrial reactor. If the inner diameter is too large, an excessive hot spot may be generated in the catalyst packed bed.
[0028]
The ratio (D / d) of the inner diameter (D) of the reaction tube to the catalyst diameter (d) is usually 5/1 to 100/1, preferably 5/1 to 50/1, more preferably 5/1 to 20 /. 1. When the ratio is too small, an excessive hot spot may be generated in the catalyst packed bed, and when the ratio is too large, the pressure loss of the catalyst packed bed may be increased.
[0029]
【Example】
Hereinafter, the present invention will be described with reference to examples.
Example 1
The reactor includes an inner diameter 18 mm and a length 1 m reaction tube (temperature measurement sheath tube having an outer diameter of 5 mm) equipped with a jacket using a molten salt (potassium nitrate / sodium nitrite = 1/1 weight ratio) as a heat medium. A fixed bed reactor was used. On the upper side of the reaction tube, α-Al with a diameter of 1.5 mm 2 O 3 80.2 g (60.0 ml) of a 6.6% by weight ruthenium oxide extrusion catalyst was charged and used as the first reaction zone. This catalyst was reused after being used for about 260 h in the oxidation reaction of hydrogen chloride. At the lower side of the first reaction zone, anatase crystal TiO with a diameter of 1 to 2 mm 2 35.9 g (35.6 ml) of 6.6 wt% ruthenium oxide spherical granular catalyst and α-Al having a diameter of 2 mm 2 O 3 37.6 g (17.8 ml) of spheres (Nikkato Co., Ltd., SSA995) were thoroughly mixed and charged to form the second reaction zone. The catalyst filling length was first reaction zone / second reaction zone = 0.280 m / 0.235 m. The catalyst filling volume is calculated as follows: first reaction zone / second reaction zone = 66 ml / 55 ml, and the ratio of the first reaction zone is 54% by volume. Note that α-Al with a diameter of 1.5 mm 2 O 3 A supported 6.6 wt% ruthenium oxide extrusion catalyst was prepared by the following method. That is, commercially available α-Al 2 O 3 Powder (Sumitomo Chemical Co., Ltd., AES-12), ruthenium chloride, pure water, and alumina sol (Nissan Chemical Co., Ltd., Alumina Sol 200) were mixed well. The mixture was blown with dry air at room temperature and dried to an appropriate viscosity. This mixture was extruded to a diameter of 1.5 mm. Subsequently, it dried in air at 60 degreeC for 4 hours. The obtained solid was heated from room temperature to 350 ° C. over 1 hour, calcined at the same temperature for 3 hours, and α-Al having a diameter of 1.5 mm. 2 O 3 A supported 6.6 wt% ruthenium oxide extrusion catalyst was obtained. Anatase crystal TiO with a diameter of 1 to 2 mm 2 A supported 6.6 wt% ruthenium oxide spherical granular catalyst was prepared according to the method described in JP-A-10-338502.
In addition, α-Al used in this example 2 O 3 The unit catalyst weight of the 6.6 wt% ruthenium oxide extrusion catalyst and the hydrogen chloride reaction activity per hour were 1.3 x 10 -4 mol-HCl / g-catalyst · min, measured by the following method. A Pyrex glass reaction tube with an inner diameter of 14 mm (a sheath tube for temperature measurement with an outer diameter of 4 mm) was charged with 4.0 g (3.3 ml) of catalyst, placed in a molten salt bath at a temperature of 280 ° C., and 0.26 l of hydrogen chloride / Min (standard state), oxygen 0.13 l / min (standard state) was circulated from the upper part to the lower part in a down flow, and after 1.5 hours, the outlet gas was sampled into an aqueous potassium iodide solution, and the generated chlorine and unreacted Hydrogen chloride and produced water were absorbed, and the amount of chlorine produced and the amount of unreacted hydrogen chloride were measured by iodine titration method and neutralization titration method, respectively. Anatase crystal TiO 2 The unit catalyst weight of the supported 6.6% by weight ruthenium oxide spherical granular catalyst and the hydrogen chloride reaction activity per hour were 4.8 × 10 -4 mol-HCl / g-catalyst · min. The amount of catalyst used was 1.9 g (2.0 ml), hydrogen chloride 0.16 l / min (standard state), and oxygen 0.08 l / min (standard state). Except α-Al 2 O 3 The test was carried out in accordance with a supported 6.6% by weight ruthenium oxide extrusion catalyst. The activity of the first reaction zone is 1.6 × 10 -4 mol-HCl / ml-reaction zone / min, activity in the second reaction zone is 3.1 × 10 -4 It is calculated as mol-HCl / ml-reaction zone / min.
Gas containing hydrogen chloride 6.1 l / min (standard state, hydrogen chloride: 99% by volume or more), oxygen 3.05 l / min (standard state, oxygen: 99% by volume or more) from the upper part to the lower part of the Ni reaction tube The reaction was carried out with the temperature of the molten salt in the jacket set at 326 ° C. by flowing down. The gas linear velocity based on the empty column is calculated as 0.65 m / s. The reaction temperature in the first reaction zone was 332 ° C. at the inlet, 335 ° C. at the outlet, and 347 ° C. hot spot. The reaction temperature in the second reaction zone was 335 ° C. at the inlet, 338 ° C. at the outlet, and 344 ° C. hot spot. Sampling the outlet gas of the second reaction zone into an aqueous potassium iodide solution to absorb the produced chlorine, unreacted hydrogen chloride and produced water, and the amount of produced chlorine and the amount of chlorine produced by iodine titration method and neutralization titration method, respectively. The amount of unreacted hydrogen chloride was measured. The conversion rate of hydrogen chloride to chlorine was 30.6%.
[0030]
Example 2
The reactor includes one Ni reaction tube (inner diameter of 26 mm and outer diameter of 6 mm) equipped with an electric furnace and a molten salt (potassium nitrate / sodium nitrite = 1/1). A total of three reaction tubes consisting of two reaction tubes (sheath tubes for temperature measurement with an outer diameter of 6 mm) having an inner diameter of 18 mm and a length of 2.5 m equipped with a jacket whose weight ratio is a heat medium were connected in series. A fixed bed reactor was used. The reaction tube with an inner diameter of 26 mm has an α-Al diameter of 1.5 mm. 2 O 3 69 g (60 ml) of 6.6 wt% ruthenium oxide extrusion catalyst and α-Al having a diameter of 2 mm 2 O 3 132 g (60 ml) of spheres were thoroughly mixed and filled into the first reaction zone. The first reaction tube with an inner diameter of 18 mm has anatase crystal TiO with a diameter of 1 to 2 mm. 2 300 g (300 ml) of 6.6 wt% ruthenium oxide spherical granular catalyst and α-Al having a diameter of 2 mm 2 O 3 340 g (150 ml) of spheres were thoroughly mixed and filled to form the second reaction zone. In the second reaction tube having an inner diameter of 18 mm, anatase crystal TiO having a diameter of 1 to 2 mm is used. 2 297 g (294 ml) of a supported 6.6 wt% ruthenium oxide spherical granular catalyst was charged to form a third reaction zone. The catalyst filling length was first reaction zone / second reaction zone / third reaction zone = 0.21 m / 1.98 m / 1.37 m. The catalyst filling volume is calculated as follows: first reaction zone / second reaction zone / third reaction zone = 103 ml / 447 ml / 309 ml, and the ratio of the first reaction zone is calculated to be 12% by volume. Α-Al 2 O 3 A supported 6.6 wt% ruthenium oxide extrusion catalyst was prepared according to Example 1 and was measured according to Example 1 except that the amount of catalyst used was 4.0 g (3.5 ml). The hydrogen chloride reaction activity per catalyst weight and time is 2.5 × 10 -4 mol-HCl / g-catalyst · min. The activity of the first reaction zone is 1.7 × 10 -4 mol-HCl / ml-reaction zone / min, activity of the second reaction zone is 3.2 × 10 -4 mol-HCl / ml-reaction zone / min, activity in the third reaction zone is 4.6 × 10 -4 It is calculated as mol-HCl / ml-reaction zone / min.
Gas containing hydrogen chloride 6 l / min (standard state, hydrogen chloride: 99% by volume or more), oxygen 1.13 l / min (standard state, oxygen: 99% by volume or more), and unreacted oxygen obtained after separation of chlorine 2.15 l / min of gas containing as a main component (standard state, oxygen: 86.0% by volume, chlorine: 8.9% by volume (calculated value), nitrogen: 2.3% by volume, argon: 2.7% by volume , Carbon dioxide: 0.1% by volume) from the upper part to the lower part of the Ni reaction tube in a down flow, and the inlet pressure of the reactor is 1.19 kg / cm. 2 The reaction was conducted at −G (equivalent to 0.22 MPa), the temperature of the electric furnace was 342 ° C., and the temperature of the molten salt in the jacket was 345 ° C. and 332 ° C. The gas linear velocity based on the empty column is calculated to be 0.31 m / s for a reaction tube having an inner diameter of 26 mm and 0.68 m / s for a reaction tube having an inner diameter of 18 mm. The reaction temperature in the first reaction zone was 322 ° C at the inlet, 343 ° C at the outlet, and 344 ° C as the hot spot. The reaction temperature in the second reaction zone was 336 ° C. at the inlet, 348 ° C. at the outlet, and 362 ° C. hot spot. The reaction temperature in the third reaction zone was 325 ° C. at the inlet, 338 ° C. at the outlet, and 350 ° C. at the hot spot.
The gas obtained in the reaction was cooled and then fed into the absorption tower. In the absorption tower, a pure water tank, a pure water feed pump, a 20 wt% hydrochloric acid feed pump, and a circulating hydrochloric acid circulation pump were installed. Pure water is fed to the pure water tank at a rate of 0.15 kg / h (29 ° C.) using a pure water feed pump and absorbed in the pure water tank before feeding to the absorption tower. After contacting with the gas obtained from the top of the tower, it was fed by overflow from the tank to the bottom of the absorption tower. 20 wt% hydrochloric acid 0.355 kg / h (29 ° C.) was fed from the top of the absorption tower using a 20 wt% hydrochloric acid feed pump and brought into contact with the gas in a countercurrent manner. A solution of hydrochloric acid in the tower mainly composed of hydrogen chloride and water (hydrogen chloride 24.7% by weight, chlorine: 0.39% by weight) is circulated to the upper part of the absorption tower by a circulation pump, and is counterflowed with gas Contact. The solution was extracted from the circulation pump outlet at a flow rate of 0.736 kg / h. A normal pressure gas having a temperature of 28 ° C. was obtained from the top of the column.
The gas obtained from the top of the absorption tower was circulated through the sulfuric acid drying tower. A sulfuric acid feed pump was installed in the sulfuric acid drying tower. The sulfuric acid drying tower was fed with 0.145 kg / h of 98 wt% sulfuric acid using a sulfuric acid feed pump, and the sulfuric acid in the tower was withdrawn at 0.172 kg / h due to overflow. The obtained dry gas (water: 0.05 mg / l or less) is separated by a mist separator and then fed to a compressor, where 9.25 kg / cm 2 The pressure was increased to -G (equivalent to 1.01 MPa), and subsequently the temperature was lowered to -20 ° C to separate into a liquid containing chlorine as a main component and a gas containing unreacted oxygen as a main component. The composition of the obtained chlorine was chlorine: 98.6% by volume (calculated value), oxygen: 1.1% by volume, nitrogen: 0.17% by volume, argon: 0.07% by volume, carbon dioxide: 0.09. % By volume. A gas mainly composed of unreacted oxygen was recycled to the reaction.
[0031]
【The invention's effect】
As described above, according to the present invention, a chlorine production method for oxidizing hydrogen chloride in a gas containing hydrogen chloride using a gas containing oxygen, which suppresses excessive hot spots in the catalyst packed bed, By effectively utilizing the packed bed, stable activity of the catalyst can be maintained, and chlorine can be stably obtained in a high yield, so that the catalyst cost, equipment cost, operation cost, operational stability and easy It was possible to provide a method for producing chlorine that is extremely advantageous from the viewpoint of safety.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000004538A JP3606147B2 (en) | 1999-01-22 | 2000-01-13 | Chlorine production method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1423699 | 1999-01-22 | ||
JP11-14236 | 1999-01-22 | ||
JP2000004538A JP3606147B2 (en) | 1999-01-22 | 2000-01-13 | Chlorine production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000272907A JP2000272907A (en) | 2000-10-03 |
JP3606147B2 true JP3606147B2 (en) | 2005-01-05 |
Family
ID=26350140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000004538A Expired - Lifetime JP3606147B2 (en) | 1999-01-22 | 2000-01-13 | Chlorine production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3606147B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1767266B1 (en) * | 2004-05-28 | 2011-08-24 | Sumitomo Chemical Company, Limited | Heat exchange reactor |
JP2005306712A (en) * | 2004-10-15 | 2005-11-04 | Sumitomo Chemical Co Ltd | Method for manufacturing chlorine and hydrochloric acid |
JP4341591B2 (en) * | 2005-06-22 | 2009-10-07 | 住友化学株式会社 | Chlorine production reactor and chlorine production method |
DE102005040286A1 (en) * | 2005-08-25 | 2007-03-01 | Basf Ag | Mechanically stable catalyst based on alpha-alumina |
JP4785515B2 (en) | 2005-12-08 | 2011-10-05 | 住友化学株式会社 | Chlorine production method |
JP5041769B2 (en) | 2006-09-06 | 2012-10-03 | 住友化学株式会社 | Startup method |
JP2008105862A (en) * | 2006-10-23 | 2008-05-08 | Sumitomo Chemical Co Ltd | Method for producing chlorine |
JP2010533114A (en) * | 2007-07-13 | 2010-10-21 | バイエル・テクノロジー・サービシズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Method for producing chlorine by gas phase oxidation |
JP2009196825A (en) * | 2008-02-19 | 2009-09-03 | Sumitomo Chemical Co Ltd | Method for manufacturing chlorine |
JP2010030831A (en) * | 2008-07-29 | 2010-02-12 | Sumitomo Chemical Co Ltd | Method for producing chlorine |
JP2010138002A (en) | 2008-12-09 | 2010-06-24 | Sumitomo Chemical Co Ltd | Method for producing chlorine |
JP5315578B2 (en) | 2008-12-22 | 2013-10-16 | 住友化学株式会社 | Chlorine production method |
JP5414300B2 (en) * | 2009-02-16 | 2014-02-12 | 三井化学株式会社 | Chlorine production method |
WO2018101357A1 (en) | 2016-12-02 | 2018-06-07 | 三井化学株式会社 | Method of producing chlorine via hydrogen chloride oxidation |
-
2000
- 2000-01-13 JP JP2000004538A patent/JP3606147B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000272907A (en) | 2000-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6977066B1 (en) | Method for producing chlorine | |
US6713035B1 (en) | Process for producing chlorine | |
JP3606147B2 (en) | Chlorine production method | |
SK282577B6 (en) | Method for single stage fixed bed oxychlorination of ethylene | |
JP2005289800A (en) | Method of producing chlorine | |
JP3124455B2 (en) | Method for producing phosgene | |
JP4785515B2 (en) | Chlorine production method | |
JP3570322B2 (en) | Method for producing chlorine | |
JP4081591B2 (en) | Chlorine production method | |
EP0830204B1 (en) | Method of oxychlorination | |
JP2010189206A (en) | Method for producing chlorine | |
EP0146925B1 (en) | Method for the oxychlorination of ethylene | |
US3291846A (en) | Process for producing vinyl chloride | |
CN1129192A (en) | Process for the oxidation of hydrogen chloride | |
JP5130155B2 (en) | Chlorine production method | |
JP2008105862A (en) | Method for producing chlorine | |
JP2005306712A (en) | Method for manufacturing chlorine and hydrochloric acid | |
JP4999406B2 (en) | Chlorine production method | |
JP5267305B2 (en) | Chlorine production method | |
CN102216207A (en) | Chlorine production method | |
JP2010030831A (en) | Method for producing chlorine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040430 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040914 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040927 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3606147 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 4 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D05 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101015 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101015 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111015 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111015 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121015 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |