Nothing Special   »   [go: up one dir, main page]

JP3605556B2 - Resin composite having quasi-homogeneous compatible structure - Google Patents

Resin composite having quasi-homogeneous compatible structure Download PDF

Info

Publication number
JP3605556B2
JP3605556B2 JP2000282729A JP2000282729A JP3605556B2 JP 3605556 B2 JP3605556 B2 JP 3605556B2 JP 2000282729 A JP2000282729 A JP 2000282729A JP 2000282729 A JP2000282729 A JP 2000282729A JP 3605556 B2 JP3605556 B2 JP 3605556B2
Authority
JP
Japan
Prior art keywords
resin
epoxy resin
pes
curing
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000282729A
Other languages
Japanese (ja)
Other versions
JP2001114981A (en
Inventor
東冬 王
元雄 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2000282729A priority Critical patent/JP3605556B2/en
Publication of JP2001114981A publication Critical patent/JP2001114981A/en
Application granted granted Critical
Publication of JP3605556B2 publication Critical patent/JP3605556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、熱硬化性樹脂と熱可塑性樹脂とからなる新規な樹脂複合体に関し、特に、エポキシ樹脂とポリスルホン(PSF)とからなる樹脂複合体についての提案である。
【0002】
【従来の技術】
樹脂複合体の技術は、熱硬化性樹脂に熱可塑性樹脂を混合して複合させることにより、この熱硬化性樹脂の物性を改善する技術などが代表的である。例えば、エポキシ樹脂とポリエーテルスルホン(以下、「PES」で示す)との混合系(PES変成エポキシ樹脂)において、エポキシ樹脂とPESとが形成する共連続構造により、エポキシ樹脂の靱性を改善する技術がそれである(Keizo Yamanaka and Takashi Inoue, Polymer, vol.30, P662(1989)参照)。
【0003】
2種の樹脂を混合してなる上記PES変性エポキシ樹脂は、エポキシ樹脂単独のものに比べて、樹脂の靱性が向上する。この理由は、このPES変性エポキシ樹脂が以下に述べるような樹脂構造を形成するからである。すなわち、ビスフェノールA型エポキシ樹脂などのエポキシ樹脂とPESとの混合系は、エポキシ樹脂を高温で硬化すると、エポキシ樹脂とPESとが完全に溶け合った状態(相溶状態)とはならず、スピノーダル分解を起こしてエポキシ樹脂とPESが分離状態で混合している状態(相分離状態)となる。
このような相分離状態は、混合する樹脂の最初の分散状態における非相溶の度合いに依存するもので、非相溶の度合いが大きい場合には球状ドメイン構造となり、非相溶の度合いが小さい場合には、共連続構造となる。
上記「球状ドメイン構造」とは、PESを主とする樹脂マトリックス中に、エポキシ樹脂を主とする樹脂からなる球状ドメインが互いに独立し、あるいはそれらの一部が連結して分散している状態の構造を指し、「共連続構造」とは、主として、PESを主とする樹脂マトリックス中に、エポキシ樹脂を主とする樹脂からなる球状ドメインが互いに連結し合い、かつ規則正しく分散している状態の構造を指す。
このような構造は、構成樹脂のそれぞれが完全に分離しているのではなく、PESの中にもエポキシ樹脂が含有されていて、その比率は圧倒的にPESが高く、一方、エポキシ樹脂の中にも、PESが含有されていて、その比率はエポキシ樹脂が高いような構造であり、それぞれの樹脂が完全に相分離しているのではなく、互いに一部が相溶している。
【0004】
【発明が解決しようとする課題】
ところが、上記共連続構造は、エポキシ樹脂とPESとが相分離状態となることによって形成されるものであり、スピノーダル分解によって生成するエポキシ樹脂の球状ドメインが単にPESマトリックス中に分散しているだけの構造である。そのため、エポキシ樹脂に、PESを分散導入する効果はあるものの、PES本来の物性よりも高くすることはできない。この理由は、共連続構造を形成した複合体のガラス転移温度を動的粘弾性測定により測定すると、ガラス転移温度のピーク数が2つであることが認められることから、エポキシ樹脂とマトリックスであるPESとの相互作用が弱いためと考えられる。
上述したような共連続構造に関する知見は、感光性樹脂と熱可塑性樹脂との混合系、例えばアクリル系樹脂とポリエーテルスルホンとの混合系(PES変成アクリル系樹脂)についても同様であった。
【0005】
本発明の目的は、エポキシ樹脂などの熱硬化性樹脂が示す特有の物性、例えば耐熱性を具えると共に、PESなどの熱可塑性樹脂が示す本来の物性よりもさらに高い物性値を示す新規な樹脂複合体およびその製造技術を提供することにある。
【0006】
【課題を解決するための手段】
発明者らは、上記の目的を実現すべく、まず、樹脂複合体の1つの混合系である熱硬化性樹脂と熱可塑性樹脂との系について研究した。熱硬化性樹脂と熱可塑性樹脂との混合系,例えば、エポキシ樹脂/PES混合系において、エポキシ樹脂とPESは、図1に示すように、低温では相溶するが高温では2相分離する,いわゆるLCST型(Low Critical Solution Temperature )の相図を示す。
しかし、エポキシ樹脂が、硬化反応に伴って高分子化され、その樹脂のガラス転移温度(Tg )が高くなって硬化温度以上になると、その温度において分子運動が凍結され相分離できなくなる。なぜなら、相分離するには分子の運動,拡散が必要だからである。
【0007】
本発明は、このような事実に着目して鋭意研究した結果完成されたものであり、熱硬化性樹脂と熱可塑性樹脂とが相分離することによって明確な共連続構造あるいは球状ドメイン構造を形成しないように、硬化速度や相分離速度を制御して樹脂を硬化させ複合化させることにより、上記目的を実現することができる。
【0008】
すなわち、本発明は、熱硬化性樹脂と熱可塑性樹脂とからなる樹脂複合体、即ち、エポキシ樹脂とポリスルホン(PSF)とからなる樹脂複合体であって、その樹脂複合体は、相分離して共連続構造や球状ドメイン構造が形成されないように硬化されることによって得られる擬似均一相溶構造を有してなることを特徴とする樹脂複合体であり、上記擬似均一相溶構造を形成する構成樹脂粒子の粒径が透過型電子顕微鏡(以下、「TEM」で示す)観察による測定値で 0.1μm以下であり、かつ昇温速度5℃/分、振動周波数6.28 rad/secの条件で測定した動的粘弾性測定による樹脂のガラス転移温度のピーク数が1つである特性を示すものであることを特徴とする。
【0011】
そして、上述したような本発明の樹脂複合体を製造する方法は、第1に、熱可塑性樹脂と混合した熱硬化性樹脂を硬化することにより熱硬化性樹脂と熱可塑性樹脂とを複合化するに当たり、熱硬化性樹脂と熱可塑性樹脂との場合は、熱硬化性樹脂の硬化温度、硬化剤の種類のうちから選ばれる1種または2種の因子によって決定される擬似均一相形成点を超える硬化速度で硬化させることを特徴とする。
第2に、熱可塑性樹脂と混合した熱硬化性樹脂を硬化することにより熱硬化性樹脂と熱可塑性樹脂とを複合化するに当たり、未硬化熱硬化性樹脂の架橋密度または分子量のいずれか1種以上の因子によって決定される擬似均一相形成点を超えない相分離速度で硬化させることを特徴とする。
第3に、熱可塑性樹脂と混合した熱硬化性樹脂を硬化することにより熱硬化性樹脂と熱可塑性樹脂とを複合化するに当たり、上記擬似均一相形成点を超える硬化速度で、かつ上記擬似均一相形成点を超えない相分離速度で硬化させることを特徴とする。
ここで、熱硬化性樹脂と熱可塑性樹脂の配合比を、熱可塑性樹脂の含有量で15〜50wt%とすることが望ましい。
【0012】
【作用】
本発明の熱硬化性樹脂と熱可塑性樹脂とからなる樹脂複合体の特徴は、熱硬化性樹脂と熱可塑性樹脂とが擬似均一相溶構造を形成してなる点にある。
この擬似均一相溶構造は、発明者らが考え出した新しい概念であり、以下に説明する構造をいう。
すなわち、擬似均一相溶構造は、エポキシ樹脂などの熱硬化性樹脂が示す特有の物性を具えると共に、PESなどの熱可塑性樹脂本来の物性よりも高い物性値を示す、より均質な構造をいい、動的粘弾性測定によるガラス転移温度ピーク値が1つであり、熱硬化性樹脂あるいは感光性樹脂と熱可塑性樹脂間との相互作用が極めて強いものである。
したがって、本発明の樹脂複合体は、図2(a)の走査型電子顕微鏡(以下、「SEM」で示す。)写真に示すような構造を有し、図2(b)のSEM写真に示す従来の共連続粒子構造とは明らかに相違するものである。しかも、この樹脂複合体は、TEM観察(図2(c)参照)による構成樹脂粒子の粒径が 0.1μm以下であって、より均質となっているものである。このような均質な樹脂複合体であるため、有機溶剤などにより熱可塑性樹脂が溶出されにくく、耐薬品性に優れる。従来技術において説明した共連続構造では、塩化メチレンによりPESが溶出して、表面が凹凸になるが(図2(b)図面代用写真参照)、本発明では、塩化メチレンによってもPESなどの熱可塑性樹脂の溶出量は少なく、表面に凹凸が発生することがない。
【0013】
このような樹脂複合体の構造による効果は、前記複合体における熱可塑性樹脂(例えば、PES)の含有量が固形分で15〜50wt%である場合に特に顕著となる。この理由は、熱可塑性樹脂の含有量が15wt%未満では、樹脂成分の網目に絡み合う熱可塑性樹脂分子が少ないため強靱化の効果が十分に発揮されず、一方、熱可塑性樹脂の含有量が50wt%を超えると、架橋点の減少によって熱硬化性樹脂と熱可塑性樹脂間との相互作用が小さくなるからである。
【0014】
このような熱硬化性樹脂と熱可塑性樹脂との擬似均一相溶構造は、以下に示す本発明方法によって形成されるものである。すなわち、本発明に係る擬似均一相溶構造は、熱硬化性樹脂と熱可塑性樹脂を必要に応じて溶剤に溶解して均一に混合し、その後、硬化速度を速くすること、および/または相分離速度を遅くすることにより、構成樹脂粒子の粒径をTEM観察による測定値で 0.1μm以下にすることにより、形成される。
【0015】
具体的には、本発明方法は、第1に、熱硬化性樹脂を用いる場合は、熱硬化性樹脂の硬化温度、硬化剤の種類のうちから選ばれる1種または2種の因子によって決定される擬似均一相形成点を超える硬化速度で硬化させる点に特徴がある。ここでの擬似均一相形成点とは、複合体を構成する樹脂粒子の粒径がTEM観察による測定値で 0.1μm以下である擬似均一相溶構造を得ることができる、硬化速度の下限値を意味する。
【0016】
また、本発明方法は、第2に、未硬化熱硬化性樹脂の架橋密度または分子量のいずれか1種以上の因子によって決定される擬似均一相形成点を超えない相分離速度で硬化させる点に特徴がある。ここでの擬似均一相形成点とは、複合体を構成する樹脂粒子の粒径がTEM観察による測定値で 0.1μm以下である擬似均一相溶構造を得ることができる、相分離速度の上限値を意味する。
【0017】
さらに、本発明方法は、第3に、上記擬似均一相形成点を超える硬化速度で、かつ上記擬似均一相形成点を超えない相分離速度で硬化させる点に特徴がある。これは、硬化速度と相分離速度を決定する因子が相互に影響する場合の方法を意味する。
【0018】
次に、硬化速度または相分離速度を決定する上述した種々の因子の相互関係について説明する。まず、硬化速度を決定する因子については、他の因子条件を一定とすると、
(1).熱硬化性樹脂の硬化温度が高いほど硬化速度は速くなる。
従って、擬似均一相形成点を超える硬化速度を得るのに必要な硬化温度の下限値を超えて熱硬化性樹脂を硬化すると、得られる樹脂複合体の構造は擬似均一相溶構造となる。
(2).ゲル化時間が短い硬化剤ほど硬化速度は速くなる。
従って、擬似均一相形成点を超える硬化速度を得るのに必要なゲル化時間の上限値を超えないような硬化剤を用いて熱硬化性樹脂を硬化すると、得られる樹脂複合体の構造は擬似均一相溶構造となる。
【0019】
このような事実を考慮すると、熱硬化性樹脂と熱可塑性樹脂の複合化に当たって上記変動因子が1種の場合は、擬似均一相形成点に対応するその因子の値が1点決まる。それ故に、上記変動因子が2種以上の場合には、擬似均一相形成点に対応するその因子の値は種々の組み合わせが考えられる。すなわち、構成樹脂粒子の粒径がTEM観察による測定値で 0.1μm以下となるような硬化速度を示す組み合わせを選定することができる。
【0020】
次に、相分離速度を決定する因子については、他の因子条件を一定とすると、(1).未硬化熱硬化性樹脂の架橋密度が高いほど相分離は起きにくい(相分離速度は遅くなる)。
従って、擬似均一相形成点を超えない相分離速度を得るのに必要な架橋密度の下限値を超える架橋密度を有する未硬化熱硬化性樹脂を用いて硬化すると、得られる樹脂複合体の構造は擬似均一相溶構造となる。
(2).未硬化熱硬化性樹脂の分子量が大きいほど相分離は起きにくい(相分離速度は遅くなる)。
従って、擬似均一相形成点を超えない相分離速度を得るのに必要な分子量の下限値を超える分子量を有する未硬化熱硬化性樹脂を用いて硬化すると、得られる樹脂複合体の構造は擬似均一相溶構造となる。
【0021】
このような事実を考慮すると、熱硬化性樹脂と熱可塑性樹脂の複合化に当たって上記変動因子が1種の場合は、擬似均一相形成点に対応するその因子の値が1点決まる。それ故に、上記変動因子が2種の場合には、擬似均一相形成点に対応するその因子の値は種々の組み合わせが考えられる。すなわち、構成樹脂粒子の粒径がTEM観察による測定値で 0.1μm以下となるような相分離速度を示す組み合わせを選定することができる。
【0022】
以上説明したような本発明方法により得られる樹脂複合体は、エポキシ樹脂などの熱硬化性樹脂が示す特有の物性を具えると共に、PESなどの熱可塑性樹脂本来の物性よりもさらに高い物性値を示すことができる。
すなわち、本発明にかかる擬似均一相溶構造を有する樹脂複合体は、PES単独の樹脂強度よりも高くなり、従来にはないエポキシ樹脂の強靱化効果を有するものである。
【0023】
本発明においては、上述したように熱硬化性樹脂と熱可塑性樹脂とを複合化するに先立って、熱硬化性樹脂と熱可塑性樹脂は、必要に応じて溶剤に溶解することにより均一に混合される。このような溶剤としては、例えば、ジメチルホルムアミド(DMF )や塩化メチレン、ジメチルスルホキシド(DMSO)、ノルマルメチルピロリドン(NMP )などが使用できる。また、相分離開始温度未満で、かつ硬化開始温度未満の温度にて、熱硬化性樹脂と熱可塑性樹脂とを加熱溶融させて混合させることも可能である。
【0024】
本発明において熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂や尿素樹脂などのアミノ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ウレタン樹脂、ジアリルフタレート樹脂などが使用できる。
【0025】
本発明において熱可塑性樹脂としては、フェノキシ樹脂やポリエーテルスルホンの他に、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリアセタール、ポリカーボネート、ポリエーテルイミドなどのエンジニアリングプラスチック、ポリスチレン、ポリエチレン、ポリアリレート、ポリアミドイミド、ポリオキシベンゾエート、ポリ塩化ビニル、ポリ酢酸ビニルなどが使用できる。
【0027】
本発明において、熱硬化性樹脂としてエポキシ樹脂を用いる場合の硬化剤としては、イミダゾール系硬化剤やジアミン、ポリアミン、ポリアミド、無水有機酸、ビニルフェノールなどが使用できる。一方、エポキシ樹脂以外の熱硬化性樹脂を使用する場合は、周知の硬化剤を使用できる。
【0028】
なお、エポキシ樹脂などの熱硬化性樹脂特有の物性を具えると共に、複合化させるPESなどの熱可塑性樹脂本来の物性よりもさらに高い物性値を示す、本発明の樹脂複合体は、プリント配線板用接着剤などの無電解めっき用接着剤や、プリント配線板等に用いられる基板材料、レジスト材料およびプリプレグ材料、半導体パッケージの封止材、繊維強化複合材料の母材、射出成形用材料、圧縮成形用材料などさまざまな用途に利用されることが期待される。
【0029】
以下に、硬化剤の影響(試験1)、硬化温度の影響(試験2)、架橋密度の影響(試験3)、PES配合量の影響(試験4)について説明する。
(試験1:硬化剤の影響)
(1) エポキシ樹脂/PES系において、ゲル化時間(硬化速度)の異なる硬化剤を用い、エポキシ樹脂の硬化剤の種類が上記混合系の樹脂構造および物性にどのような影響を及ぼすかについて調べた。
(2) ゲル化時間の異なる硬化剤としては、表1に示す数種類のイミダゾール系硬化剤(四国化成製)を用いた。
(3) なお、硬化剤の影響を調べるために、エポキシ樹脂としてビスフェノールA型エポキシ樹脂(油化シェル製、商品名:エピコート828 )を用い、エポキシ樹脂/PESの配合比を70/30とし、PESを2倍量のジメチルホルムアミド(DMF )で溶解させ、所定量のエポキシ樹脂と硬化剤を混合して硬化させ、また、エポキシ樹脂のエポキシ当量を184 〜194 、硬化条件を120℃×5時間+150℃×2時間、と一定条件にした。
【0030】
得られた樹脂硬化物の構造および物性を調べた結果を図3および表1に示す。図3 (a) 〜(d) は、表1に示すイミダゾール系硬化剤を用いて得られた樹脂硬化物の組織を示すSEM写真であり、(a)2PHZ-CN, (b)2PZ-OK, (c)2E4MZ-CN, (d)1B2MZを用いた場合を示す。これらの写真および表1に示す結果から明らかなように、硬化速度の遅い硬化剤 (a) (b) を用いると、相分離の進行によって球状ドメイン構造が形成され、樹脂の強度や伸び率が低いことが判った。これに対し、擬似均一相形成点を超える硬化速度を示す硬化剤 (c) (d) で硬化させると、エポキシ樹脂とPESとが擬似均一相溶構造を形成し、この硬化物の強度および伸び率は共に大きく向上することが判った。
【0031】
図4は、上記樹脂硬化物のSEM観察により得られた樹脂の粒径と硬化剤のゲル化時間の関係を示す図である。この図に示す結果から明らかなように、120 ℃でのゲル化時間が約5分以下になると、樹脂の粒径が急激に小さくなり、球状ドメイン構造から擬似均一相溶構造になることが判った。すなわち、本実施例の条件下では、硬化剤のゲル化時間によって決定される擬似均一相形成点は、ゲル化時間が5分程度のところに存在することが判る。
【0032】
【表1】

Figure 0003605556
【0033】
試験2:硬化温度の影響)
(1) エポキシ樹脂/PES系において、硬化温度の異なる硬化条件にて硬化することにより、エポキシ樹脂の硬化温度が、得られる樹脂硬化物の樹脂構造にどのような影響を及ぼすかについて調べた。
(2) 硬化温度の異なる硬化条件としては、以下に示す4条件を実施した。
a.80℃で6時間b.100℃で6時間c.120℃で5時間d.150℃で4時間
(3) 硬化剤によって、(1).硬化温度が低いほど、擬似均一相溶構造を形成する場合(2).硬化温度が高いほど、擬似均一相溶構造を形成する場合があるとの知見から、硬化剤としては、(3).アミン系硬化剤(住友化学製、商品名:DDM ),(4).イミダゾール系硬化剤(四国化成製、商品名:2E4MZ-CN)を用いた。
(4) なお、硬化温度の影響を調べるために、エポキシ樹脂としてビスフェノールA型エポキシ樹脂(油化シェル製、商品名:エピコート828 )を用い、エポキシ樹脂/PES/硬化剤の配合比を、(1).アミン系硬化剤(DDM) の場合は70/30/20、(2).イミダゾール系硬化剤(2E4MZ-CN)の場合は70/30/5とし、PESを2倍量のジメチルホルムアミド(DMF )で溶解させ、所定量のエポキシ樹脂と硬化剤を混合して硬化させ、また、エポキシ樹脂のエポキシ当量を184 〜194 、と一定条件にした。
【0034】
得られた樹脂硬化物の構造を調べた結果を 図5および図6に示す。 図5(a) 〜(d) および図6(a) 〜(d) はそれぞれ、▲1▼アミン系硬化剤および▲2▼イミダゾール系硬化剤に関するものであり、いずれも、上記種々の硬化温度にて得られた樹脂硬化物の組織を示すSEM写真であり、(a) 80℃, (b)100℃ , (c)120 ℃ , (d)150℃の場合を示す。
硬化剤として▲1▼タイプのアミン系硬化剤(DDM )を用いた場合、図5の写真から明らかなように、樹脂構造は、硬化温度が80℃の時には擬似均一相溶構造を形成したが、硬化温度が100 ℃以上になると球状ドメイン構造を形成するようになり、その粒子径は0.2 μm以上になることが判った。
一方、硬化剤として▲2▼タイプのイミダゾール系硬化剤(2E4MZ−CN)を用いた場合、図6の写真から明らかなように、樹脂構造は、逆に硬化温度が100 ℃以上では擬似均一相溶構造を形成したが、硬化温度が80℃の時には粒径約0.3 μmの球状ドメイン構造を形成するようになることが判った。
【0035】
図7および図8はそれぞれ、上記2つのタイプの硬化剤について、SEM観察により得られた樹脂の粒径とエポキシ樹脂の硬化温度の関係を示す図である。これらの図に示す結果から明らかなように、(1)タイプのアミン系硬化剤では、硬化温度が90℃以下になると球状ドメイン構造から擬似均一相溶構造になり、一方、(2)タイプのイミダゾール系硬化剤では、硬化温度が90℃以上になると球状ドメイン構造から擬似均一相溶構造になることが判った。すなわち、本試験例の条件下では、エポキシ樹脂の硬化温度によって決定される擬似均一相形成点は、硬化温度が90℃程度のところに存在することが判る。
【0036】
試験3:架橋密度の影響)
(1) エポキシ樹脂/PES系において、骨格構造が同じでエポキシ当量の異なるエポキシ樹脂を硬化することにより、エポキシ樹脂のエポキシ当量が、得られる樹脂硬化物の樹脂構造にどのような影響を及ぼすかについて調べ、これにより樹脂の架橋密度の影響を考察した。
(2) エポキシ当量の異なるエポキシ樹脂としては、表2に示す数種類のビスフェノールA型エポキシ樹脂を用いた。
(3) なお、エポキシ当量の影響を調べるために、硬化剤としてイミダゾール系硬化剤(四国化成製、商品名:2E4MZ-CN)を用い、エポキシ樹脂/PES/硬化剤の配合比を70/30/5とし、PESを2倍量のジメチルホルムアミド(DMF )で溶解させ、所定量のエポキシ樹脂と硬化剤を混合して硬化させ、また、硬化条件を80℃で1時間, 100℃で1時間, 120℃で1時間, 150℃で3時間、と一定条件にした。
【0037】
得られた樹脂硬化物の構造を調べた結果を図9および表2に示す。図9 (a) 〜(d) は上記種々のエポキシ当量を有するエポキシ樹脂を用いて得られた樹脂硬化物の組織を示すSEM写真であり、(a) エピコート828, (b)エピコート1001, (c) エピコート1004, (d) エピコート1007の場合を示す。これらの写真および表2に示す結果から明らかなように、エポキシ当量が大きく、言い換えれば架橋密度が低いほど、相分離がし易く、一方、エポキシ当量が小さく、言い換えれば架橋密度が高いほど、その樹脂構造は擬似均一相溶構造となることが判った。すなわち、本試験例の条件下では、エポキシ樹脂のエポキシ当量(または架橋密度)によって決定される擬似均一相形成点は、エポキシ当量が300 前後程度のところに存在することが判る。
【0038】
【表2】
Figure 0003605556
【0043】
(試験:PES配合量の影響)
(1) エポキシ樹脂/PES系において、PES配合量を種々変化させることにより、得られる樹脂硬化物の物性にどのような影響を及ぼすかについて調べた。
(2) PES配合量としては、0 60wt まで種々変化させた。
(3) なお、PES配合量の影響を調べるために、エポキシ樹脂としてはクレゾールノボラック型エポキシ樹脂(日本化薬製、商品名:EOCN-103S )、硬化剤としてはイミダゾール系硬化剤(四国化成製、商品名:2E4MZ-CN)を用い、PESを2倍量のジメチルホルムアミド(DMF )で溶解させ、所定量のエポキシ樹脂と硬化剤を混合して硬化させ、また、エポキシ樹脂のエポキシ当量を210 〜230 、エポキシ樹脂の硬化条件を80℃で1時間, 100℃で1時間, 120℃で1時間, 150℃で3時間、と一定条件にした。
【0044】
このようにして得た樹脂硬化物の物性変化を調べた結果を図11に示す。この図に示す結果から明らかなように、PESの配合量が増加するにしたがい樹脂の強度が大きくなり、30%PESのところで極大値を示し、以降樹脂強度が逆に小さくなった。特に30%PESの樹脂硬化物は、エポキシ樹脂単独のみならず、PES単独よりも強度が高い。なお、本試験例の条件下では、得られる樹脂硬化物は、すべての配合組成において擬似均一相溶構造を形成していた。このように本試験例の結果から、エポキシ樹脂/PES系においては、PES配合量は、15〜50wt%,より好ましくは20〜40wt%が望ましいことが判った。
【0045】
【実施例】
参考例1)
(1) エポキシ樹脂/PES系において、エポキシ樹脂としてエポキシ当量が184〜194 のビスフェノールA型エポキシ樹脂(油化シェル製、商品名:エピコート828 )、硬化剤としてイミダゾール系硬化剤(四国化成製、商品名:2E4MZ-CN)を用い、下記組成でDMF を用いて樹脂を混合し、 120℃で5時間, 150℃で2時間の硬化条件にて硬化し、擬似均一相溶構造の樹脂硬化物を得た。なお、120℃での硬化剤のゲル化時間は3分であった。
樹脂組成:エピコート828 /PES /2E4MZ-CN=70/30/5
【0046】
このようにして得た樹脂硬化物について、下記条件にてTEM観察を行った。その結果、樹脂硬化物を構成する樹脂の粒径は0.1μm以下であった。
観察条件〕
(1) ミクロトームを用いて、試料を 70nm の薄片に切り取る。
(2) 切り取った薄片を四酸化オスミウム( OsO 4 )のメタノール溶液に 24 時間浸漬させる。
(3) TEM観察時の加速電圧を 80kV として観察する。
また、動的粘弾性測定にてガラス転移温度Tg を測定した結果、 10 に示すようにg のピークは1つであり、物性的に均質であることが判った。これによって、引張強度や伸び率などの物性値が、構成樹脂成分単独のものよりも高くなるものと推察する
【0047】
さらに、得られた樹脂硬化物の引張強度と引張伸び率は、それぞれ835kg/cm、8.0 %であり、構成樹脂成分単独のものより高いことを確認した。なお、同じ硬化剤,硬化条件で作製したエポキシ樹脂のみからなる硬化物の引張強度と引張伸び率は、それぞれ約500 kg/cm, 4.8 %であった。
【0048】
上述したような結果は、硬化剤としてイミダゾール系硬化剤(四国化成製、商品名:1B2MZ )を用いた場合でも同様に得られた。この場合、120 ℃での硬化剤のゲル化時間は44秒であった。
【0049】
参考例2)
(1) エポキシ樹脂/PES系において、エポキシ樹脂としてエポキシ当量が184〜194 のビスフェノールA型エポキシ樹脂(四国化成製、商品名:エピコート828 )、硬化剤としてイミダゾール系硬化剤(油化シェル製、商品名:2E4MZ-CN)を用い、下記組成でDMF を用いて樹脂を混合し、80℃×1時間+ 150℃×4時間の硬化条件にて硬化し、擬似均一相溶構造の樹脂硬化物を得た。なお、本参考例は、参考例1とはエポキシ樹脂の硬化温度が相違するだけである。
樹脂組成:エピコート828 /PES /2E4MZ-CN=70/30/5
【0050】
このようにして得た樹脂硬化物について、参考例1と同様にしてTEM観察を行った結果、樹脂粒径は0.1 μm以下であった。また、動的粘弾性測定にてガラス転移温度Tg を測定した結果、参考例1と同様にTg のピークは1つであった。
【0051】
さらに、得られた樹脂硬化物の引張強度と引張伸び率は、それぞれ835kg/cm、9.1 %であり、構成樹脂成分単独のものより高いことを確認した。なお、同じ硬化剤,硬化条件で作製したエポキシ樹脂のみからなる硬化物の引張強度と引張伸び率は、それぞれ約500 kg/cm、 4.5 %であった。
【0052】
参考例3)
(1) エポキシ樹脂/PES系において、エポキシ樹脂としてエポキシ当量が184〜194 のビスフェノールA型エポキシ樹脂(油化シェル製、商品名:エピコート828 )、硬化剤としてアミン系硬化剤(住友化学製、商品名:DDM )を用い、下記組成でDMF を用いて樹脂を混合し、80℃で6時間, 150℃で2時間の硬化条件にて硬化し、擬似均一相溶構造の樹脂硬化物を得た。
樹脂組成:エピコート828 /PES /DDM =70/30/18
【0053】
このようにして得た樹脂硬化物について、参考例1と同様にしてTEM観察を行った結果、樹脂粒径は0.1μm以下であった。また、動的粘弾性にてガラス転移温度Tg を測定した結果、参考例1と同様にTg のピークは1つであった。
【0054】
さらに、得られた樹脂硬化物の引張強度と引張伸び率は、それぞれ860kg/cm、8.6 %であり、構成樹脂成分単独のものより高いことを確認した。なお、同じ硬化剤,硬化条件で作製したエポキシ樹脂のみからなる硬化物の引張強度と引張伸び率は、それぞれ約500kg/cm、5%であった。
【0055】
参考例4)
エポキシ樹脂/PES系において、エポキシ樹脂としてエポキシ当量が210 〜230 のクレゾールノボラック型エポキシ樹脂(日本化薬製、商品名:EOCN-103S)、硬化剤としてイミダゾール系硬化剤(四国化成製、商品名:2E4MZ-CN)を用い、下記組成でDMF を用いて樹脂を混合し、80℃で1時間、150 ℃で4時間の硬化条件にて硬化し、疑似均一相溶構造の硬化物を得た。
樹脂組成:EOCN-103S /PES /2E4MZ-CN=70/30/5
【0056】
このようにして得た樹脂硬化物について、参考例1と同様にしてTEM観察を行った結果、樹脂粒径は0.1μm以下であった。また、動的粘弾性測定にてガラス転移温度Tg を測定した結果、参考例1と同様にTg 点のピークは、1つであった。
【0057】
さらに、得られた樹脂硬化物の引張強度と引張伸び率はそれぞれ990 kg/cm、6.5 %であり、構成樹脂成分単独のものより高いことを確認した。なお、同じ硬化剤、硬化条件で作成したエポキシ樹脂のみからなる硬化物の引張強度と引張伸び率は、それぞれ約550 kg/cm、2.8 %であった。
【0058】
参考例5:アディティブ配線板用接着剤への適用)
(1) クレゾールノボラック型エポキシ樹脂(日本化薬製)70重量部、ポリエーテルスルホン(PES,ICI製)30重量部、イミダゾール系硬化剤(四国化成製、商品名:2E4MZ-CN)5重量部、およびエポキシ樹脂微粉末(東レ製)を平均粒径5.5μmのものを25重量部, 平均粒径0.5μmのものを10重量部を混合した後、ジメチルホルムアミド/ブチルセロソルブ(1/1)混合溶剤を添加しながら、ホモディスパー攪拌機で粘度120cpsに調整し、続いて、3本ロールで混練して接着剤溶液を得た。
(2) この接着剤溶液を、銅箔が貼着されていないガラスエポキシ絶縁板(東芝ケミカル製)上に、ローラーコーターを用いて塗布し、その後、80℃で1時間,100 ℃で1時間,120 ℃で1時間,150 ℃で3時間、乾燥硬化させて厚さ20μmの接着剤層を形成した。
(3) 接着剤層を形成した上記基板を、クロム酸水溶液(CrO 3 , 500g/l)に70℃15分間浸漬して接着剤層の表面を粗化し、次いで、中和溶液(シプレイ製)に浸漬したのち水洗した。
(4) 接着剤層の表面を粗化した基板にパラジウム触媒(シプレイ製)を付与して接着剤層の表面を活性化させ、その後、表4に示す組成のアディティブ用無電解めっき液に11時間浸漬して、めっき膜の厚さが25μmの無電解銅めっきを施した。
【0059】
【表4】
Figure 0003605556
【0060】
(比較例1:アディティブ配線板用接着剤への適用)
(1) 以下に示す条件以外は参考例5と同様にして、エポキシ樹脂微粉末含有の接着剤溶液を調製し、銅箔が貼着されていないガラスエポキシ絶縁板(東芝ケミカル製)上に、厚さ20μmの接着剤層とめっき膜の厚さが25μmの無電解銅めっき膜を形成した。
〔樹脂組成〕
フェノールノボラック型エポキシ樹脂: 100重量部
イミダゾール系硬化剤(四国化成製、商品名:2P4MHZ):4重量部
〔接着剤層の硬化条件〕
100 ℃で1時間,150 ℃で5時間
【0061】
参考例5および比較例1にて形成した無電解銅めっき膜のピール強度、ならびに接着剤層の絶縁抵抗とガラス転移点Tg を測定した。その結果を表5に示す。この表に示す結果から明らかなように、擬似均一相溶構造を形成する本発明にかかるPES変性エポキシ樹脂を配線板用接着剤に適用することにより、接着強度、耐熱性および電気絶縁性が、従来のものに比べ著しく向上することが判った。
【0062】
【表5】
Figure 0003605556
【0067】
参考例6:エポキシ樹脂/PES系)
エポキシ樹脂/PES系において、エポキシ当量が210 〜230 のクレゾールノボラック型エポキシ樹脂(日本化薬製、商品名:ECON-103S )70重量部、ポリエーテルスルホン(PES,ICI製)30重量部およびイミダゾール系硬化剤(四国化成製、商品名:2E4MZ-CN)5重量部を、DMFを用いて混合し、その後、80℃で1時間、150 ℃で5時間の硬化条件にて硬化し、疑似均一相溶構造の硬化物を得た。
【0068】
このようにして得た樹脂硬化物について、参考例1と同様にしてTEM観察を行った結果、樹脂粒径は0.1μm以下であった。また、動的粘弾性測定にてガラス転移温度Tg を測定した結果、参考例1と同様にTg 点のピークは、1つであった。
【0069】
さらに、得られた樹脂硬化物の引張強度と引張伸び率はそれぞれ995 kg/cm,6.4 %であり、構成樹脂成分単独のものより高いことを確認した。なお、同じ硬化剤,硬化条件で作成したエポキシ樹脂のみからなる硬化物の引張強度と引張伸び率は、それぞれ約550 kg/cm ,3.0 %であった。
【0070】
(実施例:エポキシ樹脂/PSF系)
エポキシ樹脂/ポリスルホン(PSF)系において、エポキシ樹脂としてビスフェノールA型エポキシ樹脂(油化シェル製、商品名:エピコート828 )、硬化剤としてイミダゾール系硬化剤(四国化成製、商品名:2E4MZ-CN)を用い、下記組成でDMF を用いて樹脂を混合し、80℃で1時間、150℃で5時間の硬化条件にて硬化し、疑似均一相溶構造の硬化物を得た。
樹脂組成:エピコート828 /PSF /イミダゾール系硬化剤=70/30/5
【0071】
このようにして得た樹脂硬化物について、参考例1と同様にしてTEM観察を行った結果、樹脂粒径は0.1μm以下であった。また、動的粘弾性測定にてガラス転移温度Tg を測定した結果、参考例1と同様にTg 点のピークは、1つであった。
【0072】
さらに、得られた樹脂硬化物の引張強度と引張伸び率はそれぞれ800 kg/cm,7.8 %であり、構成樹脂成分単独のものより高いことを確認した。なお、同じ硬化剤,硬化条件で作成したエポキシ樹脂のみからなる硬化物の引張強度と引張伸び率は、それぞれ約500 kg/cm ,4.5 %であった。また、この実施例13で得られた樹脂は、誘電率が4.0 で、熱膨張率が5.5 ×10−5/℃であり、シリカ粉などと混合して半導体パッケージの封止樹脂としても使用できる。
【0078】
なお、上記ピール強度、絶縁抵抗、ガラス転移点Tg およびヒートサイクル試験の方法または評価方法を説明する。
(1) ピール強度
JIS−C−6481
(2) 絶縁抵抗
基板に層間絶縁層を形成し、粗化したのち触媒付与を行い、次いで、めっきレジストを形成してレジストパターンを作成した。その後、無電解めっきを施し、パターン間の絶縁抵抗を測定した。なお、パターン間絶縁性は、L/S=75/75 μmのくしばパターンにて、80℃/85%/24V,1000時間後の値を測定した。
(3) ガラス転移点Tg
動的粘弾性測定により測定した。
(4) ヒートサイクル試験
−65℃×30min 〜125 ℃×30min のヒートサイクル試験を行い、クラックの発生と層間絶縁層の剥離の有無を調べ、その耐久サイクル数で評価した。
【0079】
【発明の効果】
以上説明したように本発明によれば、エポキシ樹脂などの熱硬化性樹脂が示す特有の物性、例えば耐熱性を具えると共に、複合化させるPESなどの熱可塑性樹脂本来の物性よりもさらに高い物性値を示す新規な樹脂複合体を確実に提供することができる。
【図面の簡単な説明】
【図1】熱可塑性樹脂−熱硬化性樹脂の混合系の状態図を示す図である。
【図2】(a) 本発明にかかる樹脂複合体の擬似均一相溶構造を示す結晶構造のSEM写真、 (b) 従来技術にかかる樹脂複合体の共連続粒子構造を示す結晶構造のSEM写真、および (c)本発明にかかる樹脂複合体の擬似均一相溶構造を示す結晶構造のTEM写真である。
【図3】各種イミダゾール系硬化剤(a)2PHZ−CN, (b)2PZ−OK, (c)2E4MZ−CN, (d)1B2MZを用いて得られた樹脂硬化物の結晶構造を示すSEM写真である。
【図4】硬化剤のゲル化時間と複合体を構成する樹脂の粒径との関係を示す図である。
【図5】アミン系硬化剤に関し、各種硬化温度(a) 80℃, (b)100℃ , (c)120 ℃ , (d)150℃にて得られた樹脂硬化物の結晶構造を示すSEM写真である。
【図6】イミダゾール系硬化剤に関し、各種硬化温度(a) 80℃, (b)100℃ , (c)120 ℃, (d) 150℃にて得られた樹脂硬化物の結晶構造を示すSEM写真である。
【図7】樹脂の硬化温度と複合体を構成する樹脂の粒径との関係を示す図(アミン系硬化剤の場合)である。
【図8】樹脂の硬化温度と複合体を構成する樹脂の粒径との関係を示す図(イミダゾール系硬化剤の場合)である。
【図9】各種エポキシ当量のエポキシ樹脂(a) エピコート828, (b)エピコート1001, (c) エピコート1004, (d) エピコート1007を用いて得られた樹脂硬化物の結晶構造を示すSEM写真である。
【図10】本発明にかかる樹脂複合体の動的粘弾性測定結果を示す図である。
【図11】本発明にかかる樹脂複合体の強度試験測定結果で、(a) 引張強さ,(b)引張伸び率を示す図である。[0001]
[Industrial applications]
The present invention relates to a novel resin composite composed of a thermosetting resin and a thermoplastic resin, and particularly to a proposal of a resin composite composed of an epoxy resin and polysulfone (PSF).
[0002]
[Prior art]
A typical example of a resin composite technique is a technique of improving the physical properties of a thermosetting resin by mixing a thermosetting resin with a thermoplastic resin to form a composite. For example, in a mixed system (PES-modified epoxy resin) of an epoxy resin and polyether sulfone (hereinafter, referred to as “PES”), a technique for improving the toughness of the epoxy resin by a co-continuous structure formed by the epoxy resin and PES. (See Keizo Yamanaka and Takashi Inoue, Polymer, vol. 30, p. 662 (1989)).
[0003]
The PES-modified epoxy resin obtained by mixing two kinds of resins has improved toughness of the resin as compared with the epoxy resin alone. This is because the PES-modified epoxy resin forms a resin structure as described below. In other words, in a mixed system of an epoxy resin such as a bisphenol A type epoxy resin and PES, when the epoxy resin is cured at a high temperature, the epoxy resin and the PES do not completely dissolve (compatibility state) but spinodal decomposition. Is caused and the epoxy resin and PES are mixed in a separated state (phase separated state).
Such a phase separation state depends on the degree of incompatibility in the initial dispersion state of the resin to be mixed, and when the degree of incompatibility is large, a spherical domain structure is formed, and the degree of incompatibility is small. In such a case, a bicontinuous structure is formed.
The "spherical domain structure" refers to a state in which spherical domains composed of a resin mainly composed of an epoxy resin are independent of each other in a resin matrix mainly composed of PES, or a part of them is connected and dispersed. The term "co-continuous structure" refers to a structure in which spherical domains composed mainly of an epoxy resin are connected to each other and regularly dispersed in a resin matrix mainly composed of PES. Point to.
In such a structure, the constituent resins are not completely separated from each other, but the PES also contains the epoxy resin, and the ratio is overwhelmingly high in PES, while the epoxy resin is contained in the epoxy resin. However, PES is contained therein, and the ratio thereof is such that the epoxy resin is high, and the respective resins are not completely phase-separated but are partially compatible with each other.
[0004]
[Problems to be solved by the invention]
However, the co-continuous structure is formed when the epoxy resin and PES are in a phase-separated state, and the spherical domains of the epoxy resin generated by spinodal decomposition are merely dispersed in the PES matrix. Structure. Therefore, although there is an effect of dispersing and introducing PES into the epoxy resin, it cannot be made higher than the original physical properties of PES. The reason for this is that when the glass transition temperature of the composite having a bicontinuous structure is measured by dynamic viscoelasticity measurement, it is recognized that the number of peaks of the glass transition temperature is two, and therefore the epoxy resin and the matrix are used. This is probably because the interaction with PES is weak.
The knowledge about the co-continuous structure as described above was also applied to a mixed system of a photosensitive resin and a thermoplastic resin, for example, a mixed system of an acrylic resin and polyether sulfone (PES-modified acrylic resin).
[0005]
An object of the present invention is to provide a novel resin exhibiting specific physical properties such as a thermosetting resin such as an epoxy resin, for example, having heat resistance and exhibiting higher physical property values than the original physical properties exhibited by a thermoplastic resin such as PES. An object of the present invention is to provide a composite and a technique for producing the composite.
[0006]
[Means for Solving the Problems]
The inventors first studied a system of a thermosetting resin and a thermoplastic resin, which is one mixed system of a resin composite, in order to achieve the above object. In a mixed system of a thermosetting resin and a thermoplastic resin, for example, in an epoxy resin / PES mixed system, as shown in FIG. 1, the epoxy resin and PES are compatible at low temperatures but separate into two phases at high temperatures. The phase diagram of LCST type (Low Critical Solution Temperature) is shown.
However, when the epoxy resin is polymerized with the curing reaction and the glass transition temperature (Tg) of the resin increases and becomes higher than the curing temperature, the molecular motion is frozen at that temperature and the phase separation cannot be performed. This is because phase separation requires the movement and diffusion of molecules.
[0007]
The present invention has been completed as a result of intensive research focusing on such facts, and does not form a clear co-continuous structure or spherical domain structure due to phase separation between a thermosetting resin and a thermoplastic resin. As described above, by controlling the curing rate and the phase separation rate to cure and composite the resin, the above object can be achieved.
[0008]
That is, the present invention is a resin composite composed of a thermosetting resin and a thermoplastic resin, that is, a resin composite composed of an epoxy resin and polysulfone (PSF). A resin composite characterized by having a pseudo-homogeneous compatible structure obtained by being cured so that a bicontinuous structure or a spherical domain structure is not formed, and a structure forming the pseudo-homogeneous compatible structure The particle size of the resin particles is 0.1 μm or less as measured by observation with a transmission electron microscope (hereinafter, referred to as “TEM”), and at a heating rate of 5 ° C./min and a vibration frequency of 6.28 rad / sec. It is characterized by exhibiting the characteristic that the number of peaks of the glass transition temperature of the resin by the measured dynamic viscoelasticity measurement is one.
[0011]
In the method for producing the resin composite of the present invention as described above, first, the thermosetting resin mixed with the thermoplastic resin is cured to form a composite of the thermosetting resin and the thermoplastic resin. In the case of a thermosetting resin and a thermoplastic resin, the curing temperature of the thermosetting resin exceeds the quasi-homogeneous phase formation point determined by one or two factors selected from the types of curing agents. It is characterized by being cured at a curing speed.
Second, when the thermosetting resin mixed with the thermoplastic resin is cured to form a composite of the thermosetting resin and the thermoplastic resin, one of the crosslinking density and the molecular weight of the uncured thermosetting resin is used. Curing is performed at a phase separation rate not exceeding the pseudo-homogeneous phase formation point determined by the above factors.
Third, when the thermosetting resin mixed with the thermoplastic resin is cured to form a composite of the thermosetting resin and the thermoplastic resin, the curing speed is higher than the quasi-uniform phase formation point and the quasi-uniform It is characterized by curing at a phase separation rate not exceeding the phase formation point.
Here, it is desirable that the blending ratio between the thermosetting resin and the thermoplastic resin is 15 to 50 wt% in terms of the content of the thermoplastic resin.
[0012]
[Action]
A feature of the resin composite of the present invention comprising a thermosetting resin and a thermoplastic resin is that the thermosetting resin and the thermoplastic resin form a pseudo-homogeneous compatible structure.
This quasi-homogeneous compatible structure is a new concept devised by the inventors and refers to a structure described below.
In other words, the quasi-homogeneous compatible structure refers to a more uniform structure that has the unique physical properties of a thermosetting resin such as an epoxy resin and exhibits higher physical property values than the original physical properties of a thermoplastic resin such as PES. In addition, the glass transition temperature peak value by dynamic viscoelasticity measurement is one, and the interaction between the thermosetting resin or the photosensitive resin and the thermoplastic resin is extremely strong.
Therefore, the resin composite of the present invention has a structure as shown in the scanning electron microscope (hereinafter, referred to as “SEM”) photograph of FIG. 2A, and is shown in the SEM photograph of FIG. 2B. This is clearly different from the conventional bicontinuous particle structure. In addition, in the resin composite, the particle diameter of the constituent resin particles observed by TEM (see FIG. 2C) is 0.1 μm or less, and is more uniform. Because of such a homogeneous resin composite, the thermoplastic resin is hardly eluted by an organic solvent or the like, and is excellent in chemical resistance. In the co-continuous structure described in the prior art, PES is eluted by methylene chloride, and the surface becomes uneven (see the drawing substitute photograph in FIG. 2 (b)). In the present invention, however, thermoplastic resin such as PES is also used by methylene chloride. The amount of resin eluted is small, and no irregularities occur on the surface.
[0013]
The effect due to the structure of the resin composite is particularly remarkable when the content of the thermoplastic resin (for example, PES) in the composite is 15 to 50 wt% in solid content. The reason is that if the content of the thermoplastic resin is less than 15% by weight, the effect of toughening is not sufficiently exhibited because the number of thermoplastic resin molecules entangled in the network of the resin component is small, while the content of the thermoplastic resin is 50% by weight. %, The interaction between the thermosetting resin and the thermoplastic resin decreases due to the decrease in the number of crosslinking points.
[0014]
Such a pseudo-homogeneous compatible structure of a thermosetting resin and a thermoplastic resin is formed by the following method of the present invention. That is, the quasi-homogeneous compatible structure according to the present invention can be obtained by dissolving a thermosetting resin and a thermoplastic resin in a solvent as needed and mixing them uniformly, and then increasing the curing speed, and / or phase separation. It is formed by reducing the speed to make the particle diameter of the constituent resin particles 0.1 μm or less as measured by TEM observation.
[0015]
Specifically, in the method of the present invention, first, when a thermosetting resin is used, it is determined by one or two factors selected from the curing temperature of the thermosetting resin and the type of the curing agent. It is characterized in that it is cured at a curing speed exceeding the pseudo-homogeneous phase formation point. The quasi-homogeneous phase formation point is defined as the lower limit of the curing rate at which a quasi-homogeneous compatible structure in which the particle size of the resin particles constituting the composite is 0.1 μm or less as measured by TEM observation can be obtained. means.
[0016]
Second, the method of the present invention is characterized in that the uncured thermosetting resin is cured at a phase separation rate not exceeding a quasi-homogeneous phase formation point determined by one or more factors of the crosslinking density or molecular weight. There are features. Here, the quasi-homogeneous phase formation point is the upper limit of the phase separation rate at which a quasi-homogeneous compatible structure in which the particle size of the resin particles constituting the composite is 0.1 μm or less as measured by TEM observation can be obtained. Means
[0017]
Thirdly, the method of the present invention is characterized in that curing is performed at a curing speed exceeding the above-mentioned quasi-uniform phase formation point and at a phase separation rate not exceeding the above-mentioned quasi-uniform phase formation point. This means a method in which the factors determining the curing rate and the phase separation rate interact.
[0018]
Next, the interrelation of the above-mentioned various factors which determine the curing rate or the phase separation rate will be described. First, regarding the factors that determine the curing speed, assuming that other factor conditions are constant,
(1). The higher the curing temperature of the thermosetting resin, the faster the curing speed.
Therefore, when the thermosetting resin is cured beyond the lower limit of the curing temperature required to obtain a curing rate exceeding the quasi-homogeneous phase formation point, the structure of the obtained resin composite becomes a quasi-homogeneous compatible structure.
(2). The shorter the gel time, the faster the curing speed.
Therefore, when the thermosetting resin is cured using a curing agent that does not exceed the upper limit of the gelation time required to obtain a curing rate exceeding the quasi-homogeneous phase formation point, the structure of the obtained resin composite becomes pseudo- A uniform compatible structure results.
[0019]
In consideration of such a fact, in the case of combining the thermosetting resin and the thermoplastic resin with one kind of the above-mentioned variable factor, the value of the factor corresponding to the pseudo-homogeneous phase formation point is determined by one point. Therefore, when there are two or more of the above-mentioned variation factors, various combinations of the values of the factors corresponding to the quasi-homogeneous phase formation points can be considered. That is, it is possible to select a combination showing a curing rate such that the particle diameter of the constituent resin particles is 0.1 μm or less as measured by TEM observation.
[0020]
Next, as for the factors that determine the phase separation speed, if other factors and conditions are fixed, (1). The higher the crosslink density of the uncured thermosetting resin, the less the phase separation occurs (the lower the phase separation speed) ).
Therefore, when cured using an uncured thermosetting resin having a crosslinking density exceeding the lower limit of the crosslinking density required to obtain a phase separation rate not exceeding the quasi-homogeneous phase formation point, the structure of the resulting resin composite becomes A quasi-uniform compatible structure is obtained.
(2). As the molecular weight of the uncured thermosetting resin increases, phase separation hardly occurs (the phase separation speed decreases).
Therefore, when cured using an uncured thermosetting resin having a molecular weight exceeding the lower limit of the molecular weight required to obtain a phase separation rate not exceeding the quasi-homogeneous phase formation point, the structure of the obtained resin composite becomes quasi-homogeneous. It has a compatible structure.
[0021]
In consideration of such a fact, in the case of combining the thermosetting resin and the thermoplastic resin with one kind of the above-mentioned variable factor, the value of the factor corresponding to the pseudo-homogeneous phase formation point is determined by one point. Therefore, when the above-mentioned variable factors are two kinds, various combinations of the values of the factors corresponding to the quasi-homogeneous phase formation point can be considered. That is, it is possible to select a combination exhibiting a phase separation rate such that the particle diameter of the constituent resin particles is 0.1 μm or less as measured by TEM observation.
[0022]
The resin composite obtained by the method of the present invention as described above has the specific physical properties of a thermosetting resin such as an epoxy resin, and has a higher physical property value than the original physical properties of a thermoplastic resin such as PES. Can be shown.
That is, the resin composite having a pseudo-homogeneous compatible structure according to the present invention has a higher resin strength than PES alone, and has a toughening effect of an epoxy resin that has not existed conventionally.
[0023]
In the present invention, prior to compounding the thermosetting resin and the thermoplastic resin as described above, the thermosetting resin and the thermoplastic resin are uniformly mixed by being dissolved in a solvent as necessary. You. Examples of such a solvent include dimethylformamide (DMF), methylene chloride, dimethylsulfoxide (DMSO), and normal methylpyrrolidone (NMP). At a temperature lower than the phase separation start temperature and lower than the curing start temperature, the thermosetting resin and the thermoplastic resin can be mixed by heating and melting.
[0024]
In the present invention, as the thermosetting resin, phenol resins, amino resins such as melamine resins and urea resins, epoxy resins, unsaturated polyester resins, polyimide resins, urethane resins, diallyl phthalate resins, and the like can be used.
[0025]
In the present invention, as the thermoplastic resin, in addition to phenoxy resin and polyether sulfone, polysulfone, polyphenylene sulfide, polyether ether ketone, polyacetal, polycarbonate, engineering plastics such as polyetherimide, polystyrene, polyethylene, polyarylate, polyamide imide , Polyoxybenzoate, polyvinyl chloride, polyvinyl acetate and the like can be used.
[0027]
In the present invention, as a curing agent when an epoxy resin is used as the thermosetting resin, an imidazole-based curing agent, a diamine, a polyamine, a polyamide, an organic acid anhydride, a vinyl phenol, or the like can be used. On the other hand, when a thermosetting resin other than the epoxy resin is used, a known curing agent can be used.
[0028]
The resin composite of the present invention, which has physical properties unique to a thermosetting resin such as an epoxy resin and exhibits physical properties higher than the original physical properties of a thermoplastic resin such as PES to be composited, is a printed wiring board. Adhesives for electroless plating such as adhesives for substrates, substrate materials used for printed wiring boards, resist materials and prepreg materials, sealing materials for semiconductor packages, base materials for fiber-reinforced composite materials, injection molding materials, compression It is expected to be used for various applications such as molding materials.
[0029]
The effects of the curing agent (test 1), the effects of the curing temperature (test 2), the effects of the crosslink density (test 3),Effect of PES content (Test 4)Will be described.
(Test 1: Effect of curing agent)
(1) Using epoxy resin / PES-based curing agents with different gelling times (curing speeds), investigate how the type of epoxy resin curing agent affects the resin structure and physical properties of the above mixed system. Was.
(2) As the curing agents having different gelling times, several kinds of imidazole-based curing agents (manufactured by Shikoku Chemicals) shown in Table 1 were used.
(3) In order to investigate the effect of the curing agent, a bisphenol A type epoxy resin (manufactured by Yuka Shell, trade name: Epicoat 828) was used as the epoxy resin, and the mixing ratio of epoxy resin / PES was 70/30. PES is dissolved in twice the amount of dimethylformamide (DMF), a predetermined amount of an epoxy resin and a curing agent are mixed and cured, and the epoxy equivalent of the epoxy resin is 184 to 194, and the curing condition is 120 ° C. × 5 hours. The conditions were kept constant at + 150 ° C. × 2 hours.
[0030]
FIG. 3 and Table 1 show the results of examining the structure and physical properties of the obtained cured resin. 3 (a) to 3 (d) are SEM photographs showing the structure of the cured resin obtained using the imidazole-based curing agent shown in Table 1, wherein (a) 2PHZ-CN and (b) 2PZ-OK. , (c) 2E4MZ-CN and (d) 1B2MZ. As is clear from these photographs and the results shown in Table 1, the curing agent having a low curing speed was used.( (a) , (b) )It was found that the use of the compound formed a spherical domain structure due to the progress of phase separation, and the strength and elongation of the resin were low. On the other hand, a curing agent showing a curing speed exceeding the quasi-homogeneous phase formation point( (c) , (d) )It was found that when cured, the epoxy resin and PES formed a pseudo-homogeneous compatible structure, and both the strength and elongation of this cured product were greatly improved.
[0031]
FIG. 4 is a diagram showing the relationship between the particle size of the resin obtained by SEM observation of the cured resin and the gelation time of the curing agent. As is clear from the results shown in this figure, when the gelation time at 120 ° C. becomes about 5 minutes or less, the particle size of the resin sharply decreases, and it becomes clear that the spherical domain structure becomes a pseudo-homogeneous compatible structure. Was. That is, under the conditions of the present example, it can be seen that the quasi-homogeneous phase formation point determined by the gel time of the curing agent exists at a point where the gel time is about 5 minutes.
[0032]
[Table 1]
Figure 0003605556
[0033]
(test2: Influence of curing temperature)
(1) In the epoxy resin / PES system, the effect of the curing temperature of the epoxy resin on the resin structure of the obtained cured resin was investigated by curing under curing conditions having different curing temperatures.
(2) As the curing conditions having different curing temperatures, the following four conditions were implemented.
a. 6 hours at 80 ° C b. 6 hours at 100 ° C. 5 hours at 120 ° C. 4 hours at 150 ° C
(3) Depending on the curing agent, (1). When the curing temperature is lower, a pseudo-homogeneous compatible structure is formed (2). From the finding that a higher curing temperature may form a pseudo-homogeneous compatible structure in some cases, the curing agent is (3). Amine-based curing agent (Sumitomo Chemical, trade name: DDM), (4). An imidazole-based curing agent (manufactured by Shikoku Chemicals, trade name: 2E4MZ-CN) was used.
(4) In order to investigate the influence of the curing temperature, a bisphenol A type epoxy resin (manufactured by Yuka Shell, trade name: Epicoat 828) was used as the epoxy resin, and the mixing ratio of epoxy resin / PES / curing agent was calculated as follows: 1). 70/30/20 for amine-based curing agent (DDM), (2). In the case of an imidazole-based curing agent (2E4MZ-CN), the ratio is 70/30/5, PES is dissolved in twice the amount of dimethylformamide (DMF), and a predetermined amount of epoxy resin and a curing agent are mixed and cured. The epoxy equivalent of the epoxy resin was 184 to 194, and the conditions were fixed.
[0034]
The results of examining the structure of the obtained cured resin are shown in FIG. 5 and FIG. FIGS. 5 (a) to 5 (d) and FIGS. 6 (a) to 6 (d) relate to (1) amine-based curing agents and (2) imidazole-based curing agents, respectively. 5 is an SEM photograph showing the structure of the cured resin obtained in (a) at 80 ° C., (b) at 100 ° C., (c) at 120 ° C., and (d) at 150 ° C.
When a (1) type amine-based curing agent (DDM) was used as the curing agent, as shown in the photograph of FIG. 5, the resin structure formed a pseudo-homogeneous compatible structure when the curing temperature was 80 ° C. When the curing temperature was 100 ° C. or higher, a spherical domain structure was formed, and the particle diameter was found to be 0.2 μm or more.
On the other hand, when a (2) type imidazole-based curing agent (2E4MZ-CN) is used as the curing agent, the resin structure has a quasi-homogeneous phase at a curing temperature of 100 ° C. or higher, as is clear from the photograph in FIG. Although a melted structure was formed, it was found that when the curing temperature was 80 ° C., a spherical domain structure having a particle size of about 0.3 μm was formed.
[0035]
7 and 8 are diagrams showing the relationship between the particle size of the resin obtained by SEM observation and the curing temperature of the epoxy resin for the above two types of curing agents. As is clear from the results shown in these figures, in the case of the amine type curing agent of the type (1), when the curing temperature is 90 ° C or lower, the spherical domain structure changes to a pseudo-homogeneous compatible structure, while the type (2) type It was found that the imidazole-based curing agent changed from a spherical domain structure to a pseudo-homogeneous compatible structure when the curing temperature was 90 ° C or higher. That is, the booktestUnder the conditions of the example, it can be seen that the quasi-homogeneous phase formation point determined by the curing temperature of the epoxy resin exists at a curing temperature of about 90 ° C.
[0036]
(test3: Influence of crosslink density)
(1) In the epoxy resin / PES system, by curing epoxy resins having the same skeleton structure and different epoxy equivalents, how the epoxy equivalent of the epoxy resin affects the resin structure of the cured resin obtained Was examined, and the effect of the crosslink density of the resin was examined.
(2) Several types of bisphenol A type epoxy resins shown in Table 2 were used as epoxy resins having different epoxy equivalents.
(3) In order to examine the effect of the epoxy equivalent, an imidazole-based curing agent (manufactured by Shikoku Chemicals, trade name: 2E4MZ-CN) was used as a curing agent, and the mixing ratio of epoxy resin / PES / curing agent was 70/30. / 5, PES is dissolved in twice the amount of dimethylformamide (DMF), and a predetermined amount of epoxy resin and a curing agent are mixed and cured. The curing conditions are 80 ° C. for 1 hour and 100 ° C. for 1 hour. , 120 ° C for 1 hour and 150 ° C for 3 hours.
[0037]
FIG. 9 and Table 2 show the results of examining the structure of the obtained cured resin. FIGS. 9 (a) to 9 (d) are SEM photographs showing the structure of the cured resin obtained using the epoxy resins having various epoxy equivalents, wherein (a) epicoat 828, (b) epicoat 1001, (b) c) Epicoat 1004, (d) Epicoat 1007. As is clear from these photographs and the results shown in Table 2, the larger the epoxy equivalent, in other words, the lower the crosslink density, the easier the phase separation, while the smaller the epoxy equivalent, in other words, the higher the crosslink density, the higher the epoxy equivalent. It was found that the resin structure was a pseudo-homogeneous compatible structure. That is, the booktestUnder the conditions of the example, it can be seen that the quasi-homogeneous phase formation point determined by the epoxy equivalent (or crosslink density) of the epoxy resin exists at around 300 epoxy equivalent.
[0038]
[Table 2]
Figure 0003605556
[0043]
(test4: Influence of PES content)
(1) In the epoxy resin / PES system, it was examined how various changes in the amount of PES affect the physical properties of the obtained cured resin.
(2) As the PES compounding amount,0 ~ 60wt %Various changes were made.
(3) In order to investigate the effect of the PES content, a cresol novolak type epoxy resin (manufactured by Nippon Kayaku, trade name: EOCN-103S) was used as the epoxy resin, and an imidazole-based curing agent (manufactured by Shikoku Chemicals) was used as the curing agent. PES was dissolved in twice the amount of dimethylformamide (DMF) using a trade name of 2E4MZ-CN), and a predetermined amount of an epoxy resin and a curing agent were mixed and cured. The curing conditions of the epoxy resin were fixed at 80 ° C. for 1 hour, at 100 ° C. for 1 hour, at 120 ° C. for 1 hour, and at 150 ° C. for 3 hours.
[0044]
FIG. 11 shows the result of examining the change in the physical properties of the resin cured product thus obtained. As is clear from the results shown in this figure, the strength of the resin increased as the amount of PES increased, showed a maximum value at 30% PES, and thereafter the resin strength decreased. In particular, a cured resin of 30% PES has higher strength than not only epoxy resin but also PES alone. The booktestUnder the conditions of the examples, the obtained cured resin formed a pseudo-homogeneous compatible structure in all the compounding compositions. Book like thistestFrom the results of the examples, it was found that in the epoxy resin / PES system, the PES content is desirably 15 to 50% by weight, more preferably 20 to 40% by weight.
[0045]
【Example】
(Reference example1)
(1) In the epoxy resin / PES system, a bisphenol A type epoxy resin having an epoxy equivalent of 184 to 194 (manufactured by Yuka Shell, trade name: Epicoat 828) as an epoxy resin, and an imidazole-based curing agent (manufactured by Shikoku Chemicals) as a curing agent. (Product name: 2E4MZ-CN), resin is mixed with DMF with the following composition and cured at 120 ° C for 5 hours and at 150 ° C for 2 hours to obtain a cured resin with a pseudo-homogeneous compatible structure. Got. The gel time of the curing agent at 120 ° C. was 3 minutes.
Resin composition: Epicoat 828 / PES / 2E4MZ-CN = 70/30/5
[0046]
About the resin cured product obtained in this way,TEM observation was performed under the following conditions. As a result, the particle diameter of the resin constituting the cured resin was 0.1 μm or less.
[Observation conditions)
(1) Using a microtome, 70nm And cut into slices.
(2) Osmium tetroxide ( OsO Four ) In methanol solution twenty four Let soak for hours.
(3) Acceleration voltage for TEM observation 80kV Observe as
In addition, the glass transition temperature T was determined by dynamic viscoelasticity measurement.gAs a result of measuringFigure Ten As shownTgHas one peak,It turned out to be homogeneous in physical properties. Due to this, it is assumed that physical properties such as tensile strength and elongation are higher than those of the constituent resin component alone..
[0047]
Furthermore, the tensile strength and the tensile elongation of the obtained cured resin are 835 kg / cm, respectively.2, 8.0%, which was higher than that of the constituent resin component alone. The tensile strength and tensile elongation of a cured product made of only an epoxy resin produced under the same curing agent and curing conditions are about 500 kg / cm.2, 4.8%.
[0048]
The results described above were similarly obtained when an imidazole-based curing agent (Shikoku Chemicals, trade name: 1B2MZ) was used as the curing agent. In this case, the gel time of the curing agent at 120 ° C. was 44 seconds.
[0049]
(Reference example2)
(1) In the epoxy resin / PES system, a bisphenol A type epoxy resin having an epoxy equivalent of 184 to 194 (manufactured by Shikoku Chemicals, trade name: Epicoat 828) as an epoxy resin, and an imidazole-based curing agent (manufactured by Yuka Shell Co., Ltd.) as a curing agent (Product name: 2E4MZ-CN), resin is mixed with DMF with the following composition, and cured under the curing conditions of 80 ° C x 1 hour + 150 ° C x 4 hours to obtain a cured resin with a pseudo-homogeneous compatible structure Got. The bookReference exampleIsReference exampleThe only difference from 1 is the curing temperature of the epoxy resin.
Resin composition: Epicoat 828 / PES / 2E4MZ-CN = 70/30/5
[0050]
About the resin cured product obtained in this way,Reference Example 1As a result of TEM observation in the same manner as in the above, the resin particle size was 0.1 μm or less. In addition, the glass transition temperature T was determined by dynamic viscoelasticity measurement.gAs a result of measuringReference Example 1As in TgHad one peak.
[0051]
Furthermore, the tensile strength and the tensile elongation of the obtained cured resin are 835 kg / cm, respectively.2, 9.1%, which was higher than that of the constituent resin component alone. The tensile strength and tensile elongation of a cured product made of only an epoxy resin produced under the same curing agent and curing conditions are about 500 kg / cm.2, 4.5%.
[0052]
(Reference example3)
(1) In an epoxy resin / PES system, a bisphenol A type epoxy resin having an epoxy equivalent of 184 to 194 (manufactured by Yuka Shell, trade name: Epicoat 828) as an epoxy resin, and an amine curing agent (manufactured by Sumitomo Chemical Co., Ltd.) as a curing agent (Product name: DDM), resin is mixed with DMF with the following composition and cured at 80 ° C for 6 hours and at 150 ° C for 2 hours to obtain a cured resin having a quasi-homogeneous compatible structure. Was.
Resin composition: Epicoat 828 / PES / DDM = 70/30/18
[0053]
About the resin cured product obtained in this way,Reference Example 1As a result of TEM observation in the same manner as in the above, the resin particle size was 0.1 μm or less. The glass transition temperature T is determined by dynamic viscoelasticity.gAs a result of measuringReference Example 1As in TgHad one peak.
[0054]
Further, the tensile strength and the tensile elongation of the obtained cured resin are 860 kg / cm, respectively.28.6%, which was higher than that of the constituent resin component alone. In addition, the tensile strength and the tensile elongation of a cured product made of only an epoxy resin produced under the same curing agent and curing conditions are about 500 kg / cm, respectively.2Was 5%.
[0055]
(Reference example4)
In the epoxy resin / PES system, a cresol novolak type epoxy resin having an epoxy equivalent of 210 to 230 (Nippon Kayaku, trade name: EOCN-103S) as an epoxy resin, and an imidazole type hardener (Shikoku Chemicals, trade name, as a curing agent) : 2E4MZ-CN), DMF was mixed with the following composition, and cured at 80 ° C for 1 hour and 150 ° C for 4 hours to obtain a cured product having a pseudo-homogeneous compatible structure. .
Resin composition: EOCN-103S / PES / 2E4MZ-CN = 70/30/5
[0056]
About the resin cured product obtained in this way,Reference Example 1As a result of TEM observation in the same manner as in the above, the resin particle size was 0.1 μm or less. In addition, the glass transition temperature T was determined by dynamic viscoelasticity measurement.gAs a result of measuringReference Example 1As in TgThere was one point peak.
[0057]
Furthermore, the tensile strength and the tensile elongation of the obtained cured resin are 990 kg / cm, respectively.2, 6.5%, which was higher than that of the constituent resin component alone. In addition, the tensile strength and the tensile elongation of a cured product made of only the epoxy resin prepared under the same curing agent and curing conditions are about 550 kg / cm, respectively.22.8%.
[0058]
(Reference example5: Application to adhesive for additive wiring board)
(1) 70 parts by weight of cresol novolac type epoxy resin (manufactured by Nippon Kayaku), 30 parts by weight of polyether sulfone (manufactured by PES, ICI), 5 parts by weight of imidazole-based curing agent (manufactured by Shikoku Chemicals, trade name: 2E4MZ-CN) And 25 parts by weight of an epoxy resin fine powder (manufactured by Toray) having an average particle diameter of 5.5 μm, and 10 parts by weight of an epoxy resin fine powder having an average particle diameter of 0.5 μm. A mixed solvent of dimethylformamide / butyl cellosolve (1/1) While adding the mixture, the viscosity was adjusted to 120 cps with a homodisper stirrer, and then kneaded with three rolls to obtain an adhesive solution.
(2) This adhesive solution is applied on a glass epoxy insulating plate (manufactured by Toshiba Chemical) on which no copper foil is stuck, using a roller coater, and then at 80 ° C. for 1 hour and at 100 ° C. for 1 hour. After drying and curing at 120 ° C. for 1 hour and at 150 ° C. for 3 hours, an adhesive layer having a thickness of 20 μm was formed.
(3) The above substrate having the adhesive layer formed thereon is treated with a chromic acid aqueous solutionThree, 500 g / l) at 70 ° C. for 15 minutes to roughen the surface of the adhesive layer, and then immersed in a neutralizing solution (manufactured by Shipley) and then washed with water.
(4) A palladium catalyst (manufactured by Shipley) was applied to the substrate having the surface of the adhesive layer roughened to activate the surface of the adhesive layer. After immersion for an hour, electroless copper plating with a plating film thickness of 25 μm was performed.
[0059]
[Table 4]
Figure 0003605556
[0060]
(Comparative Example 1: Application to an additive for an additive wiring board)
(1) Except for the following conditionsReference exampleIn the same manner as in 5, an epoxy resin fine powder-containing adhesive solution was prepared, and a 20 μm-thick adhesive layer and a plating film were formed on a glass epoxy insulating plate (manufactured by Toshiba Chemical Co.) on which no copper foil was stuck. An electroless copper plating film having a thickness of 25 μm was formed.
(Resin composition)
Phenol novolak type epoxy resin: 100 parts by weight
Imidazole-based curing agent (Shikoku Chemicals, trade name: 2P4MHZ): 4 parts by weight
(Curing conditions of adhesive layer)
1 hour at 100 ° C, 5 hours at 150 ° C
[0061]
Reference example5 and the peel strength of the electroless copper plating film formed in Comparative Example 1, the insulation resistance of the adhesive layer and the glass transition point TgWas measured. Table 5 shows the results. As is clear from the results shown in this table, by applying the PES-modified epoxy resin according to the present invention that forms a quasi-homogeneous compatible structure to the adhesive for wiring boards, the adhesive strength, heat resistance and electrical insulation properties are improved. It turned out that it is remarkably improved as compared with the conventional one.
[0062]
[Table 5]
Figure 0003605556
[0067]
(Reference example6: epoxy resin / PES type)
In an epoxy resin / PES system, 70 parts by weight of a cresol novolak type epoxy resin having an epoxy equivalent of 210 to 230 (manufactured by Nippon Kayaku, trade name: ECON-103S), 30 parts by weight of polyether sulfone (PES, ICI) and imidazole 5 parts by weight of a system-based curing agent (trade name: 2E4MZ-CN, manufactured by Shikoku Chemicals Co., Ltd.) are mixed using DMF, and then cured under the curing conditions of 80 ° C. for 1 hour and 150 ° C. for 5 hours, resulting in pseudo-homogeneous A cured product having a compatible structure was obtained.
[0068]
About the resin cured product obtained in this way,Reference Example 1As a result of TEM observation in the same manner as in the above, the resin particle size was 0.1 μm or less. In addition, the glass transition temperature T was determined by dynamic viscoelasticity measurement.gAs a result of measuringReference Example 1As in TgThere was one point peak.
[0069]
Furthermore, the tensile strength and the tensile elongation of the obtained cured resin were 995 kg / cm, respectively.2, 6.4%, which was higher than that of the resin component alone. The tensile strength and tensile elongation of a cured product made of only the epoxy resin prepared under the same curing agent and curing conditions are about 550 kg / cm, respectively.2  , 3.0%.
[0070]
(Example1: Epoxy resin / PSF type)
In the epoxy resin / polysulfone (PSF) system, a bisphenol A type epoxy resin (manufactured by Yuka Shell, trade name: Epicoat 828) as an epoxy resin, and an imidazole curing agent (manufactured by Shikoku Chemicals, trade name: 2E4MZ-CN) as a curing agent And a resin having the following composition and mixed with DMF, and cured at 80 ° C. for 1 hour and at 150 ° C. for 5 hours to obtain a cured product having a pseudo-homogeneous compatible structure.
Resin composition: Epicoat 828 / PSF / imidazole-based curing agent = 70/30/5
[0071]
About the resin cured product obtained in this way,Reference Example 1As a result of TEM observation in the same manner as in the above, the resin particle size was 0.1 μm or less. In addition, the glass transition temperature T was determined by dynamic viscoelasticity measurement.gAs a result of measuringReference Example 1As in TgThere was one point peak.
[0072]
Further, the tensile strength and the tensile elongation of the obtained cured resin are 800 kg / cm, respectively.2, 7.8%, which was higher than that of the constituent resin component alone. The tensile strength and the tensile elongation of a cured product made of only an epoxy resin prepared under the same curing agent and curing conditions are about 500 kg / cm, respectively.2  , 4.5%. The resin obtained in Example 13 had a dielectric constant of 4.0 and a coefficient of thermal expansion of 5.5 × 10-5/ ° C, and can be used as a sealing resin for a semiconductor package by mixing with silica powder or the like.
[0078]
The peel strength, insulation resistance, glass transition point Tg and heat cycle test method or evaluation method will be described.
(1) Peel strength
JIS-C-6481
(2) Insulation resistance
An interlayer insulating layer was formed on the substrate, and after roughening, a catalyst was applied, and then a plating resist was formed to form a resist pattern. Thereafter, electroless plating was performed, and the insulation resistance between the patterns was measured. The inter-pattern insulation was measured at a temperature of 80 ° C./85%/24 V for 1000 hours using a comb pattern of L / S = 75/75 μm.
(3) Glass transition point Tg
It was measured by dynamic viscoelasticity measurement.
(4) Heat cycle test
A heat cycle test at −65 ° C. × 30 min to 125 ° C. × 30 min was performed, and the occurrence of cracks and the presence or absence of peeling of the interlayer insulating layer were examined.
[0079]
【The invention's effect】
As described above, according to the present invention, a thermosetting resin such as an epoxy resin exhibits unique physical properties, such as heat resistance, and further higher physical properties than the original physical properties of a thermoplastic resin such as PES to be compounded. It is possible to reliably provide a novel resin composite showing a value.
[Brief description of the drawings]
FIG. 1 is a diagram showing a phase diagram of a mixed system of a thermoplastic resin and a thermosetting resin.
FIG. 2A is an SEM photograph of a crystal structure showing a pseudo-homogeneous compatible structure of the resin composite according to the present invention, and FIG. 2B is an SEM photograph of a crystal structure showing a co-continuous particle structure of the resin composite according to the prior art And (c) is a TEM photograph of a crystal structure showing a pseudo-homogeneous compatible structure of the resin composite according to the present invention.
FIG. 3 is an SEM photograph showing the crystal structure of a cured resin obtained using various imidazole-based curing agents (a) 2PHZ-CN, (b) 2PZ-OK, (c) 2E4MZ-CN, and (d) 1B2MZ. It is.
FIG. 4 is a diagram showing the relationship between the gelation time of a curing agent and the particle size of a resin constituting a composite.
FIG. 5 is an SEM showing the crystal structure of a cured resin obtained at various curing temperatures (a) 80 ° C., (b) 100 ° C., (c) 120 ° C., and (d) 150 ° C. It is a photograph.
FIG. 6 is an SEM showing the crystal structure of a cured resin obtained at various curing temperatures (a) 80 ° C., (b) 100 ° C., (c) 120 ° C., and (d) 150 ° C. with respect to the imidazole-based curing agent. It is a photograph.
FIG. 7 is a diagram showing the relationship between the curing temperature of the resin and the particle size of the resin constituting the composite (in the case of an amine-based curing agent).
FIG. 8 is a diagram showing the relationship between the curing temperature of the resin and the particle size of the resin constituting the composite (in the case of an imidazole-based curing agent).
FIG. 9 is an SEM photograph showing a crystal structure of a cured resin obtained by using epoxy resins (a) epicoat 828, (b) epicoat 1001, (c) epicoat 1004, and (d) epicoat 1007 with various epoxy equivalents. is there.
FIG. 10 is a view showing the results of measuring dynamic viscoelasticity of the resin composite according to the present invention.
FIG. 11 is a diagram showing (a) tensile strength and (b) tensile elongation as a result of a strength test measurement of the resin composite according to the present invention.

Claims (2)

熱硬化性樹脂と熱可塑性樹脂とからなる硬化された樹脂複合体であって、熱硬化性樹脂としてのエポキシ樹脂と熱可塑性樹脂としてのポリスルホンとが、相分離して共連続構造や球状ドメイン構造が形成されないように硬化されることによって得られる擬似均一相溶構造を有し、その擬似均一相溶構造は、前記複合体を構成する樹脂粒子の粒径が、透過型電子顕微鏡観察による測定値で0.1μm以下であり、かつ昇温速度が5℃/分、振動周波数6.28rad/秒の条件で測定した動的粘弾性測定による樹脂のガラス転移温度のピーク数が1つである特性を示すものであることを特徴とする樹脂複合体。A cured resin composite consisting of a thermosetting resin and a thermoplastic resin, wherein an epoxy resin as a thermosetting resin and a polysulfone as a thermoplastic resin are phase-separated to form a co-continuous structure or a spherical domain structure. Having a quasi-homogeneous compatible structure obtained by being cured so as not to be formed, and the quasi-homogeneous compatible structure has a particle size of resin particles constituting the composite, measured by transmission electron microscopy. Is 0.1 μm or less, and the number of peaks of the glass transition temperature of the resin is one by dynamic viscoelasticity measurement at a temperature rising rate of 5 ° C./min and a vibration frequency of 6.28 rad / sec. A resin composite characterized by the following. 上記樹脂複合体における熱硬化性樹脂と熱可塑性樹脂の配合比は、熱可塑性樹脂の含有量で15〜50wt%である請求項1に記載の樹脂複合体。The resin composite according to claim 1 , wherein the compounding ratio of the thermosetting resin and the thermoplastic resin in the resin composite is 15 to 50 wt% in terms of the content of the thermoplastic resin.
JP2000282729A 1993-02-24 2000-09-18 Resin composite having quasi-homogeneous compatible structure Expired - Lifetime JP3605556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282729A JP3605556B2 (en) 1993-02-24 2000-09-18 Resin composite having quasi-homogeneous compatible structure

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5807893 1993-02-24
JP5-139168 1993-05-19
JP13916893 1993-05-19
JP5-58078 1993-05-19
JP2000282729A JP3605556B2 (en) 1993-02-24 2000-09-18 Resin composite having quasi-homogeneous compatible structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP05271192A Division JP3142425B2 (en) 1993-02-24 1993-10-05 Resin composite having pseudo-homogeneous compatible structure

Publications (2)

Publication Number Publication Date
JP2001114981A JP2001114981A (en) 2001-04-24
JP3605556B2 true JP3605556B2 (en) 2004-12-22

Family

ID=27296475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282729A Expired - Lifetime JP3605556B2 (en) 1993-02-24 2000-09-18 Resin composite having quasi-homogeneous compatible structure

Country Status (1)

Country Link
JP (1) JP3605556B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949676B2 (en) 2003-07-22 2007-07-25 三井金属鉱業株式会社 Copper foil with ultrathin adhesive layer and method for producing the copper foil with ultrathin adhesive layer
RU2013139854A (en) * 2011-01-28 2015-03-10 Торэй Индастриз, Инк. EPOXY POLYMERIC COMPOSITION FOR FIBER REINFORCED COMPOSITE MATERIALS, PREGREG AND FIBER REINFORCED COMPOSITE MATERIAL
EP3757148A4 (en) 2018-02-22 2021-07-07 Hitachi Chemical Company, Ltd. EPOXY RESINS, EPOXY RESIN COMPOSITION, CURED EPOXY RESIN AND MANUFACTURING METHODS THEREFORE, COMPOSITE MATERIAL, INSULATION ELEMENT, ELECTRONIC DEVICE, STRUCTURAL MATERIAL AND MOVING OBJECT

Also Published As

Publication number Publication date
JP2001114981A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
US5519177A (en) Adhesives, adhesive layers for electroless plating and printed circuit boards
US5994480A (en) Resin composites and method for producing the same
Hayes et al. Modification of thermosetting resins and composites through preformed polymer particles: a review
Saalbrink et al. The influence of processing parameters on interphase morphology in polymer composites based on phase-separating thermoplast/epoxy blends
KR20020033190A (en) Insulating resin composition for multilayer printed wiring boards, multilayer printed wiring boards made by using the composition and process for the production thereof
JP2002038022A (en) Insulating resin composition for multilayer printed wiring board, multilayer printed wiring board using the same, and manufacturing method using the same
WO1997024229A1 (en) Metal film bonded body, bonding agent layer and bonding agent
JP3142425B2 (en) Resin composite having pseudo-homogeneous compatible structure
JP3142424B2 (en) Resin composite for interlayer resin insulation of multilayer wiring boards
JP3605556B2 (en) Resin composite having quasi-homogeneous compatible structure
JP3588317B2 (en) Thermosetting resin composition and metal foil with resin, prepreg and film adhesive using the same
JP2002371190A (en) Insulating resin composition for multilayer printed wiring board, multilayer printed wiring board using the same, and manufacturing method using the same
JP3290529B2 (en) Adhesive for electroless plating, adhesive layer for electroless plating and printed wiring board
JP3790771B2 (en) Manufacturing method of resin composite
JP3790662B2 (en) Manufacturing method of resin composite
JP3411899B2 (en) Adhesive for electroless plating, adhesive layer for electroless plating and printed wiring board
JP3595319B2 (en) Adhesives and adhesive layers for printed wiring boards
JP3172372B2 (en) Method for producing epoxy acrylate-PES resin composite
JP3718625B2 (en) Manufacturing method of resin composite
JP3366047B2 (en) Insulated wire for multi-wire wiring board and multi-wire wiring board using this insulated wire
JPH0562156B2 (en)
JP3036936B2 (en) Thermosetting epoxy resin composition
JP2001148572A (en) Resin composite for interlayer resin insulating material for multilayer wiring board
JPH11260152A (en) Insulated electric wire, multi-wire wiring board using the same, and manufacture of the insulated electric wire
JPS63376A (en) Adhesive for additive process printed circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Effective date: 20040802

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Effective date: 20041004

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081008

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091008

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091008

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20111008

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20121008

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20131008

EXPY Cancellation because of completion of term