Nothing Special   »   [go: up one dir, main page]

JP3603350B2 - Unsaturated nitrile-conjugated diene copolymer, method for producing the same, and vulcanizable rubber composition - Google Patents

Unsaturated nitrile-conjugated diene copolymer, method for producing the same, and vulcanizable rubber composition Download PDF

Info

Publication number
JP3603350B2
JP3603350B2 JP26136494A JP26136494A JP3603350B2 JP 3603350 B2 JP3603350 B2 JP 3603350B2 JP 26136494 A JP26136494 A JP 26136494A JP 26136494 A JP26136494 A JP 26136494A JP 3603350 B2 JP3603350 B2 JP 3603350B2
Authority
JP
Japan
Prior art keywords
unsaturated nitrile
conjugated diene
copolymer
weight
diene copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26136494A
Other languages
Japanese (ja)
Other versions
JPH08100030A (en
Inventor
傑 辻
雄一 内薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP26136494A priority Critical patent/JP3603350B2/en
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to DE69506885T priority patent/DE69506885T2/en
Priority to US08/793,677 priority patent/US5703189A/en
Priority to US08/793,678 priority patent/US5807941A/en
Priority to EP95921120A priority patent/EP0779300B1/en
Priority to PCT/JP1995/001133 priority patent/WO1996006869A1/en
Priority to EP95921121A priority patent/EP0779301B1/en
Priority to PCT/JP1995/001132 priority patent/WO1996006868A1/en
Priority to DE69518528T priority patent/DE69518528T2/en
Publication of JPH08100030A publication Critical patent/JPH08100030A/en
Application granted granted Critical
Publication of JP3603350B2 publication Critical patent/JP3603350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【産業上の利用分野】
本発明は不飽和ニトリル−共役ジエン共重合体、その製造方法および該共重合体と加硫剤とを配合してなる加硫性ゴム組成物に関し、詳しくは、硫黄加硫時に高速加硫性を示し、機械的強度に優れ、金属腐食の発生を生じない不飽和ニトリル−共役ジエン共重合体、該不飽和ニトリル−共役ジエン共重合体を効率よく製造する方法、および該共重合体と硫黄系加硫剤とを配合してなる加硫性ゴム組成物に関する。
【0002】
【従来の技術】
近年、耐油性や耐熱性が要求される分野において使用されているアクリロニトリル−ブタジエンゴム(以下、NBRと記す)の成型加工には、生産性、合理性などの点から、射出成型が普及しており、最近では、その利用分野は防振ゴム、電気部品、自動車部品、工業用品、はきものなど広範囲にわたっている。
【0003】
NBRの射出成型には流動特性とともに、高温かつ短時間の加硫によって高い架橋効率が得られること、すなわち、高速加硫性が要求される。一般に、ゴムの加硫は、加硫温度が高くなると加硫状態があまくなる傾向にあり、そのために射出成型品は圧縮成型品と比べて引張応力や反発弾性が劣るとされている(例えば、日本ゴム協会誌第59巻第4号第214〜215頁1986年)。
【0004】
射出成型におけるNBRの高速加硫性を得るために、例えば、NBRの分子中にカルボキシル基やアミノ基などの官能基を導入する方法、適当な加硫促進剤を配合する方法、NBRの乳化重合に際して使用する乳化剤、凝固剤などの量を極力少なくしてNBR中のこれらの残存量を低減させる方法などの方法が提案されている。しかしながら、このような従来提案された方法では、NBRの射出成型における高速加硫性が充分に達成されないばかりか、耐寒性、圧縮永久ひずみなどの他の特性を損うという問題点がある。
【0005】
さらに、高温での加硫がおこなわれるNBRの射出成型においては、いわゆる金型汚染が顕著である。すなわち、NBRの成型において繰り返して使用する金型に次第に汚染物質が付着堆積し、その結果成形品自体まで汚染され、表面状態の優れた成形品が得られなくなる。そのため一定の周期で金型の清掃を行なわねばならず、この清掃には多大の時間と経費がかかり、生産性を低下させる大きな原因となっている。
【0006】
このような金型汚染を防止するためにタルク、チオ硫酸ナトリウム、カーボンワックスあるいはシリコンオイルなどを配合する方法が知られているが、汎用の市販NBRにこれらの手法を用いても、特に射出成型のような高温高速加硫の場合には、ほとんど効果が見られないことが多い。
【0007】
NBRは、一般に乳化重合によって重合体ラテックスを調製し、これを凝固する方法によって製造されている。このようなNBRの製造方法の代表的一例は特開平2−173002号に記載されている。この方法は、乳化重合によって得られた重合体ラテックス中にノニオン界面活性剤を添加し、次いで該ラテックスを、凝固剤として金属塩が溶解されている凝固浴中に流下させ、加熱して凝固させるものであってこの方法によれば、効率よくゴム粒子を得ることができる。
【0008】
一方、シール材のように、NBRの成型品が金属と接触して用いられるような用途では、金属腐食の発生を防止するために、ハロゲンを含まない凝固剤を重合体ラテックスに加えることが知られている。ハロゲンを含まない凝固剤の代表例は硫酸アルミニウムである。しかしながら、硫酸アルミニウムを用いた場合はNBR中に残留する微量の硫酸イオンの存在により、硫黄加硫時の加硫速度が低下し、ひいては成型品の機械的強度などが損なわれる。
【0009】
【発明が解決しようとする課題】
上記のような事情に鑑み、本発明の目的は、特に射出成型用途において望まれている高速加硫適性に優れ、良好な機械的強度を有し、金属腐食の問題を生じることがなく、且つ金型汚染性の問題を生じない加硫物を与える不飽和ニトリル−共役ジエン共重合体を提供することにある。
【0010】
本発明の他の目的はかかる不飽和ニトリル−共役ジエン共重合体を高い生産性をもって製造することができる方法を提供することにある。
さらに、他の目的は高温高速加硫性に優れ、金属腐食の問題を生じることがなく、且つ良好な機械的強度を有する加硫物を与える加硫性ゴム組成物を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的は、下記の(1)不飽和ニトリル−共役ジエン共重合体、(2)その製造方法、および(3)それを含む加硫性ゴム組成物によって達成される。
(1)少なくとも3個の第3級炭素原子およびその中の少なくとも1個の第3級炭素原子に直接結合した硫黄原子を有する炭素数12〜16のアルキルチオ基を、分子を構成する単量体単位100モル当り0.03モル以上の割合で分子内に有し、ムーニー粘度が15〜150であり、結合不飽和ニトリル量が10〜60重量%であり、ハロゲン原子を実質的に含有しない不飽和ニトリル−共役ジエン共重合体。
【0012】
(2)(a)分子量調整剤として、少なくとも3個の第3級炭素原子およびその中の少なくとも1個の第3級炭素原子に直接結合した硫黄原子を有する炭素数12〜16のアルキルチオール化合物を使用して、ラジカル開始剤の存在下に乳化重合によって不飽和ニトリルと共役ジエンとの共重合体ラテックスを調製し、(b)該共重合体ラテックス中にノニオン界面活性剤を添加し、次いで、(c)該共重合体ラテックスを、金属塩が溶解されている実質的にハロゲン原子を含まない凝固浴中に入れ、加熱して凝固させることを特徴とする不飽和ニトリル−共役ジエン共重合体の製造方法。
(3)上記(1)の不飽和ニトリル−共役ジエン共重合体100重量部当り硫黄系加硫剤0.01〜10重量部を配合してなる加硫性ゴム組成物。
【0013】
本発明の不飽和ニトリル−共役ジエン共重合体は、少くとも3個の第3級炭素原子およびその中の少くとも1個の第3級炭素原子に直接結合した硫黄原子を有する炭素数12〜16のアルキルチオ基を分子内に有する不飽和ニトリルと共役ジエンとの共重合体であって、ムーニー粘度が15〜150、好ましくは20〜90である。ムーニー粘度が15未満では、強度の低い成型体しか得られず、また、射出成型においては多量のばりが発生するなどの問題があり、好ましくない。150を超えた場合は粘度が増大し、射出成型のみならず成型が困難となる。
【0014】
また、本発明の不飽和ニトリル−共役ジエン共重合体は、好ましくは数平均分子量35,000以下の成分を3〜20重量%、より好ましくは5〜15重量%含有する。数平均分子量35,000以下の成分の含有量が過度に高いと機械的強度が低下する。また、過度に低い場合は加工性が不良となる。数平均分子量35,000以下の成分を適当量含有せしめることによって良好な機械的強度を維持したまま加工性を改善することができる。
また、上記不飽和ニトリル−共役ジエン共重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、通常2.3〜5.5、好ましくは2.7〜4である。Mw/Mnが過度に大きいと、たとえ数平均分子量35,000以下の成分が適量含有されていても加工性が不良である。
【0015】
共重合体中の結合不飽和ニトリル単位の含有量は10〜60重量%であり、特に20〜50重量%が好ましい。
また、不飽和ニトリルの組成分布幅(△AN)は好ましくは3〜20であり、より好ましくは5〜15である。△ANが過度に大きい場合は耐油性と耐寒性とのバランスが不良となる。
【0016】
本発明の不飽和ニトリル−共役ジエン共重合体は実質的にハロゲンを含有していないことを特徴としている。ここで「実質的にハロゲンを含有していない」とは共重合体中のハロゲン含有量が3ppm以下であることを意味する。実質的にハロゲンを含有していないことは、共重合体の加硫成型品を、シール材などのように金属と接触して用いた時に金属腐食の問題を回避するために重要である。
【0017】
不飽和ニトリルの具体例としては、アクリロニトリル、メタクリロニトリル、α−クロロアクリロニトリルなどが挙げられる。共役ジエンの具体例としては、1,3−ブタジエン、2,3−ジメチルブタジエン、イソプレン、1,3−ペンタジエンなどが挙げられる。
【0018】
また、本発明によって得られる効果が損なわれない範囲で、これらの単量体以外に全単量体の一部を必要に応じて他の共重合可能な単量体で置き換えることも可能である。他の共重合可能な単量体としては、スチレン、α−メチルスチレン、ビニルピリジンなどのビニル系単量体;ビニルノルボルネン、ジシクロペンタジエン、1,4−ヘキサジエンなどの非共役ジエン系単量体;(メタ)アクリル酸などの不飽和カルボン酸系単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ラウリルなどの不飽和カルボン酸エステル系単量体;さらに、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレートなどが挙げられる。これらは通常、全単量体中に10重量%以下の範囲で使用することができる。
【0019】
不飽和ニトリルと共役ジエンとの共重合体ゴムの中でも結合アクリロニトリル含量10〜60重量%、好ましくは20〜50重量%のアクリロニトリル−ブタジエンゴム(以下、NBRと記す)が好適であって、低ニトリル量ないし極高ニトリル量の範囲の通常市販されているものが使用でき、要求性能に応じて最適の結合アクリロニトリル含量のNBRが選択される。
【0020】
本発明の不飽和ニトリル−共役ジエン共重合体が分子中に有する、少くとも3個の第3級炭素原子およびその中の少くとも1個の第3級炭素原子に直接結合した硫黄原子を有する炭素数12〜16のアルキルチオ基としては、1,1−ジ(2,2−ジメチルプロピル)−1−エチルチオ基および1,1−ジ(2,2−ジメチルプロピル)−1−(2,2,4,4−テトラメチルペンチル)−1−エチルチオ基が挙げられ、これらは単独でまたは両者が組合されて1分子中に含まれ得る。中でも、1,1−ジ(2,2−ジメチルプロピル)−1−エチルチオ基が特に好ましい。
【0021】
本発明の不飽和ニトリル−共役ジエン共重合体の分子内には、分子を構成する単量体単位100モル当り、上記のアルキルチオ基が0.03モル以上、好ましくは0.07モル以上、さらに好ましくは0.09モル以上存在する。また、該アルキルチオ基の量は、通常0.3モル以下である。上記アルキルチオ基の量が過度に低い場合は、射出成型のような高温短時間の加硫において高い架橋効率が得られず、そのために成型体の引張応力や反発弾性が改良されず目的とする高速加硫が達成されない。また、該アルキルチオ基の量が高くなるにつれてスコーチ時間(T)の短縮が顕著となり、さらに、金型汚染性も大幅に改良されることから、生産性の高い射出成型が可能となる。特に0.09モル以上の場合は架橋効率が大巾に改善され、オシレーティング・デイスクレオメータを用いて測定した加硫曲線における最大トルクが飛躍的に増大する。
【0022】
本発明の不飽和ニトリル−共役ジエン共重合体は、分子量調整剤として、少くとも3個の第3級炭素原子およびその中の少くとも1個の第3級炭素原子に直接結合したチオール基を有する炭素数12〜16のアルキルチオール化合物を使用して、ラジカル開始剤の存在下に乳化重合によって、不飽和ニトリルと共役ジエンとの共重合体ラテックスを調製し、該共重合体ラテックス中にノニオン界面活性剤を添加し、次いで、該共重合体ラテックスを、金属塩が溶解されている実質的にハロゲンを含まない凝固浴中に入れ、加熱して凝固させることにより製造される。
【0023】
使用するラジカル重合開始剤は、特に限定されるものではないが、通常は有機過酸化物、レドックス重合開始剤系、アゾ系化合物、過硫酸塩などが用いられる。これら重合開始剤の使用量は通常は単量体100重量部当り0.005〜3重量部である。また、重合温度は0〜100℃の範囲が好ましい。
【0024】
本発明の不飽和ニトリル−共役ジエン共重合体を製造する際に分子量調整剤として使用するアルキルチオール化合物の具体例としては、2,2′,4,6,6′−ペンタメチルヘプタン−4−チオールおよび2,2′,4,6,6′,8,8′−ヘプタメチルノナン−4−チオールが挙げられる。なかでも、2,2′,4,6,6′−ペンタメチルヘプタン−4−チオールが特に好ましく、該チオール化合物を使用して製造した不飽和ニトリル−共役ジエン共重合体は高速加硫性が極めて良好である。
【0025】
本発明の不飽和ニトリル−共役ジエン共重合体を製造する際に、分子量調整剤として使用する該アルキルチオール化合物は、それぞれ単独であるいは組合せて使用することができる。また、必要に応じて、従来、ラジカル重合において分子量調整剤として知られている他の化合物と併用することも可能である。この場合、該アルキルチオール化合物は使用する分子量調整剤全重量の少くとも50重量%以上、好ましくは80重量%以上、さらに好ましくは95重量%以上含有されるべきである。
【0026】
ラジカル重合において分子量調整剤として知られている他の化合物としては、2,4,4−トリメチルペンタン−2−チオール、ドデカン−12−チオール、2,2,6,6−テトラメチルヘプタン−4−メタンチオール、2,4,6−トリメチルノナン−4−チオールなどのアルキルチオール化合物類;ジメチルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィドなどのキサントゲンジスルフィド類;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィドなどのチウラムジスルフィド類;四塩化炭素、臭化エチレンなどのハロゲン化炭化水素類;ペンタフェニルエタンなどの炭化水素類;およびアクロレイン、メタクロレイン、アリルアルコール、2−エチルヘキシルチオグリコレート、ターピノーレン、α−テルピネン、γ−テルピネン、ジペンテン、α−メチルスチレンダイマー(2−4−ジフェニル−4−メチル−1−ペンテンが50重量%以上のものが好ましい)、2,5−ジヒドロフラン、3,6−ジヒドロ−2H−ピン、フタラン、1,2−ブタジエン、1,4−ヘキサジエンなどを挙げることができる。
【0027】
ラジカル重合に際して使用する分子量調整剤の使用量は、通常、共重合に供される単量体混合物100重量部に対し、0.05〜3重量部、好ましくは0.1〜1重量部であり、この範囲の使用量が、得られる共重合体の分子量を調節するうえで有利である。
分子量調整剤は、重合途中で分割添加することによって、Mn35,000未満の低分子量成分を3〜20重量%含む重合体を得ることができ、この重合体は良好な加工性を有する。一般に、分子量調整剤の全使用量の10〜95重量%を重合前の単量体混合物中に含有せしめ、さらに重合転化率が20〜70重量%に達した時点で分子量調整剤の残量を重合系に添加することが好ましい。添加の回数は必要に応じて適宜決められる。
【0028】
また、別法として、分子量調整剤を重合過程で分割添加する方法に依らずに、上記分子量調整剤を用いて別途製造した分子量の異なる2種以上の共重合体を混合して調整することもできる。
【0029】
本発明の不飽和ニトリル−共役ジエン共重合体の製造に際して、かかる特定のアルキルチオール化合物を分子量調整剤として使用することにより、ラジカル重合の重合転化率を75%以上、好ましくは80%以上の高転化率とすることができ、その結果、高い生産性で該ニトリル系ゴムを製造することができる。
【0030】
一般にニトリル系ゴムのラジカル重合においては、重合転化率が増大するほど分岐反応あるいはゲル化反応が増加する。その結果、得られたニトリル系ゴムを加硫剤によって加硫した場合には高い架橋効率を得ることができず、引張り応力や反発弾性などの加硫物性が低下する。従来、ニトリル系ゴムのラジカル重合において汎用の分子量調整剤として使用されているt−ドデシルメルカプタンは、炭素数9〜16を有するアルキルチオール化合物の異性体の混合物であり、このような異性体の混合物を分子量調整剤として使用して得られたニトリル系ゴムは、射出成型などの高温短時間の加硫に際して、充分な高速加硫性が得られない。
【0031】
これに対して、本発明の不飽和ニトリル−共役ジエン共重合体の製造方法によれば、重合転化率を80%以上という高い値に設定しても、たとえば、オシレーティング・ディスク・レオメータを用いて測定した加硫曲線における最大トルクが高い値を示すなど、高速加硫性に優れたニトリル系ゴムを得ることができる。
【0032】
重合すべき単量体はその全使用量を一括して仕込むことができるが、別法として、全単量体使用量の30〜90重量%の存在下に重合を開始し、さらに重合転化率が20〜70%に達した時点で単量体の残量を重合系に添加する方法を採ることができる。この単量体分割添加法により得られる不飽和ニトリル−共役ジエン共重合体のゴム組成物は、良好でバランスのとれた耐油性と耐寒性とを有するという特徴をもっている。
【0033】
分割添加する単量体の種類および量は目的とする結合不飽和ニトリル量および不飽和ニトリルの組成分布幅(△AN)に応じて適宜選択される。例えば、結合不飽和ニトリル量が37%未満の場合は一般に不飽和ニトリルを重合途中で添加し、また、結合ニトリル量が37%以上の場合は一般に共役ジエンを重合途中で添加する。添加の回数は必要に応じて適宜決められる。
不飽和ニトリル−共役ジエン共重合体ラテックスを乳化重合によって調製する際には、乳化剤としてカルボン酸系乳化剤を使用すると得られた共重合体は、射出成型などの高温短時間加硫において金型汚染性の問題がさらに改善される。
【0034】
使用するカルボン酸系乳化剤としては、脂肪酸石けんあるいはロジン酸石けんなどが例示される。具体的には、脂肪酸石けんは炭素数12〜18個の長鎖状脂肪族カルボン酸、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸などおよびこれらの混合脂肪族カルボン酸のナトリウム塩またはカリウム塩から選択される。また、ロジン酸石けんはガムロジン、ウッドロジンまたはトール油ロジンなどの天然ロジンを不均化または水添したもののナトリウム塩またはカリウム塩から選択される。これらの天然ロジンはアビエチン酸、レボピマル酸、パラストリン酸、デヒドロアビエチン酸、テトラヒドロアビエチン酸およびネオアビエチン酸などを主成分としている。乳化剤の使用量は特に制限されないが、通常は、単量体100重量部当り、0.05〜10重量部、好ましくは0.5〜3重量部である。
【0035】
不飽和ニトリル−共役ジエン共重合体のラテックスを調製するには、通常の乳化重合の手法により重合を行い、所定の転化率に達した時にヒドロキシルアミン、カルバミン酸ナトリウムなどを加えて重合を停止する。次いで、残存単量体を加熱、水蒸気蒸留などによって除去する。
【0036】
使用される重合停止剤は格別限定されるものではなく、従来から常用されているヒドロキシルアミン、ジメチルジチオカルバミン酸ナトリウムなどのアミン構造を有する停止剤を使用することができる。
また、本発明においては、近年注目されている、ニトロアミンを発生しないか、または微量に発生するに過ぎない停止剤を用いることができる。
【0037】
従来、ラジカル重合による不飽和ニトリル−共役ジエン共重合体の製造に際してはアミン構造を有する停止剤が用いられていたが、この停止剤を用いると発ガン性のあるニトロソアミンが発生することが判明したため、その対策として、アミン構造を有しない芳香族ヒドロキシジチオカルボン酸、またはジエチルヒドロキシアミンのようなアミン構造を有していてもニトロソアミンの発生が少ないと考えられる停止剤を用いることが提案されている(例えば、特開平2−242802号公報)。しかしながら、これらの提案されている停止剤を使用すると、ニトロソアミンの発生が抑制されるものの、硫黄加硫において加硫速度が低下したり、機械的強度が低下するという難点があった。
【0038】
従来の不飽和ニトリル−共役ジエン共重合体とは対照的に、本発明の不飽和ニトリル−共役ジエン共重合体の製造に際しては、意外にも、アミン構造を有しないか、またはアミン構造を有していてもニトロソアミンの発生が少ないと考えられる停止剤を用いても、硫黄加硫に際し高速加硫性を示し、良好な機械的強度を有する共重合体ゴムを得ることができる。
【0039】
アミン構造を有していてもニトロソアミンの発生が少ないと考えられる停止剤としては、ジエチルヒドロキシアミン、ヒドロキシアミンスルホン酸およびそのアルカリ金属塩などが挙げられ、また、アミン構造を有しない停止剤としては、ヒドロキシジメチルベンゼンジチオカルボン酸、ヒドロキシジエチルベンゼンジチオカルボン酸、ヒドロキシジブチルベンゼンジチオカルボン酸などの芳香族ヒドロキシジチオカルボン酸およびこれらのアルカリ金属塩、ハイドロキノン誘導体およびカテコール誘導体などが挙げられる。これらのラジカル重合停止剤は単独でまたは2以上を組合せて使用することができる。
停止剤の使用量は格別限定されないが、通常は全単量体100重量部に対して0.1〜10重量部である。
【0040】
本発明のハロゲン原子を実質的に含有しない不飽和ニトリル−共役ジエン共重合体を製造するには、上記のように調製した共重合体ラテックスにノニオン界面活性剤を添加し、次いで、該共重合体ラテックスを、金属塩が溶解されている実質的にハロゲンを含まない凝固浴中に入れ、加熱して凝固させる。
上記のようなラテックス凝固法を採ることによって、適度の大きさと多孔性を有し、乾燥性のよいクラムを容易に製造することができ、また、ノニオン界面活性剤の添加により、金属塩の使用量を低減することができる。かくして、得られる不飽和ニトリル−共役ジエン共重合体は、ハロゲンを実質的に含有せず、金属腐食の問題を生じることがなく、且つ、良好な機械的強度を維持している。
【0041】
ラテックスに添加されるノニオン界面活性剤の具体例としては、アルキルフェノールホルマリン縮合物のアルキレンオキシド付加物(例えば、オキシエチレン−オキシプロピレン共付加物)、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンオキシプロピレンブロックポリマー、アルキルスルフィニルアルコール、脂肪酸モノグリセリドなどが挙げられる。これらのノニオン界面活性剤は単独で用いても、または2種以上を組合せ用いてもよく、凝固条件によって、適宜選択される。
【0042】
上記ノニオン界面活性剤の中でもアルキルフェノールホルマリン縮合物のオキシエチレン−オキシプロピレン共付加物が好ましい。この共付加物は良好な感熱ゲル効果を示す。共付加物の曇点は10〜100℃範囲が好ましく、20〜70℃の範囲がより好ましい。曇点が低過ぎると取扱性が悪く、他方、高過ぎると感熱ゲル効果を得ることが困難となる。
ノニオン界面活性剤の添加量は、重合体100重量部に対し、0.01〜5重量部が好ましく、0.05〜2重量部がより好ましい。添加量が過小であると上記の添加効果が認められず、他方、5重量部を超える添加量でも効果は実質的に変らない。
【0043】
凝固溶中に溶解せしめる金属塩としては、ハロゲンを含まないものが用いられ、その具体例としては硫酸アルミニウム、硫酸マグネシウム、硫酸ナトリウムなどの金属硫酸塩などが挙げられ、中でも硫酸アルミニウムおよび硫酸マグネシウムが好ましい。
金属塩の使用量は重合体100重量部に対し0.5〜50重量部が好ましく、1〜30重量部がより好ましい。金属塩の量が0.5重量部未満では凝固浴中での凝固が不十分となったり、クラムが肥大化する。他方、50重量部を超えると凝固速度が金属塩に支配され、クラムは多孔性に乏しくなる。
【0044】
重合体ラテックスを入れた凝固浴はノニオン界面活性剤の曇点以上に加熱することによって系中の重合体が凝固折出する。ノニオン界面活性剤の曇点は10〜100℃の範囲が好ましく、曇点が低過ぎると曇点未満に保持するのに冷却が必要となり、逆に高過ぎると凝固せしめるのに高温加熱が必要となる。
凝固した重合体は回収し、水洗、乾燥し、目的とする共重合体を得る。
【0045】
本発明の不飽和ニトリル−共役ジエン共重合体に硫黄系加硫剤を配合することによって優れた高速加硫性を有する加硫性ゴム組成物を得ることができる。使用する硫黄系加硫剤としては、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの硫黄;塩化硫黄、二塩化硫黄、モルホリン・ジスルフィド、アルキルフェノール・ジスルフィド、N,N′−ジチオービス(ヘキサヒドロ−2H−アゼピノン−2)、含りんポリスルフィド、高分子多硫化物などの硫黄化合物;さらに、テトラメチルチウラムジスルフィルド、ジメチルジチオカルバミン酸セレン、2−(4′−モルホリノジチオ)ベンゾチアゾールなどの硫黄を含む加硫促進剤を挙げることができる。
【0046】
さらに、これらの硫黄系加硫剤に加えて、亜鉛華、ステアリン酸などの加硫促進剤;グアニジン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、ザンテート系などの他の加硫促進剤を使用することができる。
硫黄系加硫促進剤の使用量は特に限定されないが、通常、不飽和ニトリル−共役ジエン共重合体100重量部当り、0.10〜10重量部、好ましくは0.1〜5重量部である。
【0047】
ゴム組成物が加硫剤として硫黄系加硫剤を含まない場合は、高温短時間加硫において良好な高速加硫性を達成することができない。ただし、例えば、有機過酸化物系加硫剤のような硫黄系加硫剤以外の他の加硫剤を硫黄系加硫剤の他に適宜併用することは可能である。
【0048】
併用される有機過酸化物系加硫剤としては、例えば、t−ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジ−t−ブチルペルオキシド、t−ブチルクミルペルオキシド、2,5−ジメチル−t−ブチルペルオキシヘキサン、2,5−ジメチル−t−ブチルペルオキシヘキシン、1,3−ビス(t−ブチルペルオキシイソプロピル)ベンゼン、p−クロロベンゾイルペルオキシド、t−ブチルペルオキシベンゾエート、t−ブチルペルオキシイソプロピルカルボナート、t−ブチルベンゾエートなどが挙げられる。また、他の併用可能な加硫剤としてはトルメチロールプロパントリメタクリレート、ジビニルベンゼン、エチレンジメタクリレート、トリアリルイソシアヌレートなどの多官能性化合物が挙げられる。さらに、金属せっけん/硫黄系、トリアジン/ジチオカルバミン酸塩系、ポリカルボン酸/オニウム塩系、ポリアミン系(ヘキサメチレンジアミン、トリエチレンテトラミン、ヘキサメチレンジアミンカルバメート、エチレンジアミンカルバメート、トリエチレンジアミンなど)、安息香酸アンモニウム塩系などの加硫剤も必要に応じて併用できる。
【0049】
また、本発明のゴム組成物には、必要に応じて、ゴム分野において使用される通常の他の配合剤、例えば、補強剤(各種カーボンブラック、シリカ、タルクなど)、充填剤(炭酸カルシウム、クレーなど)、加工助剤、プロセス油(含可塑剤)、酸化防止剤、オゾン裂化防止剤などを配合することができる。
【0050】
なお、本発明のゴム組成物には、必要に応じて、アクリルゴム、フッ素ゴム、スチレン−ブタジエン共重合ゴム、エチレン−プロピレン−ジエン三元共重合ゴム(EPDM)、天然ゴム、ポリイソプレンゴムなどの他のゴムを不飽和ニトリル−共役ジエン共重合体に組合せて使用することができる。
本発明のゴム組成物の製造方法は特に限定されないが、通常は、ロール、バンバリーミキサーなどの通常の混合機により原料ゴムと加硫系、その他の配合剤とを混練・混合することによって該ゴム組成物を製造する。
【0051】
【実施例】
以下に実施例を挙げて本発明をさらに具体的に説明する。なお、実施例、比較例及び参考例中の部及び%は特に断りのないかぎり重量基準である。
ゴム組成物および原料成分の特性は以下のように測定した。
(1)高速加硫性評価試験
日本ゴム協会規格SRIS 3102 に従い、表1の配合処方によって調製した未加硫ゴム組成物約10グラムを用いて、オシレーティング・ディスクレオメーターによって、160℃におけるスコーチ時間(T)(単位:分)および最大トルク(Vmax )(単位:kgf・cm)を測定した。Tの値は小さいほど加硫速度が速い。また、Vmaxの値は大きいほど架橋効率が高い。
【0052】
(2)加硫物性評価試験
日本工業規格JIS K6301 に従い、表1の配合処方によって調製した未加硫ゴム組成物を160℃×20分の条件で加硫して得られた厚さ2mmのシートを、3号形ダンベルを用いて打ち抜いて試験片を作成し、引張強さ(単位:kgf/cm)、100%引張り応力(単位:kgf/cm)および伸び(単位:%)を測定した。
また、硬さはJISスプリング式A形硬さ試験機を用いて測定した。さらに、反発弾性はJIS K6301に従って測定した(単位:%)。
【0053】
なお、耐油性試験については、JIS K6301 に従い、潤滑油No3(動粘度31.9〜34.1、アニリン点69.5±1℃、引火点162.7℃)中にゴム試験片を浸漬し、体積変化率(単位:%)を測定した。
耐寒性試験については、JIS K6301 に従い、ゲーマンねじり試験により評価した。ねじれ角が低温時(23℃)ねじれ角の10倍になる時の温度(T10)をもって表示した(単位:℃)。温度が低いほど耐寒性がよいことを示す。
【0054】
【表1】

Figure 0003603350
【0055】
(3)結合ニトリル量
日本工業規格JIS K6384 に従い、ケルダール法によって共重合体中の窒素含量を測定し、計算により結合ニトリル量を求めた(単位:%)。
(4)ムーニー粘度
日本工業規格JIS K6383 に従い、共重合体約40グラムを用いて100℃にて測定した。
【0056】
(5)分子量、分子量分布
ゲルパーミエーション(溶媒:テトラヒドロフラン)により、標準ポリスチレンに換算した数平均分子量(Mn)および重量平均分子量(Mw)を測定した(単位:万)。
測定した分子量分布全体の面積と数平均分子量35,000以下の成分の面積とを用いて該成分の重量%を求めた。
【0057】
(6)不飽和ニトリルの組成分布幅(△AN)
不飽和ニトリルの組成分布幅は高速液体クロマトグラフィー法により求められ、その概要はラバー・ケミストリー・アンド・テクノロジー(Rubber Chemistry and Technology) 63、(2)、P181〜191(1990)に記載されている。すなわち、下記の測定条件にて不飽和ニトリル−共役ジエン共重合体を高速液体クロマトグラフィーにて測定し、クロマトグラムの半値巾を△ANとする。なお、△ANの決定に際しては不飽和ニトリル量既知のサンプルを用いて溶出量−不飽和ニトリル量の検量線を作成しておく。
【0058】
1.カラム
ゲル:(2−クロロアクリロニトリル/エチレンジメタクリレート)架橋ポリマー
ゲル粒径:2〜6μm
カラム:ステンレススチールカラム
カラム径 x 長さ:0.46cm x 25cm
2.溶離液
クロロホルム/n−ヘキサン(重量比)30/70→100/0(30分間でグラジエント溶出)。但し、初期設定クロロホルム/n−ヘキサン=30/70にて20分間流す。
3.流速 0.5ml/分
4.試料濃度 1重量%クロロホルム溶液
5.注入量 10〜20μl
6.検出器 光散乱マスディテクター(Mass Detector:Model 750/I4 ACS Co.)
7.機器 Trirotor VI型(日本分光社製)
【0059】
(7)共重合体中の1,1−ジ(2,2−ジメチルプロピル)−1−エチルチオ基濃度
共重合体をベンゼンに溶解した後、メチルアルコール中で凝固する操作を3回繰り返して精製し、精製共重合体についてNMR測定を行なった。
H−NMR測定(400MHz)により、該エチルチオ基中の末端メチル基のプロトンに起因するピークが1.05ppm付近に検出され、さらに、13C−NMR測定(100MHz)により、該エチルチオ基中のメチレン基の炭素に起因するピークが54.6ppm付近に検出される。
共重合体中の該エチルチオ基濃度の定量はH−NMR測定における末端メチル基に起因するピークの積分値と、4.8〜5.8ppm付近に検出されるブタジエンの不飽和結合に結合するプロトンに起因するピークの積分値との比を用いて計算により求めた(単位:モル%)。
【0060】
(8)共重合体中の残留塩素濃度
水を入れた密閉容器中に共重合体を入れ、120℃×24時間煮沸して、可溶分を抽出し、抽出液を濃縮後、イオンクロマトグラフィーにて塩素濃度(単位:ppm)を測定した。
(9)共重合体中のニトロソアミン濃度
ドイツゴム技術協会(DIK)法に従い、共重合体をメタノールにてソックスレー抽出し、濃縮処理後、ニトロソアミン濃度(単位:ppm)をガスクロ熱エネルギー分析器(GC−TEA)にて測定した。
【0061】
(10)金型汚染性の評価
表1の配合処方によって調製した未加硫ゴム組成物を径12mmの穴に詰めた厚さ2mmの金属板の上下を、表面をきれいにみがいた2枚の1mmの金属板(JIS G3141 軟鋼板)ではさみ、220℃、20kg/cm、2分間の条件で加硫する。次いで、加硫したゴム片を除去し、再び未加硫ゴム組成物を詰めて同様な操作を行う。この操作を50回繰り返した後、上下の軟鋼板の表面の汚染を評価した。
評価は、該軟鋼板の表面が汚染されないものを1とし、表面全体が著しく汚染されたものを5とし、汚染の程度に従って5段階で表示した。
【0062】
(11)加工性の評価
ASTM D−2230−77に従い、ガーベダイを用いて未加硫ゴム組成物を押出し、ダイスエル(%)および押出量(g/分)を求めるとともに、押出物の形状ないし状態を、膨張度・多孔度ならびにエッジ、表面およびコーナー部の状態について評価し、それぞれ5段階で表示した(いずれも5が最良、1が最悪である。)
【0063】
(12)金属腐食性
ゼネラル・モーター(GM)法により、金属板SAE1020の腐食性を試験した。試験方法の詳細は以下のとおりである。
表1の配合処方によって調製した未加硫ゴム組成物を常法により加硫して得た厚さ2mmのシートから試験片(2mm x 5cm x 5cm)を作成し、試験片を2枚の金属板(SAE1020、400メッシュ研磨)に挿み、その上から一定荷重をかけて50℃にて96時間恒温恒湿室中に放置する。放置の後、試料を取り出し、金属板表面の腐食の度合いを6段階基準(0〜5)に基づき評価する。表面全体が腐食したものを5とし、表面に腐食が認められないものを0とした。
【0064】
実施例1〜13および比較例1、2
内容積10リットルの反応器中に、乳化剤としてオレイン酸カリウム2部、安定剤としてリン酸カリウム0.1部、水150部を仕込み、さらに表2に記載した量のブタジエンおよびアクリロニトリル、および分子量調整剤として2,2′,4,6,6′−ペンタメチルヘプタン−4−チオール(以下、PMHTと記す)を加えて、活性剤として硫酸第一鉄0.015部および重合開始剤としてパラメンタンハイドロパーオキサイド0.05部の存在下に10℃で乳化重合を開始した。所定の重合転化率に達した時点で、単量体100部あたり0.2部のヒドロキシルアミン硫酸塩を添加して重合を停止させた。続いて、加温し、減圧下で約70℃にて水蒸気蒸溜により残留単量体を回収した後、老化防止剤としてアルキル化フェノールを2部添加し、共重合体ラテックスを得た。
【0065】
この共重合体ラテックスに表2に記載したノニオン界面活性剤を添加した。(表2に示す添加量は重量部である)。次いで、表2に示す所定量の凝固剤を溶解した凝固水浴を収容した攪拌機付き5リットル凝固槽中へ上記共重合体ラテックスを滴下し、凝固浴を表2に示す所定温度に保持して重合体を凝固した。生成したクラムを取り出し、水洗後50℃減圧下で乾燥し、それぞれ共重合体を得た。各共重合体中の結合ブタジエン量および結合ニトリル量、さらに共重合体のムーニー粘度その他の特性の測定結果を表3に示す。
【0066】
なお、実施例10および12においては共重合体ラテックスの調製時に、所定重合転化率に達した時に表2に示す量のアクリロニトリル単量体およびPMHTを分割添加した。
次に、各共重合体を表1に示す配合処方に従って、バンバリーミキサーにより混練してゴム組成物を得た後、160℃で20分間プレス加硫し、得られた加硫物の物性を評価した。結果を表4に示す。
【0067】
比較例3
分子量調整剤を市販のt−ドデシルメルカプタン(フィリプス石油社製)に変え、それ以外は実施例2と同様の条件でブタジエンとアクリロニトリルとを共重合した。重合結果を表3に示す。次に、実施例1と同様に共重合体の加硫物の物性を評価した結果を表4に示す。
【0068】
【表2】
Figure 0003603350
【0069】
【表3】
Figure 0003603350
【0070】
【表4】
Figure 0003603350
【0071】
なお、実施例2で得られた共重合体のH−NMR測定チャートを図1に示し、また、その13C−NMR測定チャートを図2に示す。
また、他の実施例および比較例1、2で得られたアクリロニトリル−ブタジエン共重合体のNMR測定により1,1−ジ(2,2−ジメチルプロピル)−1−エチルチオ基の存在が確認された。
【0072】
表4から、本発明の不飽和ニトリル−共役ジエン共重合体と硫黄系加硫剤とを配合した加硫性ゴム組成物(実施例1〜13)は、オシレーティング・ディスクレオメーターで測定したスコーチ時間(T)が短く、また、最大トルク(Vmax )が高い値を示し、高速加硫性に優れていることがわかる。その結果、加硫物性における100%引張り応力、引張強さおよび反発弾性は高水準を示し、架橋効率の高い加硫が行われていることがわかる。さらに、不飽和ニトリル−共役ジエン共重合体は実質的にハロゲンを含まないために金属腐食の問題を生じることがない。また、金型汚染性においても優れている。
【0073】
重合時アクリロニトリルを分割添加して調製した共重合体ラテックスを用いた場合(実施例10、12)は、結合アクリロニトリル量が同程度の他の共重合体ラテックスを用いた場合と比較して、△ANが低く、ゲーマンねじり試験によるT10が低く、体積変化率が低いことから、高い機械的強度の水準を保ちながら、耐油性と耐寒性が良好で且つバランスがとれていることがわかる。
さらに、実施例10および12においては、分子量調整剤PMHTが重合時分割添加されているため、ガーベダイによる加工性評価結果も良好であり、機械的強度と加工性に優れた共重合体であることがわかる。
【0074】
これに対して、従来、ラジカル重合において汎用の分子量調整剤として知られているt−ドデシルメルカプタンを(市販品)使用して乳化重合したもの(比較例3)は、十分な高速加硫性が得られず、機械的強度が低く、反発弾性も低い。金型汚染性も不良である。
また、市販のt−ドデシルメルカプタンを使用して得た共重合体についてNMR測定を行なったが、1,1−ジ(2,2−ジメチルプロピル)−1−エチルチオ基の存在は確認されなかった。
【0075】
実施例14および比較例4
停止剤としてジエチルヒドロキシアミン0.3部を使用した他は実施例1と同様にしてアクリロニトリルとブタジエンを共重合し、得られた共重合体中のニトロソジメチルアミン濃度(単位:ppb)およびその加硫物の物性を評価した。
また、停止剤としてジエチルヒドロキシアミン0.6部を使用した他は比較例3と同様にしてアクリロニトリルとブタジエンを共重合し、得られた共重合体中のニトロソジメチルアミン濃度(単位:ppb)およびその加硫物の物性を評価した。
得られた結果を、実施例1および比較例3の結果とともに表5に示す。
【0076】
【表5】
Figure 0003603350
【0077】
表5から、本発明の製造方法によれば、ニトロソアミンが発生せずに且つ高速加硫性および機械的強度に優れた共重合体が得られることがわかる。一方、従来の製造方法では、停止剤としてジメチルジチオカルバミン酸ナトリウムを使用することによって加硫速度の向上がみられるものの、本発明によって得られる効果には及ばないことがわかる。
【0078】
【発明の効果】
かくして、本発明によれば、機械的強度に優れ、特に高温短時間の加硫において、優れた高速加硫性を示し、金属腐食の問題を生じることなく、さらに金型汚染性の問題が改善された不飽和ニトリル−共役ジエン共重合体が提供される。この共重合体は優れた高速加硫性を有することにより、特に、射出成型用途に好適であって、ゴム製品の成型における生産性の向上、省力化が可能となる。
【0079】
また、重合時に単量体を分割添加することによって得た不飽和ニトリル−共役ジエン共重合体は、不飽和ニトリルの組成分布幅△ANが小さく、良好でバランスのとれた耐寒性と耐油性を有している。
さらに、重合時にPMHT(分子量調製剤)を分割添加することによって得た不飽和ニトリル−共役ジエン共重合体は、数平均分子量Mnが35,000以下の低分子量成分を比較的多量に含み、加工性に優れている。
【0080】
本発明の不飽和ニトリル−共役ジエン共重合体を原料ゴム成分とする加硫性ゴム組成物は、優れた高速加硫性を有し、機械的強度に優れているのでOリングその他シール材用途に好適であり、さらに、ベルト、ホース、ロールなどのゴム製品を始めとし、防振ゴム、電気製品、自動車部品、工業用品、はきものなど広範囲に利用することができる。
【0081】
請求項1、2および3に、それぞれ記載される本発明の不飽和ニトリル−共役ジエン共重合体、その製造方法、および加硫性ゴム組成物の好ましい具体的態様は以下のとおりである。
【0082】
(請求項1)少なくとも3個の第3級炭素原子およびその中の少なくとも1個の第3級炭素原子に直接結合した硫黄原子を有する炭素数12〜16のアルキルチオ基を、分子を構成する単量体単位100モル当り0.03モル以上の割合で分子内に有し、ムーニー粘度が15〜150であり、結合不飽和ニトリル量が10〜60重量%であり、ハロゲン原子を実質的に含有しない不飽和ニトリル−共役ジエン共重合体。
【0083】
(1)該アルキルチオ基を、分子を構成する単量体単位100モル当り0.07モル以上の割合で分子内に有する請求項1記載の不飽和ニトリル−共役ジエン共重合体。
(2)該アルキルチオ基が1,1−ジ(2,2−ジメチルプロピル)−1−エチルチオ基および1−(2,2−ジメチルプロピル)−1−(2,2,4,4−テトラメチルペンチル)−1−エチルチオ基から選ばれる少なくとも1種である請求項1記載の不飽和ニトリル−共役ジエン共重合体。
【0084】
(3)該アルキルチオ基が1,1−ジ(2,2−ジメチルプロピル)−1−エチルチオ基である請求項1記載の不飽和ニトリル−共役ジエン共重合体。
(4)アクリロニトリル10〜60重量%とブタジエン90〜40重量%との共重合体であってムーニー粘度20〜90を有する請求項1記載の不飽和ニトリル−共役ジエン共重合体。
【0085】
(5)数平均分子量(Mn)が35,000以下の低分子量成分を3〜20重量%含有する請求項1記載の不飽和ニトリル−共役ジエン共重合体。
(6)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)、が2.3〜5.5である請求項1記載の不飽和ニトリル−共役ジエン共重合体。
(7)不飽和ニトリルの組成分布幅(△AN)が3〜20である請求項1記載の不飽和ニトリル−共役ジエン共重合体。
【0086】
(請求項2)(a)分子量調整剤として、少なくとも3個の第3級炭素原子およびその中の少なくとも1個の第3級炭素原子に直接結合した硫黄原子を有する炭素数12〜16のアルキルチオール化合物を使用して、ラジカル開始剤の存在下に乳化重合によって不飽和ニトリルと共役ジエンとの共重合体ラテックスを調製し、(b)該共重合体ラテックス中にノニオン界面活性剤を添加し、次いで、(c)該共重合体ラテックスを、金属塩が溶解されている実質的にハロゲン原子を含まない凝固浴中に入れ、加熱して凝固させることを特徴とする不飽和ニトリル−共役ジエン共重合体の製造方法。
【0087】
(8)該アルキルチオール化合物が2,2′,4,6,6′−ペンタメチルヘプタン−4−チオールおよび2,2′,4,6,6′,8,8′−ペプタメチルノナン−4−チオールの中から選ばれる請求項2記載の製造方法。
(9)乳化剤としてカルボン酸素乳化剤を使用する請求項2記載の製造方法。
(10)全単量体の30〜80重量%の存在下に重合を開始し、さらに重合転化率が20〜70%に達した時点で単量体の残量を重合系に添加する請求項2記載の製造方法。
【0088】
(11)該アルキルチオール化合物の全使用量の10〜95%を重合前の単量体混合物中に含有せしめ、さらに重合転化率が20〜70%に達した時点で該アルキルチオール化合物の残量を重合系に添加する請求項2記載の製造方法。
(12)ノニオン界面活性剤の添加量が、重合体100重量部に対し0.01〜0.5重量部である請求項2記載の製造方法。
(13)ノニオン界面活性剤が10℃〜100℃の曇点を有するアルキルフェノールホルマリン縮合物のアルキレンオキシド付加物である請求項2記載の製造方法。
【0089】
(14)アルキレンオキシド付加物がオキシエチレン−オキシプロピレン共付加物である上記(12)記載の製造方法。
(15)金属塩が硫酸アルミニウム、硫酸マグネシウムおよび硫酸アルミニウムの中から選ばれた少なくとも一種である請求項2記載の製造方法。
(16)金属塩の量が重合体100重量部に対し0.5〜50重量部である請求項2記載の製造方法。
【0090】
(請求項3)請求項1に記載の不飽和ニトリル−共役ジエン共重合体および該共重合体100重量部当り硫黄系加硫剤0.01〜10重量部を含有してなる加硫性ゴム組成物。
(13)射出成型用である請求項3記載のゴム組成物。
(14)Oリング用である請求項3記載のゴム組成物。
【図面の簡単な説明】
【図1】実施例2で得られた本発明の不飽和ニトリル−共役ジエン共重合体のH−NMR測定チャート。
【図2】実施例2で得られた本発明の不飽和ニトリル−共役ジエン共重合体の13H−NMR測定チャート。[0001]
[Industrial applications]
The present invention relates to an unsaturated nitrile-conjugated diene copolymer, a method for producing the same, and a vulcanizable rubber composition obtained by blending the copolymer with a vulcanizing agent. An unsaturated nitrile-conjugated diene copolymer which has excellent mechanical strength and does not cause metal corrosion, a method for efficiently producing the unsaturated nitrile-conjugated diene copolymer, and The present invention relates to a vulcanizable rubber composition containing a vulcanizing agent.
[0002]
[Prior art]
2. Description of the Related Art In recent years, injection molding has been widely used for molding acrylonitrile-butadiene rubber (hereinafter, referred to as NBR) used in fields where oil resistance and heat resistance are required, from the viewpoint of productivity and rationality. Recently, the field of application has been widespread, such as vibration-proof rubber, electric parts, automobile parts, industrial goods, footwear and the like.
[0003]
Injection molding of NBR is required to have high cross-linking efficiency by high-temperature and short-time vulcanization, that is, high-speed vulcanization, as well as flow characteristics. In general, the vulcanization of rubber tends to be vulcanized when the vulcanization temperature is high, and therefore, injection molded products are inferior in tensile stress and rebound resilience to compression molded products (for example, The Rubber Association of Japan, Vol. 59, No. 4, pp. 214-215, 1986).
[0004]
In order to obtain high-speed vulcanizability of NBR in injection molding, for example, a method of introducing a functional group such as a carboxyl group or an amino group into a molecule of NBR, a method of blending an appropriate vulcanization accelerator, an emulsion polymerization of NBR A method has been proposed in which the amount of an emulsifier, a coagulant and the like to be used is reduced as much as possible to reduce the amount of these remaining in the NBR. However, such a conventionally proposed method not only does not sufficiently achieve high-speed vulcanizability in NBR injection molding, but also impairs other properties such as cold resistance and compression set.
[0005]
Further, in the injection molding of NBR which is vulcanized at a high temperature, so-called mold contamination is remarkable. That is, contaminants gradually adhere to and accumulate on a mold repeatedly used in NBR molding, and as a result, the molded product itself is contaminated, and a molded product having an excellent surface condition cannot be obtained. For this reason, the mold must be cleaned at regular intervals, and this cleaning requires a great deal of time and money, and is a major cause of lowering productivity.
[0006]
In order to prevent such mold contamination, a method of blending talc, sodium thiosulfate, carbon wax, or silicone oil is known. In the case of high-temperature high-speed vulcanization as described above, little effect is often seen.
[0007]
NBR is generally produced by a method of preparing a polymer latex by emulsion polymerization and coagulating it. A typical example of such a method for producing NBR is described in JP-A-2-173002. In this method, a nonionic surfactant is added to a polymer latex obtained by emulsion polymerization, and then the latex is allowed to flow down into a coagulation bath in which a metal salt is dissolved as a coagulant, and is coagulated by heating. According to this method, rubber particles can be obtained efficiently.
[0008]
On the other hand, in applications where a molded product of NBR is used in contact with a metal, such as a sealing material, it is known to add a halogen-free coagulant to the polymer latex in order to prevent the occurrence of metal corrosion. Have been. A representative example of a halogen-free coagulant is aluminum sulfate. However, when aluminum sulfate is used, the vulcanization rate at the time of sulfur vulcanization is reduced due to the presence of a trace amount of sulfate ions remaining in the NBR, and the mechanical strength of a molded product is impaired.
[0009]
[Problems to be solved by the invention]
In view of the circumstances described above, an object of the present invention is to provide excellent high-speed vulcanization suitability particularly desired in injection molding applications, have good mechanical strength, do not cause a problem of metal corrosion, and An object of the present invention is to provide an unsaturated nitrile-conjugated diene copolymer which gives a vulcanizate which does not cause mold fouling problems.
[0010]
Another object of the present invention is to provide a method capable of producing such an unsaturated nitrile-conjugated diene copolymer with high productivity.
Still another object is to provide a vulcanizable rubber composition which is excellent in high-temperature and high-speed vulcanizability, does not cause a problem of metal corrosion, and gives a vulcanizate having good mechanical strength.
[0011]
[Means for Solving the Problems]
The above object is achieved by the following (1) an unsaturated nitrile-conjugated diene copolymer, (2) a method for producing the same, and (3) a vulcanizable rubber composition containing the same.
(1) A monomer comprising at least three tertiary carbon atoms and an alkylthio group having 12 to 16 carbon atoms and having a sulfur atom directly bonded to at least one tertiary carbon atom therein, constituting a molecule It has 0.03 moles or more in the molecule per 100 moles, has a Mooney viscosity of 15 to 150, has an amount of bonded unsaturated nitrile of 10 to 60% by weight, and has substantially no halogen atom. Saturated nitrile-conjugated diene copolymer.
[0012]
(2) (a) As a molecular weight regulator, an alkylthiol compound having 12 to 16 carbon atoms having at least three tertiary carbon atoms and a sulfur atom directly bonded to at least one tertiary carbon atom therein Is used to prepare a copolymer latex of unsaturated nitrile and conjugated diene by emulsion polymerization in the presence of a radical initiator, (b) adding a nonionic surfactant to the copolymer latex, (C) placing the copolymer latex in a coagulation bath substantially free of halogen atoms in which a metal salt is dissolved, and coagulating by heating to obtain an unsaturated nitrile-conjugated diene copolymer. Manufacturing method of coalescence.
(3) A vulcanizable rubber composition comprising 0.01 to 10 parts by weight of a sulfur-based vulcanizing agent per 100 parts by weight of the unsaturated nitrile-conjugated diene copolymer of the above (1).
[0013]
The unsaturated nitrile-conjugated diene copolymer of the present invention has at least three tertiary carbon atoms and at least one tertiary carbon atom having 12 to 12 carbon atoms having a sulfur atom directly bonded to the tertiary carbon atom. It is a copolymer of an unsaturated nitrile having 16 alkylthio groups in the molecule and a conjugated diene, and has a Mooney viscosity of 15 to 150, preferably 20 to 90. If the Mooney viscosity is less than 15, only a molded article having low strength can be obtained, and there are problems such as a large amount of burrs generated in injection molding, which is not preferable. If it exceeds 150, the viscosity increases, and it becomes difficult to mold not only injection molding.
[0014]
The unsaturated nitrile-conjugated diene copolymer of the present invention preferably contains 3 to 20% by weight, more preferably 5 to 15% by weight, of a component having a number average molecular weight of 35,000 or less. If the content of the component having a number average molecular weight of 35,000 or less is excessively high, the mechanical strength decreases. On the other hand, if it is too low, the workability becomes poor. By incorporating an appropriate amount of a component having a number average molecular weight of 35,000 or less, processability can be improved while maintaining good mechanical strength.
The ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the unsaturated nitrile-conjugated diene copolymer is usually 2.3 to 5.5, preferably 2.7. ~ 4. When Mw / Mn is excessively large, the workability is poor even if a component having a number average molecular weight of 35,000 or less is contained in an appropriate amount.
[0015]
The content of bound unsaturated nitrile units in the copolymer is from 10 to 60% by weight, preferably from 20 to 50% by weight.
Further, the composition distribution width () AN) of the unsaturated nitrile is preferably 3 to 20, and more preferably 5 to 15. If ΔAN is too large, the balance between oil resistance and cold resistance will be poor.
[0016]
The unsaturated nitrile-conjugated diene copolymer of the present invention is characterized by being substantially free of halogen. Here, "substantially contains no halogen" means that the halogen content in the copolymer is 3 ppm or less. Substantially no halogen content is important for avoiding the problem of metal corrosion when a vulcanized molded product of a copolymer is used in contact with a metal such as a sealing material.
[0017]
Specific examples of the unsaturated nitrile include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, and the like. Specific examples of the conjugated diene include 1,3-butadiene, 2,3-dimethylbutadiene, isoprene, and 1,3-pentadiene.
[0018]
In addition, as long as the effects obtained by the present invention are not impaired, it is also possible to replace a part of all monomers other than these monomers with other copolymerizable monomers as necessary. . Other copolymerizable monomers include vinyl monomers such as styrene, α-methylstyrene, and vinylpyridine; non-conjugated diene monomers such as vinyl norbornene, dicyclopentadiene, and 1,4-hexadiene An unsaturated carboxylic acid monomer such as (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic acid Unsaturated carboxylic acid ester-based monomers such as hexyl, cyclohexyl (meth) acrylate, and lauryl (meth) acrylate; further, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, epoxy (meth) acrylate, and urethane (Meth) acrylate and the like. These can be generally used in a range of 10% by weight or less based on all monomers.
[0019]
Among the copolymer rubbers of unsaturated nitriles and conjugated dienes, acrylonitrile-butadiene rubber (hereinafter referred to as NBR) having a bound acrylonitrile content of 10 to 60% by weight, preferably 20 to 50% by weight is suitable, and low nitrile A commercially available product in the range of the amount to the extremely high nitrile amount can be used, and the NBR having the optimum bound acrylonitrile content is selected according to the required performance.
[0020]
The unsaturated nitrile-conjugated diene copolymer of the present invention has in its molecule at least three tertiary carbon atoms and at least one tertiary carbon atom directly bonded thereto. Examples of the alkylthio group having 12 to 16 carbon atoms include 1,1-di (2,2-dimethylpropyl) -1-ethylthio group and 1,1-di (2,2-dimethylpropyl) -1- (2,2 , 4,4-tetramethylpentyl) -1-ethylthio group, which may be contained alone or in combination in one molecule. Among them, a 1,1-di (2,2-dimethylpropyl) -1-ethylthio group is particularly preferred.
[0021]
In the molecule of the unsaturated nitrile-conjugated diene copolymer of the present invention, the above alkylthio group is at least 0.03 mol, preferably at least 0.07 mol, more preferably at least 0.07 mol, per 100 mol of monomer units constituting the molecule. Preferably, it is present in an amount of 0.09 mol or more. The amount of the alkylthio group is usually 0.3 mol or less. If the amount of the alkylthio group is excessively low, a high crosslinking efficiency cannot be obtained in a high-temperature and short-time vulcanization such as injection molding, and therefore, the tensile stress and rebound resilience of the molded product are not improved and the desired high speed is not achieved. Vulcanization is not achieved. In addition, as the amount of the alkylthio group increases, the scorch time (T 5 ) shortens remarkably, and the mold contamination is also greatly improved, so that injection molding with high productivity can be performed. In particular, when the amount is 0.09 mol or more, the crosslinking efficiency is greatly improved, and the maximum torque in the vulcanization curve measured using an oscillating disk rheometer is dramatically increased.
[0022]
The unsaturated nitrile-conjugated diene copolymer of the present invention may comprise, as a molecular weight regulator, at least three tertiary carbon atoms and a thiol group directly bonded to at least one tertiary carbon atom. A copolymer latex of an unsaturated nitrile and a conjugated diene is prepared by emulsion polymerization using an alkyl thiol compound having 12 to 16 carbon atoms in the presence of a radical initiator, and a nonionic is contained in the copolymer latex. It is prepared by adding a surfactant and then placing the copolymer latex in a substantially halogen-free coagulation bath in which the metal salt is dissolved and coagulating by heating.
[0023]
The radical polymerization initiator used is not particularly limited, but usually an organic peroxide, a redox polymerization initiator system, an azo compound, a persulfate, or the like is used. The amount of the polymerization initiator to be used is usually 0.005 to 3 parts by weight per 100 parts by weight of the monomer. The polymerization temperature is preferably in the range of 0 to 100 ° C.
[0024]
Specific examples of the alkylthiol compound used as a molecular weight modifier when producing the unsaturated nitrile-conjugated diene copolymer of the present invention include 2,2 ', 4,6,6'-pentamethylheptane-4- Thiol and 2,2 ', 4,6,6', 8,8'-heptamethylnonane-4-thiol. Among them, 2,2 ', 4,6,6'-pentamethylheptane-4-thiol is particularly preferable, and the unsaturated nitrile-conjugated diene copolymer produced by using the thiol compound has a high speed vulcanization property. Very good.
[0025]
When producing the unsaturated nitrile-conjugated diene copolymer of the present invention, the alkylthiol compounds used as molecular weight regulators can be used alone or in combination. If necessary, it can be used in combination with another compound conventionally known as a molecular weight modifier in radical polymerization. In this case, the alkyl thiol compound should be contained at least 50% by weight, preferably 80% by weight or more, more preferably 95% by weight or more of the total weight of the molecular weight modifier used.
[0026]
Other compounds known as molecular weight regulators in radical polymerization include 2,4,4-trimethylpentane-2-thiol, dodecane-12-thiol, 2,2,6,6-tetramethylheptane-4- Alkylthiol compounds such as methanethiol and 2,4,6-trimethylnonane-4-thiol; xanthogen disulfides such as dimethylxanthogen disulfide, diethylxanthogen disulfide and diisopropylxanthogen disulfide; tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutyl Thiuram disulfides such as thiuram disulfide; halogenated hydrocarbons such as carbon tetrachloride and ethylene bromide; hydrocarbons such as pentaphenylethane; and acrolein and methacrolein , Allyl alcohol, 2-ethylhexyl thioglycolate, terpinolene, α-terpinene, γ-terpinene, dipentene, α-methylstyrene dimer (2-4 diphenyl-4-methyl-1-pentene having 50% by weight or more) Preferred), 2,5-dihydrofuran, 3,6-dihydro-2H-pin, phthalane, 1,2-butadiene, 1,4-hexadiene and the like.
[0027]
The amount of the molecular weight modifier used in the radical polymerization is usually 0.05 to 3 parts by weight, preferably 0.1 to 1 part by weight, based on 100 parts by weight of the monomer mixture used for the copolymerization. The amount used in this range is advantageous in adjusting the molecular weight of the obtained copolymer.
By adding the molecular weight modifier in portions during the polymerization, a polymer containing 3 to 20% by weight of a low molecular weight component having an Mn of less than 35,000 can be obtained, and this polymer has good processability. In general, 10 to 95% by weight of the total amount of the molecular weight modifier used is contained in the monomer mixture before polymerization, and when the polymerization conversion reaches 20 to 70% by weight, the remaining amount of the molecular weight modifier is reduced. It is preferably added to the polymerization system. The number of additions is appropriately determined as needed.
[0028]
Alternatively, two or more types of copolymers having different molecular weights, which are separately manufactured using the molecular weight modifier, may be adjusted without depending on the method of dividingly adding the molecular weight modifier in the polymerization process. it can.
[0029]
In the production of the unsaturated nitrile-conjugated diene copolymer of the present invention, by using such a specific alkylthiol compound as a molecular weight modifier, the polymerization conversion of radical polymerization can be as high as 75% or more, preferably 80% or more. Conversion can be achieved, and as a result, the nitrile rubber can be produced with high productivity.
[0030]
In general, in radical polymerization of nitrile rubber, as the polymerization conversion rate increases, the branching reaction or the gelling reaction increases. As a result, when the obtained nitrile rubber is vulcanized with a vulcanizing agent, high crosslinking efficiency cannot be obtained, and vulcanization properties such as tensile stress and rebound resilience are reduced. Conventionally, t-dodecyl mercaptan, which has been used as a general-purpose molecular weight regulator in radical polymerization of nitrile rubber, is a mixture of isomers of an alkylthiol compound having 9 to 16 carbon atoms, and a mixture of such isomers. The nitrile rubber obtained by using as a molecular weight modifier does not have sufficient high-speed vulcanizability during high-temperature and short-time vulcanization such as injection molding.
[0031]
On the other hand, according to the method for producing an unsaturated nitrile-conjugated diene copolymer of the present invention, even if the polymerization conversion is set to a high value of 80% or more, for example, an oscillating disk rheometer is used. Thus, it is possible to obtain a nitrile rubber excellent in high-speed vulcanizability, for example, showing a high value of the maximum torque in the vulcanization curve measured.
[0032]
The monomer to be polymerized can be charged in its entirety in a batch. Alternatively, the polymerization is started in the presence of 30 to 90% by weight of the total amount of the monomer, and the polymerization conversion rate is further increased. When the amount of the monomer reaches 20 to 70%, a method of adding the remaining amount of the monomer to the polymerization system can be adopted. The unsaturated nitrile-conjugated diene copolymer rubber composition obtained by the monomer division addition method is characterized by having good and balanced oil resistance and cold resistance.
[0033]
The type and amount of the monomer to be added in portions are appropriately selected according to the desired amount of the unsaturated unsaturated nitrile and the composition distribution width (△ AN) of the unsaturated nitrile. For example, when the amount of the bound unsaturated nitrile is less than 37%, the unsaturated nitrile is generally added during the polymerization, and when the amount of the bound nitrile is 37% or more, the conjugated diene is generally added during the polymerization. The number of additions is appropriately determined as needed.
When an unsaturated nitrile-conjugated diene copolymer latex is prepared by emulsion polymerization, a copolymer obtained by using a carboxylic acid-based emulsifier as an emulsifier can cause mold contamination in high-temperature short-time vulcanization such as injection molding. Sexual issues are further improved.
[0034]
Examples of the carboxylic acid emulsifier to be used include fatty acid soap and rosin acid soap. Specifically, the fatty acid soap is a long-chain aliphatic carboxylic acid having 12 to 18 carbon atoms, such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid and the like, and sodium of these mixed aliphatic carboxylic acids. Selected from salts or potassium salts. The rosin acid soap is selected from sodium or potassium salts of disproportionated or hydrogenated natural rosins such as gum rosin, wood rosin or tall oil rosin. These natural rosins are mainly composed of abietic acid, levopimaric acid, parastolic acid, dehydroabietic acid, tetrahydroabietic acid and neoabietic acid. The amount of the emulsifier used is not particularly limited, but is usually 0.05 to 10 parts by weight, preferably 0.5 to 3 parts by weight, per 100 parts by weight of the monomer.
[0035]
To prepare a latex of an unsaturated nitrile-conjugated diene copolymer, polymerization is carried out by a usual emulsion polymerization method, and when a predetermined conversion is reached, hydroxylamine, sodium carbamate, etc. are added to terminate the polymerization. . Next, the remaining monomer is removed by heating, steam distillation or the like.
[0036]
The polymerization terminator used is not particularly limited, and a terminator having an amine structure, such as hydroxylamine and sodium dimethyldithiocarbamate, which have been conventionally used can be used.
In the present invention, a terminating agent which does not generate nitroamine or is generated only in a trace amount, which has attracted attention in recent years, can be used.
[0037]
Conventionally, when an unsaturated nitrile-conjugated diene copolymer is produced by radical polymerization, a terminator having an amine structure has been used.However, it has been found that the use of this terminator generates nitrosamine having carcinogenic properties. As a countermeasure, it has been proposed to use an aromatic hydroxydithiocarboxylic acid having no amine structure or a terminating agent which is considered to generate less nitrosamine even though it has an amine structure such as diethylhydroxyamine. (For example, JP-A-2-242802). However, when these proposed terminators are used, although the generation of nitrosamines is suppressed, there is a problem that the vulcanization rate is reduced in sulfur vulcanization and the mechanical strength is reduced.
[0038]
In contrast to conventional unsaturated nitrile-conjugated diene copolymers, the production of the unsaturated nitrile-conjugated diene copolymers of the present invention surprisingly has no or no amine structure. Even if a terminating agent which is considered to generate little nitrosamine is used, a copolymer rubber having high mechanical strength and exhibiting high-speed vulcanization during sulfur vulcanization can be obtained.
[0039]
Terminating agents that are considered to generate less nitrosamine even though they have an amine structure include diethylhydroxyamine, hydroxyaminesulfonic acid and alkali metal salts thereof, and the like. And aromatic hydroxydithiocarboxylic acids such as hydroxydimethylbenzenedithiocarboxylic acid, hydroxydiethylbenzenedithiocarboxylic acid and hydroxydibutylbenzenedithiocarboxylic acid, and alkali metal salts thereof, hydroquinone derivatives and catechol derivatives. These radical polymerization terminators can be used alone or in combination of two or more.
The amount of the terminator used is not particularly limited, but is usually 0.1 to 10 parts by weight based on 100 parts by weight of all monomers.
[0040]
In order to produce the unsaturated nitrile-conjugated diene copolymer substantially free of a halogen atom of the present invention, a nonionic surfactant is added to the copolymer latex prepared as described above, and then the copolymer is added. The coalesced latex is placed in a substantially halogen-free coagulation bath in which the metal salt is dissolved and heated to coagulate.
By adopting the latex coagulation method as described above, crumbs having an appropriate size and porosity and having good drying properties can be easily produced, and the addition of nonionic surfactants allows the use of metal salts. The amount can be reduced. Thus, the resulting unsaturated nitrile-conjugated diene copolymer is substantially free of halogens, does not cause metal corrosion problems, and maintains good mechanical strength.
[0041]
Specific examples of the nonionic surfactant added to the latex include alkylene oxide adducts of alkylphenol formalin condensate (for example, oxyethylene-oxypropylene coadduct), polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, Examples include polyoxyethylene fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene oxypropylene block polymers, alkylsulfinyl alcohols, and fatty acid monoglycerides. These nonionic surfactants may be used alone or in combination of two or more, and are appropriately selected depending on coagulation conditions.
[0042]
Among the above nonionic surfactants, an oxyethylene-oxypropylene coadduct of an alkylphenol formalin condensate is preferable. This coadduct shows a good thermosensitive gel effect. The cloud point of the co-adduct is preferably in the range of 10 to 100C, more preferably in the range of 20 to 70C. If the cloud point is too low, handleability is poor, while if it is too high, it is difficult to obtain a thermosensitive gel effect.
The amount of the nonionic surfactant to be added is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 2 parts by weight, based on 100 parts by weight of the polymer. If the added amount is too small, the above-mentioned effect is not recognized, while if the added amount exceeds 5 parts by weight, the effect is not substantially changed.
[0043]
As the metal salt to be dissolved during coagulation and melting, those containing no halogen are used, and specific examples thereof include metal sulfates such as aluminum sulfate, magnesium sulfate, and sodium sulfate. preferable.
The amount of the metal salt used is preferably 0.5 to 50 parts by weight, more preferably 1 to 30 parts by weight, based on 100 parts by weight of the polymer. If the amount of the metal salt is less than 0.5 part by weight, coagulation in a coagulation bath becomes insufficient or crumbs are enlarged. On the other hand, if it exceeds 50 parts by weight, the solidification rate is controlled by the metal salt, and the crumb becomes poor in porosity.
[0044]
When the coagulation bath containing the polymer latex is heated to a temperature higher than the cloud point of the nonionic surfactant, the polymer in the system coagulates and precipitates. The cloud point of the nonionic surfactant is preferably in the range of 10 to 100 ° C. If the cloud point is too low, cooling is required to keep the cloud point below the cloud point, and if it is too high, high temperature heating is required to coagulate. Become.
The coagulated polymer is recovered, washed with water, and dried to obtain a desired copolymer.
[0045]
By adding a sulfur-based vulcanizing agent to the unsaturated nitrile-conjugated diene copolymer of the present invention, a vulcanizable rubber composition having excellent high-speed vulcanizability can be obtained. Sulfur vulcanizing agents to be used include sulfur such as powdered sulfur, sulfur, precipitated sulfur, colloidal sulfur, surface-treated sulfur and insoluble sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, N, N Sulfur compounds such as' -dithio-bis (hexahydro-2H-azepinone-2), phosphorus-containing polysulfide, and high molecular polysulfide; furthermore, tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, and 2- (4'-morpholinodithio) Vulcanization accelerators containing sulfur such as benzothiazole can be mentioned.
[0046]
Further, in addition to these sulfur vulcanizing agents, vulcanization accelerators such as zinc white and stearic acid; guanidine, aldehyde-amine, aldehyde-ammonia, thiazole, sulfenamide, thiourea, Other vulcanization accelerators, such as xanthates, can be used.
The amount of the sulfur-based vulcanization accelerator is not particularly limited, but is usually 0.10 to 10 parts by weight, preferably 0.1 to 5 parts by weight, per 100 parts by weight of the unsaturated nitrile-conjugated diene copolymer. .
[0047]
If the rubber composition does not contain a sulfur-based vulcanizing agent as a vulcanizing agent, good high-speed vulcanizability cannot be achieved in high-temperature short-time vulcanization. However, for example, a vulcanizing agent other than a sulfur-based vulcanizing agent such as an organic peroxide-based vulcanizing agent can be appropriately used in addition to the sulfur-based vulcanizing agent.
[0048]
Examples of the organic peroxide vulcanizing agent used in combination include, for example, t-butyl hydroperoxide, cumene hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, and 2,5-dimethyl-t-butylperoxy. Hexane, 2,5-dimethyl-t-butylperoxyhexyne, 1,3-bis (t-butylperoxyisopropyl) benzene, p-chlorobenzoyl peroxide, t-butylperoxybenzoate, t-butylperoxyisopropyl carbonate, t -Butyl benzoate and the like. Other usable vulcanizing agents include polyfunctional compounds such as tolmethylolpropane trimethacrylate, divinylbenzene, ethylene dimethacrylate, and triallyl isocyanurate. Furthermore, metal soap / sulfur type, triazine / dithiocarbamate type, polycarboxylic acid / onium salt type, polyamine type (hexamethylenediamine, triethylenetetramine, hexamethylenediaminecarbamate, ethylenediaminecarbamate, triethylenediamine, etc.), ammonium benzoate A vulcanizing agent such as a salt type may be used together if necessary.
[0049]
In the rubber composition of the present invention, if necessary, other compounding agents usually used in the rubber field, for example, reinforcing agents (various carbon black, silica, talc, etc.), fillers (calcium carbonate, Clay, etc.), processing aids, process oils (including plasticizers), antioxidants, antiozonants and the like.
[0050]
The rubber composition of the present invention may contain, if necessary, acrylic rubber, fluorine rubber, styrene-butadiene copolymer rubber, ethylene-propylene-diene terpolymer rubber (EPDM), natural rubber, polyisoprene rubber, etc. Other rubbers can be used in combination with the unsaturated nitrile-conjugated diene copolymer.
Although the method for producing the rubber composition of the present invention is not particularly limited, usually, the rubber is obtained by kneading and mixing a raw rubber and a vulcanizing system, and other compounding agents with a usual mixer such as a roll or a Banbury mixer. Produce the composition.
[0051]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. Parts and% in Examples, Comparative Examples and Reference Examples are based on weight unless otherwise specified.
The characteristics of the rubber composition and the raw material components were measured as follows.
(1) High-speed vulcanizability evaluation test According to the Japan Rubber Association Standard SRIS 3102, scorch at 160 ° C. by an oscillating disc rheometer using about 10 g of an unvulcanized rubber composition prepared according to the formulation shown in Table 1. The time (T 5 ) (unit: minute) and the maximum torque (V max ) (unit: kgf · cm) were measured. The value of T 5 is faster smaller the vulcanization rate. In addition, the value of V max is highly larger the crosslinking efficiency.
[0052]
(2) Vulcanization property evaluation test A 2 mm thick sheet obtained by vulcanizing an unvulcanized rubber composition prepared according to the formulation shown in Table 1 at 160 ° C. for 20 minutes in accordance with Japanese Industrial Standard JIS K6301. Was punched out using a No. 3 dumbbell to prepare a test piece, and the tensile strength (unit: kgf / cm 2 ), 100% tensile stress (unit: kgf / cm 2 ), and elongation (unit:%) were measured. did.
The hardness was measured using a JIS spring type A hardness tester. Further, the rebound resilience was measured according to JIS K6301 (unit:%).
[0053]
For the oil resistance test, a rubber test piece was immersed in lubricating oil No. 3 (kinematic viscosity: 31.9 to 34.1, aniline point: 69.5 ± 1 ° C., flash point: 162.7 ° C.) in accordance with JIS K6301. The volume change rate (unit:%) was measured.
The cold resistance test was evaluated by a Gehman torsion test according to JIS K6301. The temperature (T 10 ) at which the torsion angle becomes 10 times the torsion angle when the torsion angle is low (23 ° C.) is indicated (unit: ° C.). The lower the temperature, the better the cold resistance.
[0054]
[Table 1]
Figure 0003603350
[0055]
(3) Amount of bound nitrile The nitrogen content in the copolymer was measured by the Kjeldahl method in accordance with Japanese Industrial Standard JIS K6384, and the amount of bound nitrile was calculated (unit:%).
(4) Mooney viscosity The Mooney viscosity was measured at 100 ° C. using about 40 g of the copolymer according to Japanese Industrial Standard JIS K6383.
[0056]
(5) Molecular weight, molecular weight distribution By gel permeation (solvent: tetrahydrofuran), the number average molecular weight (Mn) and the weight average molecular weight (Mw) in terms of standard polystyrene were measured (unit: 10,000).
Using the measured area of the entire molecular weight distribution and the area of the component having a number average molecular weight of 35,000 or less, the weight% of the component was determined.
[0057]
(6) Composition distribution width of unsaturated nitrile (△ AN)
The composition distribution width of the unsaturated nitrile is determined by a high performance liquid chromatography method, and its outline is described in Rubber Chemistry and Technology 63 , (2), pp. 181 to 191 (1990). . That is, the unsaturated nitrile-conjugated diene copolymer is measured by high performance liquid chromatography under the following measurement conditions, and the half width of the chromatogram is defined as ΔAN. When determining ΔAN, a calibration curve of elution amount−unsaturated nitrile amount is prepared using a sample whose unsaturated nitrile amount is known.
[0058]
1. Column gel: (2-chloroacrylonitrile / ethylene dimethacrylate) crosslinked polymer gel Particle size: 2 to 6 μm
Column: stainless steel column column diameter x length: 0.46 cm x 25 cm
2. Eluent chloroform / n-hexane (weight ratio) 30/70 → 100/0 (gradient elution in 30 minutes). However, it flows for 20 minutes at the initial setting chloroform / n-hexane = 30/70.
3. Flow rate 0.5 ml / min4. 4. Sample concentration 1% by weight chloroform solution Injection volume 10-20 μl
6. Detector Light Scattering Mass Detector (Mass Detector: Model 750 / I4 ACS Co.)
7. Equipment Trirotor VI type (manufactured by JASCO Corporation)
[0059]
(7) Concentration of 1,1-di (2,2-dimethylpropyl) -1-ethylthio group in copolymer The procedure of dissolving the copolymer in benzene and coagulating in methyl alcohol is repeated three times to purify. Then, the purified copolymer was subjected to NMR measurement.
By 1 H-NMR measurement (400 MHz), a peak due to a proton of a terminal methyl group in the ethylthio group was detected at around 1.05 ppm, and further, by 13 C-NMR measurement (100 MHz), A peak due to the carbon of the methylene group is detected at around 54.6 ppm.
The quantitative determination of the concentration of the ethylthio group in the copolymer is based on the integrated value of the peak attributed to the terminal methyl group in 1 H-NMR measurement and the unsaturated bond of butadiene detected at about 4.8 to 5.8 ppm. It was determined by calculation using the ratio to the integral value of the peak attributed to protons (unit: mol%).
[0060]
(8) Residual chlorine concentration in the copolymer The copolymer is placed in a closed vessel containing water, and the mixture is boiled at 120 ° C. for 24 hours to extract soluble components. The extract is concentrated, and then ion chromatography is performed. Was used to measure the chlorine concentration (unit: ppm).
(9) Nitrosamine concentration in copolymer According to the method of the German Association of Rubber Technology (DIK), the copolymer was subjected to Soxhlet extraction with methanol, and after concentration treatment, the nitrosamine concentration (unit: ppm) was measured with a gas chromatography thermal energy analyzer (GC). -TEA).
[0061]
(10) Evaluation of Mold Contamination The two 1 mm-thick metal plates of 2 mm thick, each of which was filled with an unvulcanized rubber composition prepared according to the formulation shown in Table 1 and filled in a hole of 12 mm in diameter, had a thickness of 2 mm. (JIS G3141 mild steel sheet), and vulcanized under the conditions of 220 ° C., 20 kg / cm 2 and 2 minutes. Next, the vulcanized rubber pieces are removed, the unvulcanized rubber composition is filled again, and the same operation is performed. After repeating this operation 50 times, the contamination of the upper and lower mild steel sheet surfaces was evaluated.
The evaluation was made as 1 when the surface of the mild steel sheet was not contaminated, and as 5 when the entire surface was significantly contaminated, and indicated in five stages according to the degree of contamination.
[0062]
(11) Evaluation of processability According to ASTM D-2230-77, the unvulcanized rubber composition is extruded using a garbage die, and the die swell (%) and the amount of extrusion (g / min) are determined, and the shape or state of the extruded product Was evaluated for the degree of swelling / porosity and the state of edges, surfaces, and corners, and displayed on a five-point scale (5 was the best and 1 was the worst).
[0063]
(12) Metal Corrosion The metal plate SAE1020 was tested for corrosivity by the General Motor (GM) method. The details of the test method are as follows.
A test piece (2 mm x 5 cm x 5 cm) was prepared from a 2 mm thick sheet obtained by vulcanizing an unvulcanized rubber composition prepared according to the formulation shown in Table 1 by a conventional method. It is inserted into a plate (SAE1020, 400 mesh polished), and is left in a constant temperature and humidity chamber at 50 ° C. for 96 hours under a constant load from above. After the standing, the sample is taken out, and the degree of corrosion of the metal plate surface is evaluated based on a six-point standard (0 to 5). The case where the entire surface was corroded was set to 5, and the case where no corrosion was observed on the surface was set to 0.
[0064]
Examples 1 to 13 and Comparative Examples 1 and 2
In a reactor having an internal volume of 10 liters, 2 parts of potassium oleate as an emulsifier, 0.1 part of potassium phosphate as a stabilizer, and 150 parts of water were charged, and butadiene and acrylonitrile in the amounts shown in Table 2 were further adjusted. 2,2 ', 4,6,6'-pentamethylheptane-4-thiol (hereinafter referred to as PMHT) as an activator, 0.015 part of ferrous sulfate as an activator and paramenthane as a polymerization initiator. Emulsion polymerization was started at 10 ° C. in the presence of 0.05 parts of hydroperoxide. When a predetermined polymerization conversion was reached, 0.2 parts of hydroxylamine sulfate per 100 parts of monomer was added to terminate the polymerization. Subsequently, the mixture was heated and the residual monomer was recovered by steam distillation under reduced pressure at about 70 ° C., and 2 parts of an alkylated phenol was added as an antioxidant to obtain a copolymer latex.
[0065]
Nonionic surfactants described in Table 2 were added to the copolymer latex. (The addition amounts shown in Table 2 are parts by weight). Next, the copolymer latex was dropped into a 5-liter coagulation tank equipped with a stirrer containing a coagulation water bath in which a predetermined amount of coagulant shown in Table 2 was dissolved. The coalescence was solidified. The produced crumbs were taken out, washed with water, and dried under reduced pressure at 50 ° C. to obtain respective copolymers. Table 3 shows the measurement results of the amount of bound butadiene and the amount of bound nitrile in each copolymer, and the Mooney viscosity and other properties of the copolymer.
[0066]
In Examples 10 and 12, during the preparation of the copolymer latex, the acrylonitrile monomer and PMHT in the amounts shown in Table 2 were added in portions when a predetermined polymerization conversion was reached.
Next, each copolymer was kneaded with a Banbury mixer according to the compounding recipe shown in Table 1 to obtain a rubber composition, and then press-vulcanized at 160 ° C. for 20 minutes, and the physical properties of the obtained vulcanized product were evaluated. did. Table 4 shows the results.
[0067]
Comparative Example 3
Butadiene and acrylonitrile were copolymerized under the same conditions as in Example 2 except that the molecular weight modifier was changed to commercially available t-dodecyl mercaptan (manufactured by Philips Petroleum). Table 3 shows the polymerization results. Next, the results of evaluating the physical properties of the vulcanized product of the copolymer in the same manner as in Example 1 are shown in Table 4.
[0068]
[Table 2]
Figure 0003603350
[0069]
[Table 3]
Figure 0003603350
[0070]
[Table 4]
Figure 0003603350
[0071]
FIG. 1 shows an H-NMR measurement chart of the copolymer obtained in Example 2, and FIG. 2 shows a 13 C-NMR measurement chart thereof.
The presence of a 1,1-di (2,2-dimethylpropyl) -1-ethylthio group was confirmed by NMR measurement of the acrylonitrile-butadiene copolymer obtained in the other Examples and Comparative Examples 1 and 2. .
[0072]
From Table 4, vulcanizable rubber compositions (Examples 1 to 13) containing the unsaturated nitrile-conjugated diene copolymer of the present invention and a sulfur-based vulcanizing agent were measured with an oscillating disk rheometer. The scorch time (T 5 ) is short, and the maximum torque (V max ) shows a high value, indicating that it is excellent in high-speed vulcanization. As a result, 100% tensile stress, tensile strength, and rebound resilience in vulcanization properties show high levels, indicating that vulcanization with high crosslinking efficiency is performed. Further, the unsaturated nitrile-conjugated diene copolymer is substantially free of halogens and does not cause metal corrosion problems. It is also excellent in mold contamination.
[0073]
In the case of using a copolymer latex prepared by dividingly adding acrylonitrile at the time of polymerization (Examples 10 and 12), △ was lower than that in the case of using another copolymer latex having the same amount of bound acrylonitrile. aN is low, low T 10 by Gehman torsion test, since it is a low volume change rate, while maintaining the level of high mechanical strength, it can be seen that the oil resistance and cold resistance is 0.00 and the balance was good.
Furthermore, in Examples 10 and 12, since the molecular weight modifier PMHT was added in a time-division manner during polymerization, the results of the evaluation of workability by a garbage die were good, and the copolymers were excellent in mechanical strength and workability. I understand.
[0074]
On the other hand, the one obtained by emulsion polymerization using t-dodecyl mercaptan (commercially available), which is conventionally known as a general-purpose molecular weight regulator in radical polymerization (Comparative Example 3), has a sufficient high-speed vulcanization property. Not obtained, low mechanical strength, low rebound resilience. Mold contamination is also poor.
In addition, NMR measurement was performed on a copolymer obtained using commercially available t-dodecyl mercaptan, but the presence of a 1,1-di (2,2-dimethylpropyl) -1-ethylthio group was not confirmed. .
[0075]
Example 14 and Comparative Example 4
Acrylonitrile and butadiene were copolymerized in the same manner as in Example 1 except that 0.3 parts of diethylhydroxyamine was used as a terminator, and the nitrosodimethylamine concentration (unit: ppb) in the obtained copolymer and its addition were measured. The properties of the sulphate were evaluated.
Acrylonitrile and butadiene were copolymerized in the same manner as in Comparative Example 3 except that 0.6 part of diethylhydroxyamine was used as a terminator, and the nitrosodimethylamine concentration (unit: ppb) in the obtained copolymer and The physical properties of the vulcanized product were evaluated.
Table 5 shows the obtained results together with the results of Example 1 and Comparative Example 3.
[0076]
[Table 5]
Figure 0003603350
[0077]
Table 5 shows that according to the production method of the present invention, a copolymer excellent in high-speed vulcanizability and mechanical strength can be obtained without generating nitrosamine. On the other hand, in the conventional production method, although the vulcanization rate is improved by using sodium dimethyldithiocarbamate as a terminator, it is found that the effect obtained by the present invention is not reached.
[0078]
【The invention's effect】
Thus, according to the present invention, excellent mechanical strength, especially in high-temperature and short-time vulcanization, exhibits excellent high-speed vulcanizability, without the problem of metal corrosion and further improving the problem of mold contamination Provided are unsaturated nitrile-conjugated diene copolymers. Since this copolymer has excellent high-speed vulcanization properties, it is particularly suitable for use in injection molding, and it is possible to improve productivity and labor saving in molding rubber products.
[0079]
Further, the unsaturated nitrile-conjugated diene copolymer obtained by dividing and adding the monomer during the polymerization has a small composition distribution width ΔAN of the unsaturated nitrile, and has a good and balanced cold resistance and oil resistance. Have.
Furthermore, the unsaturated nitrile-conjugated diene copolymer obtained by dividingly adding PMHT (molecular weight modifier) during polymerization contains a relatively large amount of low molecular weight components having a number average molecular weight Mn of 35,000 or less, and is processed. Excellent in nature.
[0080]
The vulcanizable rubber composition comprising the unsaturated nitrile-conjugated diene copolymer of the present invention as a raw rubber component has excellent high-speed vulcanizability and excellent mechanical strength. It can be used in a wide range such as rubber products such as belts, hoses and rolls, as well as anti-vibration rubber, electric products, automobile parts, industrial goods, footwear and the like.
[0081]
Preferred specific embodiments of the unsaturated nitrile-conjugated diene copolymer of the present invention, the method for producing the same, and the vulcanizable rubber composition described in claims 1, 2 and 3 are as follows.
[0082]
(Claim 1) An alkylthio group having 12 to 16 carbon atoms and having a sulfur atom directly bonded to at least three tertiary carbon atoms and at least one tertiary carbon atom therein is formed by a single unit constituting a molecule. Having a Mooney viscosity of 15 to 150, an amount of bonded unsaturated nitrile of 10 to 60% by weight, and substantially containing a halogen atom. Unsaturated nitrile-conjugated diene copolymer.
[0083]
(1) The unsaturated nitrile-conjugated diene copolymer according to claim 1, wherein the alkylthio group has 0.07 mol or more in the molecule per 100 mol of monomer units constituting the molecule.
(2) The alkylthio group is a 1,1-di (2,2-dimethylpropyl) -1-ethylthio group and 1- (2,2-dimethylpropyl) -1- (2,2,4,4-tetramethyl 2. The unsaturated nitrile-conjugated diene copolymer according to claim 1, which is at least one member selected from the group consisting of (pentyl) -1-ethylthio group.
[0084]
(3) The unsaturated nitrile-conjugated diene copolymer according to claim 1, wherein the alkylthio group is a 1,1-di (2,2-dimethylpropyl) -1-ethylthio group.
(4) The unsaturated nitrile-conjugated diene copolymer according to claim 1, which is a copolymer of 10 to 60% by weight of acrylonitrile and 90 to 40% by weight of butadiene and has a Mooney viscosity of 20 to 90.
[0085]
(5) The unsaturated nitrile-conjugated diene copolymer according to claim 1, which contains 3 to 20% by weight of a low molecular weight component having a number average molecular weight (Mn) of 35,000 or less.
(6) The unsaturated nitrile-conjugated diene copolymer according to claim 1, wherein the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 2.3 to 5.5.
(7) The unsaturated nitrile-conjugated diene copolymer according to claim 1, wherein the composition distribution width (△ AN) of the unsaturated nitrile is 3 to 20.
[0086]
(2) (a) As a molecular weight regulator, an alkyl having 12 to 16 carbon atoms having at least three tertiary carbon atoms and a sulfur atom directly bonded to at least one tertiary carbon atom therein. Using a thiol compound, a copolymer latex of an unsaturated nitrile and a conjugated diene is prepared by emulsion polymerization in the presence of a radical initiator, and (b) a nonionic surfactant is added to the copolymer latex. And (c) placing the copolymer latex in a coagulation bath substantially free of halogen atoms in which a metal salt is dissolved, and coagulating by heating to obtain an unsaturated nitrile-conjugated diene. A method for producing a copolymer.
[0087]
(8) The alkyl thiol compound is 2,2 ', 4,6,6'-pentamethylheptane-4-thiol and 2,2', 4,6,6 ', 8,8'-peptamethylnonane- 3. The method according to claim 2, wherein the method is selected from 4-thiols.
(9) The method according to claim 2, wherein a carboxylic oxygen emulsifier is used as the emulsifier.
(10) The polymerization is started in the presence of 30 to 80% by weight of all the monomers, and the remaining amount of the monomers is added to the polymerization system when the polymerization conversion reaches 20 to 70%. 2. The production method according to 2.
[0088]
(11) 10 to 95% of the total amount of the alkyl thiol compound used is contained in the monomer mixture before the polymerization, and when the polymerization conversion reaches 20 to 70%, the remaining amount of the alkyl thiol compound is The method according to claim 2, wherein is added to the polymerization system.
(12) The method according to claim 2, wherein the amount of the nonionic surfactant is 0.01 to 0.5 part by weight based on 100 parts by weight of the polymer.
(13) The production method according to claim 2, wherein the nonionic surfactant is an alkylene oxide adduct of an alkylphenol formalin condensate having a cloud point of 10 ° C to 100 ° C.
[0089]
(14) The production method according to the above (12), wherein the alkylene oxide adduct is an oxyethylene-oxypropylene coadduct.
(15) The method according to claim 2, wherein the metal salt is at least one selected from aluminum sulfate, magnesium sulfate and aluminum sulfate.
(16) The method according to claim 2, wherein the amount of the metal salt is 0.5 to 50 parts by weight based on 100 parts by weight of the polymer.
[0090]
(3) A vulcanizable rubber comprising the unsaturated nitrile-conjugated diene copolymer according to (1) and 0.01 to 10 parts by weight of a sulfur-based vulcanizing agent per 100 parts by weight of the copolymer. Composition.
(13) The rubber composition according to claim 3, which is used for injection molding.
(14) The rubber composition according to claim 3, which is used for an O-ring.
[Brief description of the drawings]
FIG. 1 is a 1 H-NMR measurement chart of the unsaturated nitrile-conjugated diene copolymer of the present invention obtained in Example 2.
FIG. 2 is a 13 H-NMR measurement chart of the unsaturated nitrile-conjugated diene copolymer of the present invention obtained in Example 2.

Claims (3)

少なくとも3個の第3級炭素原子およびその中の少なくとも1個の第3級炭素原子に直接結合した硫黄原子を有する炭素数12〜16のアルキルチオ基を、分子を構成する単量体単位100モル当り0.03モル以上の割合で分子内に有し、ムーニー粘度が15〜150であり、結合不飽和ニトリル量が10〜60重量%であり、ハロゲン原子を実質的に含有しない不飽和ニトリル−共役ジエン共重合体。A C12-C16 alkylthio group having at least three tertiary carbon atoms and a sulfur atom directly bonded to at least one tertiary carbon atom therein is converted into a monomer unit of 100 mol Per mole of the unsaturated nitrile having a Mooney viscosity of 15 to 150, a bound unsaturated nitrile of 10 to 60% by weight, and substantially no halogen atom. Conjugated diene copolymer. (a)分子量調整剤として、少なくとも3個の第3級炭素原子およびその中の少なくとも1個の第3級炭素原子に直接結合した硫黄原子を有する炭素数12〜16のアルキルチオール化合物を使用して、ラジカル開始剤の存在下に乳化重合によって不飽和ニトリルと共役ジエンとの共重合体ラテックスを調製し、(b)該共重合体ラテックス中にノニオン界面活性剤を添加し、次いで、(c)該共重合体ラテックスを、金属塩が溶解されている実質的にハロゲン原子を含まない凝固浴中に入れ、加熱して凝固させることを特徴とする不飽和ニトリル−共役ジエン共重合体の製造方法。(A) As a molecular weight modifier, an alkylthiol compound having 12 to 16 carbon atoms having at least three tertiary carbon atoms and a sulfur atom directly bonded to at least one tertiary carbon atom therein is used. To prepare a copolymer latex of unsaturated nitrile and conjugated diene by emulsion polymerization in the presence of a radical initiator, (b) adding a nonionic surfactant to the copolymer latex, and then adding (c) A) preparing an unsaturated nitrile-conjugated diene copolymer, which comprises placing the copolymer latex in a coagulation bath substantially free of halogen atoms in which a metal salt is dissolved, and coagulating by heating. Method. 請求項1に記載の不飽和ニトリル−共役ジエン共重合体および該共重合体100重量部当り硫黄系加硫剤0.01〜10重量部を含有してなる加硫性ゴム組成物。A vulcanizable rubber composition comprising the unsaturated nitrile-conjugated diene copolymer according to claim 1 and 0.01 to 10 parts by weight of a sulfur-based vulcanizing agent per 100 parts by weight of the copolymer.
JP26136494A 1994-08-29 1994-09-30 Unsaturated nitrile-conjugated diene copolymer, method for producing the same, and vulcanizable rubber composition Expired - Lifetime JP3603350B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP26136494A JP3603350B2 (en) 1994-09-30 1994-09-30 Unsaturated nitrile-conjugated diene copolymer, method for producing the same, and vulcanizable rubber composition
US08/793,677 US5703189A (en) 1994-08-29 1995-06-07 Unsaturated nitrile-conjugated diene copolymer, process for producing same and vulcanizable rubber composition
US08/793,678 US5807941A (en) 1994-08-29 1995-06-07 Unsaturated nitrile-conjugated diene copolymer process for producing same and vulcanizable rubber composition
EP95921120A EP0779300B1 (en) 1994-08-29 1995-06-07 Unsaturated nitrile-conjugated diene copolymer, process for producing the same, and vulcanizable rubber composition
DE69506885T DE69506885T2 (en) 1994-08-29 1995-06-07 UNSATURATED NITRILE-CONJUGATED DIENCOPOLYMER, METHOD FOR THE PRODUCTION THEREOF AND VULCANIZABLE RUBBER COMPOSITION
PCT/JP1995/001133 WO1996006869A1 (en) 1994-08-29 1995-06-07 Unsaturated nitrile-conjugated diene copolymer, process for producing the same, and vulcanizable rubber composition
EP95921121A EP0779301B1 (en) 1994-08-29 1995-06-07 Unsaturated nitrile-conjugated diene copolymer, process for producing the same, and vulcanizable rubber composition
PCT/JP1995/001132 WO1996006868A1 (en) 1994-08-29 1995-06-07 Unsaturated nitrile-conjugated diene copolymer, process for producing the same, and vulcanizable rubber composition
DE69518528T DE69518528T2 (en) 1994-08-29 1995-06-07 UNSATURATED NITRILE-CONJUGATED DIENCOPOLYMER, METHOD FOR THE PRODUCTION THEREOF AND VULCANIZABLE RUBBER COMPOSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26136494A JP3603350B2 (en) 1994-09-30 1994-09-30 Unsaturated nitrile-conjugated diene copolymer, method for producing the same, and vulcanizable rubber composition

Publications (2)

Publication Number Publication Date
JPH08100030A JPH08100030A (en) 1996-04-16
JP3603350B2 true JP3603350B2 (en) 2004-12-22

Family

ID=17360821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26136494A Expired - Lifetime JP3603350B2 (en) 1994-08-29 1994-09-30 Unsaturated nitrile-conjugated diene copolymer, method for producing the same, and vulcanizable rubber composition

Country Status (1)

Country Link
JP (1) JP3603350B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286524A (en) 1998-03-31 1999-10-19 Nippon Zeon Co Ltd Diene-based rubber, its production and rubber composition
JP4782355B2 (en) * 2002-10-25 2011-09-28 日本ゼオン株式会社 Nitrile group-containing conjugated diene rubber and process for producing the same
CA2413636A1 (en) * 2002-12-05 2004-06-05 Bayer Inc. Adhesive compositions
DE102007024011A1 (en) * 2007-05-22 2008-11-27 Lanxess Deutschland Gmbh nitrile rubbers
DE102007024010A1 (en) * 2007-05-22 2008-11-27 Lanxess Deutschland Gmbh nitrile rubbers
JP2009084553A (en) * 2007-09-12 2009-04-23 Jsr Corp Method for producing rubbery polymer for electronic material and rubbery polymer for electronic material
CN101945896B (en) * 2008-01-29 2013-07-24 朗盛德国有限责任公司 Nitrile rubbers which optionally contain alkylthio terminal groups and which are optionally hydrogenated
JP5514740B2 (en) * 2008-01-29 2014-06-04 ランクセス・ドイチュランド・ゲーエムベーハー Nitrile rubber optionally containing alkylthio end groups and optionally hydrogenated
CN101932611B (en) * 2008-01-29 2013-03-06 朗盛德国有限责任公司 Nitrile rubbers which optionally contain alkylthio terminal groups and which are optionally hydrogenated
IT1397345B1 (en) * 2008-09-09 2013-01-10 Polimeri Europa Spa PROCESS FOR THE ELIMINATION OF REMAINING MERCAPTANES FROM NITRILE RUBBERS
KR101435299B1 (en) * 2009-09-17 2014-08-27 란세스 도이치란트 게엠베하 Nitrile rubbers and production thereof in organic solvents
CN114380948B (en) * 2020-10-21 2024-03-01 中国石油天然气股份有限公司 Nitrile rubber and preparation method and application thereof
CN114380949B (en) * 2020-10-21 2024-03-01 中国石油天然气股份有限公司 Nitrile rubber and preparation method and application thereof

Also Published As

Publication number Publication date
JPH08100030A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
JP3445615B2 (en) Unsaturated nitrile-conjugated diene copolymer, method for producing the same, and rubber composition
EP0779301B1 (en) Unsaturated nitrile-conjugated diene copolymer, process for producing the same, and vulcanizable rubber composition
JP3477849B2 (en) Rubber composition comprising a nitrile group-containing highly saturated copolymer rubber and an ethylene-based saturated copolymer rubber
EP3763787B1 (en) Carbonic acid-modified nitrile-based copolymer latex composition, production method therefor, latex composition containing same for dip molding, and molded product molded therefrom
JP6412123B2 (en) Nitrile group-containing copolymer rubber
JP3603350B2 (en) Unsaturated nitrile-conjugated diene copolymer, method for producing the same, and vulcanizable rubber composition
JP6833675B2 (en) Compositions for rubber and their uses
JP3496292B2 (en) Composites of nitrile group-containing highly saturated copolymer rubber and fiber
JP3391116B2 (en) Nitrile group-containing highly saturated copolymer rubber, method for producing the same, and vulcanizable rubber composition
CN117980395A (en) Chloroprene polymer latex composition and impregnated molded article thereof
JP3579929B2 (en) Unsaturated nitrile-conjugated diene copolymer, method for producing the same, and vulcanizable rubber composition
JP3603344B2 (en) Unsaturated nitrile-conjugated diene copolymer, method for producing the same, and vulcanizable rubber composition
JP3582113B2 (en) Rubber composition comprising unsaturated nitrile-conjugated diene copolymer and non-black reinforcing filler
WO2021079981A1 (en) Chloroprene copolymer latex and production method therefor
JP3689922B2 (en) Conjugated diene polymer rubber or conjugated diene-aromatic vinyl compound copolymer rubber, method for producing the same, and vulcanizable rubber composition
JP3582110B2 (en) Rubber composition comprising unsaturated nitrile-conjugated diene copolymer and vinyl chloride resin
JP3477848B2 (en) Rubber composition comprising nitrile group-containing highly saturated copolymer rubber and vinyl chloride resin
JPH0710933A (en) Acrylic copolymer rubber and its composition
CN118829669A (en) Acrylic rubber, composition containing acrylic rubber and rubber cross-linked product

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

EXPY Cancellation because of completion of term