JP3690445B2 - Semi-rigid coaxial cable - Google Patents
Semi-rigid coaxial cable Download PDFInfo
- Publication number
- JP3690445B2 JP3690445B2 JP20081297A JP20081297A JP3690445B2 JP 3690445 B2 JP3690445 B2 JP 3690445B2 JP 20081297 A JP20081297 A JP 20081297A JP 20081297 A JP20081297 A JP 20081297A JP 3690445 B2 JP3690445 B2 JP 3690445B2
- Authority
- JP
- Japan
- Prior art keywords
- semi
- coaxial cable
- rigid coaxial
- insulator layer
- ptfe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
Landscapes
- Communication Cables (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、移動通信装置等の高周波信号伝送用に使用される高品質、高性能のセミリジッド同軸ケーブルに関する。
【0002】
【従来の技術】
数百メガヘルツを超える高周波帯域の信号伝送用に使用されている同軸ケーブルとしては、従来、中心導体に高周波での電気特性の優れたフッ素系樹脂で均一に被覆した絶縁電線を銅あるいはアルミニウム等の金属管に挿入した後、金属管と絶縁電線の間に隙間がないように均一に金属管をシンキング加工した構造のセミリジッド同軸ケーブルが広く知られている。
【0003】
前記セミリジッド同軸ケーブルは、金属管を外部導体としているので、高周波での伝送特性は極めて優れているが、例えば外径2mm以下の細径ケーブルでは専用コネクターを作ることが技術的に困難であるため、機器との接続は回路基板、又はシールド用の金属プレート上に外部導体である金属管を半田付けするという接続方法をとらざるを得ない。ところが、前記セミリジッド同軸ケーブルで細径のものは、外部導体の厚みが薄く、様々な条件(温度や時間など)の半田付けの際の半田コテ先からの伝熱によって生じる絶縁体の膨張に外部導体が抗し得ないため、外部導体に亀裂が入るというトラブルがしばしば発生し、機器との接続の作業性、歩留りが悪かった。
【0004】
この点を改善するため、中心導体と(外部)金属層との間を充実絶縁層と非独立気孔を有する多孔質層とを組み合わせた絶縁体層構造にすることで、高周波での伝送特性が良好で、半田付け時の熱による外部導体の亀裂も生じないセミリジッド同軸ケーブルが提案されている(特開平8−31242号公報参照)。
【0005】
【発明が解決しようとする課題】
しかしながら、前記公報に開示されている非独立気孔を有する多孔質層の素材としてポリテトラフルオロエチレン(以下PTFEという。)を採用したセミリジッド同軸ケーブルの高周波での伝送特性及び半田耐熱性は未だ不十分であり、また、このセミリジッド同軸ケーブルには、半田リフロー炉に通したとき長さ方向に膨張するという問題が生じている。
【0006】
一方、絶縁体としてフッ素系樹脂のうち(未焼成の)PTFEを用いたセミリジッド同軸ケーブルには、(未焼成)PTFE絶縁体にカッターで切り込みを入れて引っ張っても、PTFE絶縁体同士が完全に切断されていないと未焼成のPTFEは延伸して繊維化してしまい、円滑に切断することができないため、その端末加工性に問題があった。
【0007】
本発明は、半田耐熱性、寸法安定性及び端末加工性などに優れた、高周波信号伝送用のセミリジッド同軸ケーブルを提供することを目的とする。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明は、中心導体の外周に1層以上の絶縁体層と外部導体層が順次設けられたセミリジッド同軸ケーブルにおいて、前記絶縁体層のうち少なくとも1層が半焼成のPTFEからなること、を特徴とする前記セミリジッド同軸ケーブルである。
【0009】
【発明の実施の形態】
本発明のセミリジッド同軸ケーブルは、中心導体の外周に同心円状に絶縁体層と外部導体層が順次設けられた構造であり、絶縁体層は1層以上設けられていればよいが、通常は絶縁体層は1層である。
【0010】
本発明のセミリジッド同軸ケーブルにおける中心導体は、銅、金、銀、ニオブ、ベリリウム、タングステン、パラジュウム、アルミニウム等の通常導体として使用される金属あるいはその合金の線である。その表面に、前記金属あるいは合金でめっきが施されたものも好ましく、この例としては銀めっき銅線、銀めっき銅覆鋼線を挙げることができる。
【0011】
本発明における半焼成のPTFE絶縁体層は、示差走査熱量測定(DSC)により340℃近辺のピーク(未焼成のPTFE絶縁体のピーク)と323℃近辺のピーク(焼成したPTFE絶縁体のピーク)とを併せ持つものであり、半焼成の方法や程度などにより前記2つのDSCピークの大きさの割合は異なる。本発明における半焼成のPTFE絶縁体層は、層の外表面が焼成の程度が高く層の内側は焼成の程度の低いものが好ましい
【0012】
同軸ケーブルにおいては一般に、次の関係が成立する。
【数1】
【0013】
この関係式において、Zoとdを一定に規定した場合、PTFE絶縁体層を半焼成とすることにより、炉内を通過したとき、その表面から熱を伝達するので焼成の度合いによってPTFE絶縁体層の内周部は連続気泡の多孔質となり、結果として比誘電率Erを小さくすることができるので、PTFE絶縁体層の直径を小さくすることができる。そのため、同軸ケーブルの直径が同じであれば、PTFE絶縁体層の直径を小さくした分だけ外部導体層を厚肉とすることができることになり、セミリジッド同軸ケーブルとしての半田耐熱性が向上する。
【0014】
このPTFE絶縁体層には、半田耐熱性を向上させると共に曲げ加工により高周波特性が低下するのを防止するため、無機フィラーを好ましくは5%以上配合することができ、また、半田耐熱性を更に向上させるため、有機フィラーを好ましくは10%以上配合することができる。無機フィラーとしては、アルミナ、シリカ等のセラミックなどを挙げることができる。有機フィラーとしては、PEEK等の高機能性樹脂などを挙げることができる。
【0015】
本発明における外部導体は、銅、アルミニウム、ステンレス、ベリリウム銅、銀、ニオブ、リン青銅等の通常シールド層として使用される金属あるいはその合金、ポリマーアロイなどの導電性の被覆である。
【0016】
【実施例】
以下、本発明を実施例により更に詳しく説明する。
【0017】
実施例1
直径0.203mmの銀メッキ銅覆鋼線上に、PTFEファインパウダーと押し出し助剤としてホワイトオイルとの混合物を押出成形し、電気炉中をキャプスタン速度15.5m/分で通し乾燥及び半焼成して、外径0.68mmの半焼成PTFE絶縁体層を被覆した。これを内径0.8mm、外径1.03mmの銅管に挿入した後、半焼成PTFE絶縁体と銅管とが隙間なく密着するように銅管をダイス引きで絞りこみ、外径0.86mm(銅管の厚さ0.115mm)で特性インピーダンスZo=50.5Ωのセミリジッド同軸ケーブルを製造した。
この製造したセミリジッド同軸ケーブルの乾燥及び半焼成の電気炉の温度条件と物性と性能をまとめて表1に示す。また、この半焼成のPTFE絶縁体層のDSCのチャートを図1に示す。
【0018】
比較例1
PTFE絶縁体層の被覆の形成において半焼成しないこと(すなわち未焼成であること)と内径0.8mm、外径1.05mmの銅管を用いたことを除いて実施例1と同様にして、外径0.86mm(銅管の厚さ0.125mm)で特性インピーダンスZo=50.4Ωのセミリジッド同軸ケーブルを製造した。
このセミリジッド同軸ケーブルの乾燥の電気炉の温度条件と物性と性能をまとめて表1に示す。また、この(未焼成の)PTFE絶縁体層のDSCのチャートを図2に示す。
【0019】
比較例2
PTFE絶縁体層の被覆の形成において半焼成のかわりに焼成したことと内径0.8mm、外径1.0mmの銅管を用いたことを除いて実施例1と同様にして、外径0.86mm(銅管の厚さ0.1mm)で特性インピーダンスZo=50.9Ωのセミリジッド同軸ケーブルを製造した。
このセミリジッド同軸ケーブルの乾燥及び焼成の電気炉の温度条件と物性と性能をまとめて表1に示す。また、この焼成PTFE絶縁体層のDSCのチャートを図3に示す。
【0020】
【表1】
【0021】
[物性及び性能試験]
(1)比重
PTFE絶縁体層の比重は、水中置換法で測定した。但し、PTFE絶縁体層の水中における重量が変動するため、測定値は概算値である。
【0022】
(2)DSC分析
JIS K7122プラスチックの転移熱測定方法によりPTFE絶縁体層のDSCを行った。
【0023】
(3)比誘電率
ベクトルネットワークアナライザーを用いて該ケーブルの電気長を測定し、次に該ケーブルの物理長を直尺等で測り、計算にて比誘電率を求めた。
【0024】
(4)PTFE絶縁体層の寸法安定性
100mmのセミリジッド同軸ケーブルを230℃の電気炉中に3分間入れた後、室温で15分間放置した。このときのPTFE絶縁体層の長さ方向への膨張収縮量を測定した。
表1において、+は膨張を意味し、+0.1mm以下とは、膨張した寸法が0.1mmを越えず、0.01mmの単位では測定できないことを意味する。
【0025】
(5)PTFE絶縁体層の端末加工性
セミリジッド同軸ケーブルの外部導体(銅管)を安全剃刀でカットし除去した後、PTFE絶縁体層を安全剃刀でカットし除去して、中心導体(銀メッキ銅覆鋼線)を剥き出しにするまでの作業性を次の基準により評価した。
評価基準:
優;PTFE絶縁体層の除去作業が容易。
良;PTFE絶縁体層の除去作業が比較的容易。
不良;PTFE絶縁体層の除去作業が非常に困難。
【0026】
(6)セミリジッド同軸ケーブルの高周波特性
セミリジッド同軸ケーブルを使用して周波数1GHz、3GHz、5GHz、10GHz、18GHzの高周波をそれぞれ伝送した場合の減衰量を測定した。
【0027】
(7)セミリジッド同軸ケーブルの半田耐熱性
各温度にコントロールされたコテ先(半田コテ:コテ先の直径2mm、24V、50W)に半田(直径1.0mm、錫60%と鉛40%の合金)を乗せて溶融した。セミリジッド同軸ケーブルにコテ先を30mm間隔で5箇所(3秒間/箇所)接触させて、ケーブルの外部導体(銅管)に亀裂が発生しない最も高い温度を測定した。
【0028】
【発明の効果】
以上説明した通り、本発明のセミリジッド同軸ケーブルは半焼成のPTFE絶縁体層であるためPTFE絶縁体層の一部(この場合内周部)が連続気泡の多孔質体となり、結果として比誘電率を小さくすることができ、絶縁体層の厚みを小さくすることができる。そのため、その分だけ外部導体の厚みを増やすことができるので、半田耐熱性を向上させることができる。あるいは、同じ半田耐熱温度では、セミリジッド同軸ケーブルの外径を小さくすることができるので、ケーブルの細線化、軽量化を図ることができ、例えば携帯電話といった移動通信装置用などに特に有利である。
【0029】
また、本発明のセミリジッド同軸ケーブルは加熱時のPTFE絶縁体層の寸法変化が小さく、しかも、半焼成のPTFE絶縁体層は延伸してもPTFEが繊維化することなく、円滑に切断、除去することができるので、中心導体の剥き出しも容易である。
【0030】
更に、本発明のセミリジッド同軸ケーブルは、PTFE絶縁体の比誘電率が小さいため、各種周波数における高周波の減衰量が少なく、高周波特性も優れている。
【図面の簡単な説明】
【図1】 実施例1で得られた半焼成のPTFE絶縁体層のDSCのチャートを示す図面である。
【図2】 比較例1で得られた(未焼成の)PTFE絶縁体層のDSCのチャートを示す図面である。
【図3】 比較例2で得られた焼成PTFE絶縁体層のDSCのチャートを示す図面である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-quality, high-performance semi-rigid coaxial cable used for high-frequency signal transmission in mobile communication devices and the like.
[0002]
[Prior art]
As a coaxial cable used for signal transmission in a high frequency band exceeding several hundred megahertz, conventionally, an insulated electric wire uniformly coated with a fluororesin having excellent electrical characteristics at high frequencies on a central conductor is made of copper or aluminum. A semi-rigid coaxial cable having a structure in which a metal tube is uniformly processed so that there is no gap between the metal tube and the insulated wire after being inserted into the metal tube is widely known.
[0003]
Since the semi-rigid coaxial cable uses a metal tube as an outer conductor, it has excellent transmission characteristics at high frequencies. However, for example, it is technically difficult to make a dedicated connector with a thin cable having an outer diameter of 2 mm or less. The connection to the device must be a connection method of soldering a metal tube as an external conductor on a circuit board or a metal plate for shielding. However, the semi-rigid coaxial cable with a small diameter has a thin outer conductor, and the external expansion due to heat transfer from the soldering iron tip during soldering under various conditions (temperature, time, etc.) Since the conductor could not resist, the trouble that the external conductor cracked often occurred, and the workability and yield of connection with the equipment were poor.
[0004]
In order to improve this point, high-frequency transmission characteristics can be achieved by using an insulator layer structure combining a solid insulating layer and a porous layer having non-independent pores between the central conductor and the (external) metal layer. A semi-rigid coaxial cable that is good and does not cause cracks in the outer conductor due to heat during soldering has been proposed (see JP-A-8-31242).
[0005]
[Problems to be solved by the invention]
However, the semi-rigid coaxial cable employing polytetrafluoroethylene (hereinafter referred to as PTFE) as a material for the porous layer having non-independent pores disclosed in the above publication still has insufficient transmission characteristics and solder heat resistance at high frequencies. In addition, the semi-rigid coaxial cable has a problem of expanding in the length direction when passed through a solder reflow furnace.
[0006]
On the other hand, a semi-rigid coaxial cable using (unfired) PTFE among the fluororesins as an insulator is completely separated from each other even if the (unfired) PTFE insulator is cut with a cutter and pulled. If not cut, the unsintered PTFE would be drawn into fibers and could not be cut smoothly, so that there was a problem in its end workability.
[0007]
An object of this invention is to provide the semi-rigid coaxial cable for high frequency signal transmission excellent in solder heat resistance, dimensional stability, terminal workability, etc.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a semi-rigid coaxial cable in which one or more insulator layers and an outer conductor layer are sequentially provided on the outer periphery of a central conductor, and at least one of the insulator layers is semi-fired. The semi-rigid coaxial cable is made of PTFE.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The semi-rigid coaxial cable of the present invention has a structure in which an insulator layer and an outer conductor layer are sequentially provided on the outer periphery of the center conductor, and one or more insulator layers may be provided. The body layer is one layer.
[0010]
The central conductor in the semi-rigid coaxial cable of the present invention is a metal or alloy wire used as a normal conductor such as copper, gold, silver, niobium, beryllium, tungsten, palladium, and aluminum. Those whose surface is plated with the above metal or alloy are also preferred, and examples thereof include a silver-plated copper wire and a silver-plated copper-clad steel wire.
[0011]
The semi-fired PTFE insulator layer in the present invention has a peak around 340 ° C. (peak of unfired PTFE insulator) and a peak around 323 ° C. (peak of fired PTFE insulator) by differential scanning calorimetry (DSC). The ratio of the two DSC peak sizes differs depending on the method and degree of semi-firing. The semi-fired PTFE insulator layer in the present invention preferably has a high degree of firing on the outer surface of the layer and a low degree of firing on the inside of the layer.
In general, the following relationship is established in a coaxial cable.
[Expression 1]
[0013]
In this relational expression, when Zo and d are defined to be constant, the PTFE insulator layer is semi-fired, so that when passing through the furnace, heat is transferred from the surface, so the PTFE insulator layer depends on the degree of firing. Since the inner peripheral portion is porous with open cells and as a result, the dielectric constant Er can be reduced, the diameter of the PTFE insulator layer can be reduced. Therefore, if the diameters of the coaxial cables are the same, the outer conductor layer can be made thicker by reducing the diameter of the PTFE insulator layer, and the solder heat resistance as a semi-rigid coaxial cable is improved.
[0014]
In order to improve the solder heat resistance and prevent the high frequency characteristics from being lowered by bending, the PTFE insulator layer can contain an inorganic filler, preferably 5% or more, and further improve the solder heat resistance. In order to improve, an organic filler can be preferably blended by 10% or more. Examples of the inorganic filler include ceramics such as alumina and silica. Examples of the organic filler include a highly functional resin such as PEEK.
[0015]
The outer conductor in the present invention is a conductive coating such as a metal usually used as a shield layer such as copper, aluminum, stainless steel, beryllium copper, silver, niobium, phosphor bronze, an alloy thereof, or a polymer alloy.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0017]
Example 1
A mixture of PTFE fine powder and white oil as an extrusion aid is extruded on a silver-plated copper-clad steel wire with a diameter of 0.203 mm, and then dried and semi-fired through an electric furnace at a capstan speed of 15.5 m / min. Then, a semi-fired PTFE insulator layer having an outer diameter of 0.68 mm was coated. After inserting this into a copper tube having an inner diameter of 0.8 mm and an outer diameter of 1.03 mm, the copper tube is squeezed with a die so that the semi-fired PTFE insulator and the copper tube are in close contact with each other, and the outer diameter is 0.86 mm. A semi-rigid coaxial cable having a characteristic impedance Zo = 50.5Ω with a copper tube thickness of 0.115 mm was manufactured.
Table 1 summarizes the temperature conditions, physical properties and performance of the dried and semi-fired electric furnace of the manufactured semi-rigid coaxial cable. A DSC chart of the semi-fired PTFE insulator layer is shown in FIG.
[0018]
Comparative Example 1
In the same manner as in Example 1 except that the PTFE insulator layer coating was not semi-fired (that is, not fired), and a copper tube having an inner diameter of 0.8 mm and an outer diameter of 1.05 mm was used. A semi-rigid coaxial cable having an outer diameter of 0.86 mm (copper tube thickness of 0.125 mm) and a characteristic impedance Zo = 50.4Ω was manufactured.
Table 1 summarizes the temperature conditions, physical properties, and performance of the electric furnace for drying the semi-rigid coaxial cable. A DSC chart of this (unfired) PTFE insulator layer is shown in FIG.
[0019]
Comparative Example 2
In the same manner as in Example 1, except that the PTFE insulator layer was baked instead of semi-fired and a copper tube having an inner diameter of 0.8 mm and an outer diameter of 1.0 mm was used. A semi-rigid coaxial cable with a characteristic impedance Zo = 50.9Ω at 86 mm (copper tube thickness 0.1 mm) was manufactured.
Table 1 summarizes the temperature conditions, physical properties and performance of the electric furnace for drying and firing the semi-rigid coaxial cable. Further, FIG. 3 shows a DSC chart of the sintered PTFE insulator layer.
[0020]
[Table 1]
[0021]
[Physical properties and performance tests]
(1) Specific gravity The specific gravity of the PTFE insulator layer was measured by an underwater substitution method. However, since the weight of the PTFE insulator layer in water varies, the measured value is an approximate value.
[0022]
(2) DSC analysis The PTFE insulator layer was subjected to DSC by the method for measuring the transition heat of JIS K7122 plastic.
[0023]
(3) The relative dielectric constant vector network analyzer was used to measure the electrical length of the cable, then the physical length of the cable was measured with a straight scale or the like, and the relative dielectric constant was determined by calculation.
[0024]
(4) Dimensional stability of PTFE insulator layer A 100 mm semi-rigid coaxial cable was placed in an electric furnace at 230 ° C. for 3 minutes and then allowed to stand at room temperature for 15 minutes. The amount of expansion and contraction in the length direction of the PTFE insulator layer at this time was measured.
In Table 1, + means expansion, and +0.1 mm or less means that the expanded dimension does not exceed 0.1 mm and cannot be measured in units of 0.01 mm.
[0025]
(5) End processability of PTFE insulator layer After the outer conductor (copper tube) of the semi-rigid coaxial cable is cut and removed with a safety razor, the PTFE insulator layer is cut and removed with a safety razor, and the center conductor (silver plated) The workability until stripping the copper-clad steel wire was evaluated according to the following criteria.
Evaluation criteria:
Excellent: Easy removal of PTFE insulator layer.
Good: The removal work of the PTFE insulator layer is relatively easy.
Defect: It is very difficult to remove the PTFE insulator layer.
[0026]
(6) High-frequency characteristics of semi-rigid coaxial cable Attenuation amount was measured when high-frequency characteristics of 1 GHz, 3 GHz, 5 GHz, 10 GHz, and 18 GHz were transmitted using a semi-rigid coaxial cable.
[0027]
(7) Solder heat resistance of semi-rigid coaxial cable Solder (soldering iron: iron tip diameter 2 mm, 24 V, 50 W) solder (alloy 1.0 mm diameter, 60% tin and 40% lead alloy) And melted. The tip of the semi-rigid coaxial cable was brought into contact with 5 points (3 seconds / location) at intervals of 30 mm, and the highest temperature at which no crack was generated in the outer conductor (copper tube) of the cable was measured.
[0028]
【The invention's effect】
As described above, since the semi-rigid coaxial cable of the present invention is a semi-fired PTFE insulator layer, a part of the PTFE insulator layer (in this case, the inner peripheral portion) becomes a porous body of open cells, resulting in a relative dielectric constant. The thickness of the insulator layer can be reduced. Therefore, since the thickness of the outer conductor can be increased by that amount, the solder heat resistance can be improved. Alternatively, since the outer diameter of the semi-rigid coaxial cable can be reduced at the same solder heat resistance temperature, the cable can be made thinner and lighter, which is particularly advantageous for mobile communication devices such as mobile phones.
[0029]
Moreover, the semi-rigid coaxial cable of the present invention has a small dimensional change of the PTFE insulator layer when heated, and the semi-fired PTFE insulator layer can be cut and removed smoothly without PTFE becoming fiber even when stretched. Therefore, it is easy to expose the central conductor.
[0030]
Furthermore, since the semi-rigid coaxial cable of the present invention has a small relative permittivity of the PTFE insulator, the attenuation amount of high frequency at various frequencies is small, and the high frequency characteristics are excellent.
[Brief description of the drawings]
1 is a drawing showing a DSC chart of a semi-fired PTFE insulator layer obtained in Example 1. FIG.
2 is a drawing showing a DSC chart of (unfired) PTFE insulator layer obtained in Comparative Example 1. FIG.
3 is a drawing showing a DSC chart of a fired PTFE insulator layer obtained in Comparative Example 2. FIG.
Claims (1)
前記絶縁体層のうち少なくとも1層が半焼成のポリテトラフルオロエチレンからなること、を特徴とする前記セミリジッド同軸ケーブル。In a semi-rigid coaxial cable in which one or more insulator layers and an outer conductor layer are sequentially provided on the outer periphery of the central conductor,
The semi-rigid coaxial cable, wherein at least one of the insulator layers is made of semi-baked polytetrafluoroethylene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20081297A JP3690445B2 (en) | 1997-07-10 | 1997-07-10 | Semi-rigid coaxial cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20081297A JP3690445B2 (en) | 1997-07-10 | 1997-07-10 | Semi-rigid coaxial cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1131422A JPH1131422A (en) | 1999-02-02 |
JP3690445B2 true JP3690445B2 (en) | 2005-08-31 |
Family
ID=16430615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20081297A Expired - Fee Related JP3690445B2 (en) | 1997-07-10 | 1997-07-10 | Semi-rigid coaxial cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3690445B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4816084B2 (en) * | 2003-08-25 | 2011-11-16 | ダイキン工業株式会社 | High frequency signal transmission product, manufacturing method thereof, and high frequency transmission cable |
-
1997
- 1997-07-10 JP JP20081297A patent/JP3690445B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1131422A (en) | 1999-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007077948A1 (en) | Coaxial cable | |
US4173386A (en) | Coaxial assembly | |
US20070175652A1 (en) | Flat-shaped cable | |
WO2010123105A1 (en) | Electrical wire and method for producing same | |
US7795536B2 (en) | Ultra high-speed coaxial cable | |
JP3994698B2 (en) | Semi-flexible micro coaxial cable and its terminal connection method | |
CN107123472B (en) | High temperature-resistant cable for mobile base station | |
JP3690445B2 (en) | Semi-rigid coaxial cable | |
KR100781661B1 (en) | Coaxial cable | |
JPH11283448A (en) | Semi-rigid coaxial cable | |
KR100817983B1 (en) | Coaxial cable | |
GB2067824A (en) | A Flexible Coaxial Cable | |
JP2976816B2 (en) | Semi-rigid coaxial cable | |
JP3537288B2 (en) | Semi-rigid coaxial cable and method of manufacturing the same | |
JP3443784B2 (en) | Manufacturing method of coaxial cable for high frequency | |
JP4136097B2 (en) | Low noise coaxial cable and manufacturing method thereof | |
JP3592083B2 (en) | Fine coaxial cable with good terminal workability and method of manufacturing the same | |
JP6880471B2 (en) | Cable for high frequency signal transmission | |
RU198245U1 (en) | Coaxial microstrip junction | |
JP2003257258A (en) | Coaxial cable | |
JP2005158502A (en) | High frequency coaxial cable | |
RU1595247C (en) | Coaxial cable | |
JP2004192816A (en) | Insulated wire and coaxial cable using the same | |
JPH11213777A (en) | Semi-rigid coaxial cable and manufacture thereof | |
JPH06139837A (en) | Machining method for coaxial cable and coaxial cable terminal section |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040406 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050607 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080624 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080624 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080624 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090624 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090624 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100624 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100624 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110624 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120624 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |