Nothing Special   »   [go: up one dir, main page]

JP3690030B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP3690030B2
JP3690030B2 JP00971097A JP971097A JP3690030B2 JP 3690030 B2 JP3690030 B2 JP 3690030B2 JP 00971097 A JP00971097 A JP 00971097A JP 971097 A JP971097 A JP 971097A JP 3690030 B2 JP3690030 B2 JP 3690030B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
compressor
flow rate
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00971097A
Other languages
Japanese (ja)
Other versions
JPH10205898A (en
Inventor
裕嗣 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP00971097A priority Critical patent/JP3690030B2/en
Publication of JPH10205898A publication Critical patent/JPH10205898A/en
Application granted granted Critical
Publication of JP3690030B2 publication Critical patent/JP3690030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エジェクタを組み込んだ冷凍サイクルを備えた冷凍装置に関するものである。
【0002】
【従来の技術】
従来より、特開平5−312421号公報には、冷媒圧縮機、冷媒凝縮器、エジェクタ、第1冷媒蒸発器および気液分離器を冷媒配管により環状に連結すると共に、気液分離器で気相冷媒と分離された液相冷媒を減圧装置、第2冷媒蒸発器を設置したバイパス配管を介してエジェクタの吸引部に吸引させるようにした冷凍サイクルを備えた冷凍装置が提案されている。
【0003】
そして、上記の従来の冷凍装置の冷凍サイクルは、図5に示したように、エジェクタ101のノズル102を通過する冷媒流量を調整して冷媒圧縮機の低速運転時の冷凍能力を増大させるか、あるいは高速運転時に余裕のある冷凍能力を適正化するために、エジェクタ101内のノズル102に、ノズル径を増減するための可変絞り弁103を設けている。
【0004】
【発明が解決しようとする課題】
ところが、従来の技術においては、エジェクタ101のノズル102内に可変絞り弁103を設置して、ノズル102の入口乾き度(またはサブクール度)を調整することにより冷媒流量を制御しているので、ノズル出口径が冷媒流量に対して常に最適な出口径になるとは限らず、ノズル効率の低下を招き(図6参照)、充分な冷凍能力が得られないという問題が生じる。
【0005】
そこで、図7に示したように、ニードル弁104によりノズル出口径を可変できるノズル105も提案されているが、そのニードル弁104もノズル105内を流れる冷媒の抵抗部材となるため、上記と同様に、ノズル出口径が冷媒流量に対して常に最適な出口径になるとは限らず、ノズル効率の低下を招く(図8参照)。また、ノズル効率が低下した場合に、第2冷媒蒸発器に供給される冷媒流量が充分得られないので、エジェクタ101内の昇圧が低下してしまう(図9参照)。これにより、冷媒圧縮機の吸入圧力が低下するため、冷凍サイクル内を循環する冷媒の循環量が低下し、冷凍サイクルの冷凍能力が低下するという問題が生じている。
【0006】
【発明の目的】
本発明の目的は、エジェクタのノズル効率に影響を与えないエジェクタの吸引側に冷媒圧送手段(冷媒ポンプを設置することにより、エジェクタのノズル効率が低下した時でも充分な冷凍能力を確保することのできる冷凍装置を提供することにある。また、冷凍サイクルの蒸発圧力やエジェクタのノズル効率を最適値で使用して冷凍サイクルの冷凍能力の低下を防止することのできる冷凍装置を提供することにある。さらに、冷媒圧縮機の回転速度の増減に拘らず冷凍サイクルの冷凍能力を略一定値に保つことのできる冷凍装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載の発明によれば、エジェクタのノズルに冷媒流量調整手段を設けるのではなく、冷凍サイクルの気液分離器の液相冷媒側とエジェクタの吸引部とを連結するバイパス配管の途中に、冷媒圧縮機の回転速度の増減に拘らず、気液分離器内の液相冷媒を冷媒蒸発器に強制的に圧送する冷媒圧送手段を設置している。これによって、エジェクタのノズル効率にあまり影響を与えない。また、前記冷媒圧縮機の回転速度の変動によって生じる前記冷媒蒸発器に流入する冷媒流量の変動分を吸収するように前記冷媒圧送手段を制御することにより、冷媒圧縮機の回転速度の増減に拘らず、冷媒圧縮機に吸引される冷媒流量および冷媒蒸発器に流入する冷媒流量を所定値に保って、気液分離器内の液相冷媒を冷媒蒸発器に強制的に循環させることにより、昇圧性能が向上し、冷凍サイクルの蒸発圧力やエジェクタのノズル効率が最適値で使用できる。これにより、冷凍サイクルの冷凍能力の低下を抑えることができる。
【0008】
請求項2に記載の発明によれば、過熱度検出手段で検出した冷媒蒸発器の出口側の過熱度が設定値となるように冷媒ポンプの回転速度を増速または減速して冷媒蒸発器に流入する冷媒流量を調節することにより、冷媒蒸発器に供給される冷媒流量の変化が抑えられるので、冷媒蒸発器での熱伝達率が大幅に低下することはない。
【0009】
請求項3に記載の発明によれば、回転速度検出手段で検出した冷媒圧縮機の回転速度が増加すればする程、冷媒ポンプの回転速度を遅くして冷媒圧縮機に吸引される冷媒流量および冷媒蒸発器に流入する冷媒流量を調節することにより、冷媒圧縮機の回転速度の変動によって生じる、冷媒蒸発器に流入する冷媒の変動分を吸収できる。それによって、冷媒圧縮機の吸入圧力を制御することにより、冷媒圧縮機の吸入比容積を変化させて、冷媒圧縮機に吸引される冷媒流量を略一定値に保つこともできる。
【0010】
【発明の実施の形態】
〔実施例の構成〕
図1ないし図4は本発明の実施例を示したもので、図1(a)は車両用空気調和装置の冷凍サイクルを示した図で、図1(b)は車両用空気調和装置の通風系を示した図で、図2は車両用空気調和装置の制御系を示した図である。
【0011】
本実施例の車両用空気調和装置は、車両走行用の動力エンジンを搭載する車両の車室内を空調する空調ユニット1の各空調手段を、後記する空調制御装置10によって制御するようにしたエアコンである。空調ユニット1は、車室内に空調空気を導く空気通路を形成する空調ケース2と、この空調ケース2の上流端に結合された送風機3とを備えている。
【0012】
空調ケース2内には、後記する冷凍サイクル9の一構成を成すエバポレータ、およびこのエバポレータを通過した冷風を再加熱するヒータコア4が設けられている。そして、ヒータコア4の上流側と下流側とには、ヒータコア4を通過する空気量とヒータコア4を迂回する空気量とを調節する2個のエアミックスドア5が取り付けられている。
【0013】
送風機3は、空調ケース2の空気通路内において車室内に向かう空気流を発生させる遠心式ファン6、この遠心式ファン6を回転駆動するブロワモータ7、および遠心式ファン6を回転自在に収容するスクロールケーシング8等から構成されている。なお、スクロールケーシング8は、例えば空調ケース2の上流端に一体的に結合されている。
【0014】
次に、本実施例の冷凍サイクル9の構成を図1(a)に基づいて説明する。
冷凍サイクル9は、所謂エジェクタサイクルであって、車両に搭載された動力エンジンの駆動力によって気相冷媒(以下ガス冷媒と呼ぶ)を圧縮するコンプレッサ(冷媒圧縮機)11と、圧縮されたガス冷媒を凝縮液化させるコンデンサ(冷媒凝縮器)12と、凝縮液化された液相冷媒(以下液冷媒と呼ぶ)を減圧膨張させるエジェクタ13と、減圧膨張された気液二相冷媒を気液分離する気液分離器14と、液冷媒を吸引する冷媒ポンプ15と、流入した冷媒を蒸発気化させるエバポレータ(冷媒蒸発器)16とから構成されている。
【0015】
コンプレッサ11は、コンデンサ12、エジェクタ13および気液分離器14と共に、冷媒配管(冷媒流路)17によって環状に連結されている。このコンプレッサ11には、動力エンジンからコンプレッサ11への回転動力の伝達を断続する電磁クラッチ(図2参照)18が連結されている。この電磁クラッチ18が通電された時に、動力エンジンの回転動力がコンプレッサ11に伝達されてエバポレータ16による空気冷却作用が行われる。コンデンサ12の近傍には、このコンデンサ12内を流れる冷媒を冷却する冷却風を送る冷却ファン19が設置されている。
【0016】
エジェクタ13は、コンデンサ12から流入した液冷媒をノズル21より噴出することによって減圧霧化すると共に、吸引部22よりガス冷媒を吸引して、ディフューザ23内で液冷媒とガス冷媒とを混合すると共に昇圧した後に気液分離器14へ気液二相状態の冷媒を送る減圧手段である。気液分離器14は、冷媒入口部24とガス冷媒出口部25と液冷媒出口部(液相冷媒側)26とを有している。
【0017】
冷媒ポンプ15は、本発明の冷媒圧送手段に相当する部品で、気液分離器14の液冷媒出口部26とエジェクタ13の吸引部22とを連結するバイパス配管(バイパス流路)27のうちエバポレータ16よりも上流側(の入口側)に設置されている。この冷媒ポンプ15は、ON/OFFの間隔を変更することによって、エバポレータ16に流入する冷媒流量を調節する部品である。例えば冷媒ポンプ15のON時間を長くとれば長くとる程、エバポレータ16に流入する冷媒流量が多くなる。エバポレータ16は、上記のバイパス配管27の途中に設置され、内部を流れる冷媒と空調ケース2内を通過する空気とを熱交換して空気を冷却する空気冷却手段である。
【0018】
空調制御装置10は、本発明の空調制御手段に相当する部品で、イグニッションスイッチがオンされたときにバッテリ30から電源が供給されて、車室内前面に設けられた操作パネル上の各スイッチからのスイッチ信号を入力し、各種の制御処理を行う。なお、空調制御装置10内には、CPU、ROM、RAM等からなる周知のマイクロコンピュータが設けられ、リレーコイル34を通電することによりリレースイッチ35が閉じて冷媒ポンプ15を通電し、リレーコイル36を通電することによりリレースイッチ37が閉じて電磁クラッチ18が通電される。
【0019】
また、空調制御装置10は、エバポレータ16の出口側の温度を検出する出口温度センサ31、エバポレータ16の出口側の圧力(冷凍サイクル9の低圧圧力、蒸発圧力)を検出する出口圧力センサ32、およびコンプレッサ11の回転速度を検出する回転速度センサ33等の各センサからセンサ信号を入力する。出口温度センサ31と出口圧力センサ32は、本発明の過熱度検出手段に相当する部品であり、回転速度センサ33は、本発明の回転速度検出手段に相当する部品である。
【0020】
そして、空調制御装置10は、出口温度センサ31で検出したエバポレータ16の出口側の温度とエバポレータ16の出口側の圧力とからエバポレータ16の出口側の過熱度を算出し、この過熱度が設定値(例えば1℃〜2℃)となるように冷媒ポンプ15の回転速度を制御してエバポレータ16に流入する冷媒流量を調節するようにしている。また、空調制御装置10は、回転速度センサ33で検出したコンプレッサ11の回転速度を入力し、このコンプレッサ11の回転速度の変動によって生じる、エバポレータ16に流入する冷媒流量の変動分を吸収するために冷媒ポンプ15の回転速度を制御してコンプレッサ11に吸引される冷媒流量およびエバポレータ16に流入する冷媒流量を調節するようにしている。
【0021】
〔実施例の作用〕
次に、本実施例の空調ユニット1の作用を図1ないし図4に基づいて簡単に説明する。ここで、図3は図1(a)における冷凍サイクル9の冷媒回路の冷媒の状態点をモリエル線図上に描いたもので、図1(a)の冷凍サイクル9の冷媒回路上のa〜fの冷媒の状態が図3のモリエル線図上のa〜fに対応する。
【0022】
また、図3中のPHは冷凍サイクル9の高圧圧力(凝縮圧力)で、PDはコンプレッサ11の吸入圧力で、PLは冷凍サイクル9の低圧圧力(蒸発圧力)で、PSはノズル21の出口圧力である。そして、図3中のGeは冷媒ポンプ15の吸引力によるエバポレータ16に流入する冷媒流量で、Gnはコンプレッサ11の吸引力による冷媒流量である。ΔPはエジェクタ13の昇圧圧力で、Δieはノズル21での断熱熱落差で、Δirはエジェクタ13によるコンプレッサ11の圧縮仕事回収分である。
【0023】
コンプレッサ11で圧縮されて高温高圧となったガス冷媒(状態点b)は、コンデンサ12で凝縮液化されて高温高圧の液冷媒になって(状態点c)、エジェクタ13内に流入する。エジェクタ13内に流入した液冷媒は、ノズル21を通過する際に減圧されて状態点d2 に至り、さらにディフューザ23を通過する際に昇圧されて状態点dとなる。
【0024】
このとき、ノズル21を液冷媒が通過する際にノズル21から高速で噴出する冷媒回りの圧力低下を利用して、エジェクタ13の吸引部22にバイパス配管27から状態点d1 のガス冷媒が吸引される。このため、コンデンサ12から流入した液冷媒とバイパス配管27から吸引されたガス冷媒とがディフューザ23内で混合する。これにより、エジェクタ13より流出する気液二相状態の冷媒は、状態点d1 、d2 およびコンデンサ12からの冷媒流量とエバポレータ16からの冷媒流量とにより決まる状態点dとなる。
【0025】
その後に、気液二相状態の冷媒は、冷媒配管17を通って冷媒入口部24から気液分離器14内に流入してガス冷媒と液冷媒とに分離する。このうちガス冷媒(状態点a)は、コンプレッサ11の吸引力によって気液分離器14のガス冷媒出口部25から流出して冷媒配管17を通ってコンプレッサ11に吸入される。
【0026】
一方の気液分離器14内の液冷媒(状態点e)は、冷媒ポンプ15に吸引されて気液分離器14の液冷媒出口部26から流出してバイパス配管27内に流入する。そして、バイパス配管27内に流入した液冷媒は、冷媒ポンプ15の吸引効果により昇圧した(状態点f)後に、エバポレータ16内に流入する。エバポレータ16内に流入した液冷媒は、エバポレータ16を通過する蒸発気化した(状態点d1 )後に、エジェクタ13の吸引部22に吸引される。
【0027】
ここで、エジェクタ13のノズル効率を最適値で使用するためには、エバポレータ16に流入する冷媒流量を一定値に保つ必要があるが、コンプレッサ11を動力エンジンで回転駆動しているため、コンプレッサ11の回転速度は、図4のグラフに示したように、アイドル回転速度(例えば800rpm)から通常の走行速度に見合う回転速度(例えば200rpm)まで変動する。
【0028】
そこで、本実施例では、コンプレッサ11の回転速度の変動によって生じる、エバポレータ16に流入する冷媒流量の変動分(図4(c)の従来例の項参照)を吸収するために、コンプレッサ11の回転速度に応じて冷媒ポンプ15の回転速度を制御してコンプレッサ11に吸引される冷媒流量およびエバポレータ16に流入する冷媒流量を調節することにより、コンプレッサ11の吸入圧力を下げるようにしている(図4(b)の実施例の項参照)。それによって、コンプレッサ11の吸入比容積大きくなるので、コンプレッサ11の回転速度の増減に拘らず、コンプレッサ11に吸引される冷媒流量が一定値(図4(c)の実施例の項参照)に保たれる。
【0029】
〔実施例の効果〕
車両走行用の動力エンジンにより回転駆動されるコンプレッサ11を用いる空調ユニット1は、全てアイドリング(アイドル回転速度)の時の冷房能力が少ないという問題点がある。この対応策として、エジェクタ13により、膨張弁でのエネルギーロスを回収し、コンプレッサ11の仕事の軽減と冷媒流量の増大による冷房能力の向上が図れる。
【0030】
但し、このエジェクタ13を備えた冷凍サイクル9は、エジェクタ13のノズル効率に大きく依存しているため、上述のように、エジェクタ13のノズル効率や冷凍サイクル9の蒸発圧力を最適値で使用しないと、冷房能力が逆に低下する心配がある。本実施例では、この問題点を解決する目的でなされたもので、動力エンジン(コンプレッサ11)の回転速度の増減に拘らず、冷媒ポンプ15の回転速度を制御してエバポレータ16に流入する冷媒流量を調節することにより気液分離器14内の液冷媒をエバポレータ16に強制的に循環させることで、エジェクタ13のノズル効率や冷凍サイクル9の蒸発圧力を最適値で使用している(図4(a)参照)。これにより、図4(d)に示したように、冷房能力の低下を抑えることができる。特に、本実施例は、従来例と比較してコンプレッサ11の低速度領域での冷房能力の向上を図れる。
【0031】
冷媒ポンプ15の作動は、出口温度センサ31と出口圧力センサ32とから計算されるエバポレータ16の出口側の過熱度(スーパーヒート量)に対し、通常のスーパーヒート量(設定値:例えば10℃)を中心に±1℃で、ON/OFF制御を行えば良い。なお、スーパーヒート量は、10℃に限るものではなく、小さければ小さい程、空気への熱伝達率が向上する。
【0032】
〔変形例〕
本実施例では、本発明を車両用空気調和装置(エアコン)に適用したが、本発明を車両用冷房装置、車両用冷蔵装置または車両用冷凍装置に適用しても良い。また、本発明を定置式の冷凍装置に適用しても良い。
【0033】
本実施例では、コンプレッサ11を車両走行用の動力エンジンにより回転駆動したが、コンプレッサ11を車両走行用の動力エンジンとは別の補助エンジン(サブエンジン)により回転駆動しても良い。また、コンプレッサ11を電動モータ等の他の駆動手段により回転駆動しても良い。
【0034】
本実施例では、エジェクタ13と気液分離器14との間を冷媒配管17により連結したが、その冷媒配管17の途中に第1冷媒蒸発器を設置しても良い。この場合には、エバポレータ16は第2冷媒蒸発器となる。また、気液分離器14と冷媒ポンプ15との間に、必要であれば減圧装置(固定絞り)を設置しても良い。
【0035】
本実施例では、冷媒ポンプ15をエバポレータ16よりも上流側のバイパス配管27に設置したが、電動式コンプレッサ等の冷媒圧送手段をエバポレータ16よりも下流側のバイパス配管27に設置しても良い。
【図面の簡単な説明】
【図1】(a)は冷凍サイクルの冷媒回路を示した回路図で、(b)は車両用空気調和装置の通風系を示した概略図である(実施例)。
【図2】車両用空気調和装置の制御系を示した電気回路図である(実施例)。
【図3】冷凍サイクルのモリエル線図である(実施例)。
【図4】コンプレッサの回転速度に対する蒸発圧力、コンプレッサの吸入圧力、冷媒吸引流量、冷房能力の関係を示したグラフである(実施例)。
【図5】従来のエジェクタを示した断面図である(従来例)。
【図6】ノズル入口乾き度とノズル効率との関係を示したグラフである(従来例)。
【図7】従来のエジェクタを示した断面図である(従来例)。
【図8】ノズル出口径とノズル効率との関係を示したグラフである(従来例)。
【図9】エバポレータの冷媒流量とエジェクタでの昇圧性能との関係を示したグラフである(従来例)。
【符号の説明】
1 空調ユニット
9 冷凍サイクル
10 空調制御装置(空調制御手段)
11 コンプレッサ(冷媒圧縮機)
12 コンデンサ(冷媒凝縮器)
13 エジェクタ
14 気液分離器
15 冷媒ポンプ(冷媒圧送手段)
16 エバポレータ(冷媒蒸発器)
17 冷媒配管(冷媒流路)
21 ノズル
22 吸引部
26 液冷媒出口部(液相冷媒側)
27 バイパス配管(バイパス流路)
31 出口温度センサ(過熱度検出手段)
32 出口圧力センサ(過熱度検出手段)
33 回転速度センサ(回転速度検出手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus having a refrigeration cycle incorporating an ejector.
[0002]
[Prior art]
Conventionally, in Japanese Patent Laid-Open No. 5-31421, a refrigerant compressor, a refrigerant condenser, an ejector, a first refrigerant evaporator and a gas-liquid separator are connected in an annular shape by a refrigerant pipe, and the gas-liquid separator uses a gas phase. There has been proposed a refrigeration apparatus having a refrigeration cycle in which a liquid phase refrigerant separated from a refrigerant is sucked into a suction part of an ejector through a decompression device and a bypass pipe provided with a second refrigerant evaporator.
[0003]
And, the refrigeration cycle of the conventional refrigeration apparatus, as shown in FIG. 5, adjusts the flow rate of refrigerant passing through the nozzle 102 of the ejector 101 to increase the refrigeration capacity during low-speed operation of the refrigerant compressor, Alternatively, a variable throttle valve 103 for increasing or decreasing the nozzle diameter is provided in the nozzle 102 in the ejector 101 in order to optimize the refrigerating capacity with a margin during high-speed operation.
[0004]
[Problems to be solved by the invention]
However, in the conventional technique, since the variable throttle valve 103 is installed in the nozzle 102 of the ejector 101 and the refrigerant flow rate is controlled by adjusting the inlet dryness (or subcooling degree) of the nozzle 102, the nozzle The outlet diameter is not always the optimum outlet diameter with respect to the refrigerant flow rate, which causes a problem that the nozzle efficiency is lowered (see FIG. 6) and sufficient refrigeration capacity cannot be obtained.
[0005]
Therefore, as shown in FIG. 7, a nozzle 105 whose nozzle outlet diameter can be varied by the needle valve 104 has also been proposed. However, since the needle valve 104 also serves as a resistance member for the refrigerant flowing in the nozzle 105, the same as described above. In addition, the nozzle outlet diameter is not always the optimum outlet diameter with respect to the refrigerant flow rate, and the nozzle efficiency is reduced (see FIG. 8). Further, when the nozzle efficiency is lowered, the flow rate of the refrigerant supplied to the second refrigerant evaporator cannot be obtained sufficiently, and the pressure increase in the ejector 101 is lowered (see FIG. 9). Thereby, since the suction pressure of the refrigerant compressor is lowered, there is a problem that the circulation amount of the refrigerant circulating in the refrigeration cycle is lowered and the refrigeration capacity of the refrigeration cycle is lowered.
[0006]
OBJECT OF THE INVENTION
An object of the present invention is to provide a refrigerant pressure feeding means ( refrigerant pump ) on the suction side of an ejector that does not affect the nozzle efficiency of the ejector, thereby ensuring sufficient refrigeration capacity even when the nozzle efficiency of the ejector is lowered. An object of the present invention is to provide a refrigeration apparatus that can perform the above. Another object of the present invention is to provide a refrigeration apparatus that can prevent the refrigeration cycle from being reduced in refrigeration cycle by using the evaporation pressure of the refrigeration cycle and the nozzle efficiency of the ejector at optimum values. It is another object of the present invention to provide a refrigeration apparatus capable of maintaining the refrigeration capacity of the refrigeration cycle at a substantially constant value regardless of increase or decrease in the rotational speed of the refrigerant compressor.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, the refrigerant flow rate adjusting means is not provided in the ejector nozzle, but in the middle of the bypass pipe connecting the liquid-phase refrigerant side of the gas-liquid separator of the refrigeration cycle and the suction part of the ejector. In addition, refrigerant pressure feeding means for forcibly feeding the liquid phase refrigerant in the gas-liquid separator to the refrigerant evaporator regardless of increase or decrease in the rotational speed of the refrigerant compressor is installed. This does not significantly affect the ejector nozzle efficiency. Further, by controlling the refrigerant pumping means so as to absorb the fluctuation amount of the refrigerant flow rate flowing into the refrigerant evaporator caused by the fluctuation of the rotation speed of the refrigerant compressor , it is possible to increase or decrease the rotation speed of the refrigerant compressor. First, by maintaining the refrigerant flow rate sucked into the refrigerant compressor and the refrigerant flow rate flowing into the refrigerant evaporator at a predetermined value, the liquid phase refrigerant in the gas-liquid separator is forced to circulate through the refrigerant evaporator, thereby increasing the pressure. The performance is improved and the evaporation pressure of the refrigeration cycle and the nozzle efficiency of the ejector can be used at optimum values. Thereby, the fall of the refrigerating capacity of a refrigerating cycle can be suppressed.
[0008]
According to the invention described in claim 2, the rotational speed of the coolant pump to the outlet side of the superheat degree of the detected refrigerant evaporator superheat detecting means reaches the set value to accelerated or decelerated to the refrigerant evaporator By adjusting the flow rate of the refrigerant flowing in, changes in the flow rate of the refrigerant supplied to the refrigerant evaporator can be suppressed, so that the heat transfer coefficient in the refrigerant evaporator is not significantly reduced.
[0009]
According to the third aspect of the present invention, as the rotational speed of the refrigerant compressor detected by the rotational speed detecting means increases, the refrigerant flow sucked into the refrigerant compressor by lowering the rotational speed of the refrigerant pump and By adjusting the flow rate of the refrigerant flowing into the refrigerant evaporator, it is possible to absorb the fluctuation of the refrigerant flowing into the refrigerant evaporator caused by the fluctuation of the rotation speed of the refrigerant compressor . Thereby, by controlling the suction pressure of the refrigerant compressor, the suction specific volume of the refrigerant compressor can be changed, and the flow rate of the refrigerant sucked into the refrigerant compressor can be kept at a substantially constant value.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
[Configuration of Example]
FIGS. 1 to 4 show an embodiment of the present invention, FIG. 1 (a) shows a refrigeration cycle of a vehicle air conditioner, and FIG. 1 (b) shows a ventilation of the vehicle air conditioner. FIG. 2 is a diagram showing a control system of the vehicle air conditioner.
[0011]
The air conditioning apparatus for a vehicle according to the present embodiment is an air conditioner that controls each air-conditioning means of an air-conditioning unit 1 that air-conditions a passenger compartment of a vehicle on which a power engine for driving a vehicle is mounted, by an air-conditioning control device 10 described later. is there. The air conditioning unit 1 includes an air conditioning case 2 that forms an air passage that guides conditioned air into the vehicle compartment, and a blower 3 that is coupled to the upstream end of the air conditioning case 2.
[0012]
In the air conditioning case 2, there are provided an evaporator that constitutes one configuration of the refrigeration cycle 9 described later, and a heater core 4 that reheats the cold air that has passed through the evaporator. Two air mix doors 5 for adjusting the amount of air passing through the heater core 4 and the amount of air bypassing the heater core 4 are attached to the upstream side and the downstream side of the heater core 4.
[0013]
The blower 3 includes a centrifugal fan 6 that generates an air flow toward the vehicle interior in the air passage of the air conditioning case 2, a blower motor 7 that rotationally drives the centrifugal fan 6, and a scroll that rotatably accommodates the centrifugal fan 6. It is comprised from the casing 8 grade | etc.,. The scroll casing 8 is integrally coupled to the upstream end of the air conditioning case 2, for example.
[0014]
Next, the configuration of the refrigeration cycle 9 of the present embodiment will be described with reference to FIG.
The refrigeration cycle 9 is a so-called ejector cycle, and includes a compressor (refrigerant compressor) 11 that compresses a gas-phase refrigerant (hereinafter referred to as a gas refrigerant) by a driving force of a power engine mounted on a vehicle, and a compressed gas refrigerant. A condenser (refrigerant condenser) 12 for condensing and liquefying, an ejector 13 for decompressing and expanding the condensed liquid phase refrigerant (hereinafter referred to as liquid refrigerant), and gas for liquid-liquid separation of the decompressed and expanded gas-liquid two-phase refrigerant A liquid separator 14, a refrigerant pump 15 that sucks liquid refrigerant, and an evaporator (refrigerant evaporator) 16 that evaporates and evaporates the refrigerant that flows in.
[0015]
The compressor 11, together with the condenser 12, the ejector 13, and the gas-liquid separator 14, is connected in a ring shape by a refrigerant pipe (refrigerant flow path) 17. The compressor 11 is connected to an electromagnetic clutch (see FIG. 2) 18 that intermittently transmits rotational power from the power engine to the compressor 11. When the electromagnetic clutch 18 is energized, the rotational power of the power engine is transmitted to the compressor 11 and the evaporator 16 performs an air cooling action. In the vicinity of the condenser 12, a cooling fan 19 for sending cooling air for cooling the refrigerant flowing in the condenser 12 is installed.
[0016]
The ejector 13 atomizes the liquid refrigerant flowing in from the condenser 12 by spraying from the nozzle 21, and sucks the gas refrigerant from the suction unit 22 to mix the liquid refrigerant and the gas refrigerant in the diffuser 23. The pressure reducing means sends the gas-liquid two-phase refrigerant to the gas-liquid separator 14 after increasing the pressure. The gas-liquid separator 14 includes a refrigerant inlet 24, a gas refrigerant outlet 25, and a liquid refrigerant outlet (liquid phase refrigerant side) 26.
[0017]
The refrigerant pump 15 is a component corresponding to the refrigerant pressure feeding means of the present invention, and is an evaporator in a bypass pipe (bypass passage) 27 that connects the liquid refrigerant outlet portion 26 of the gas-liquid separator 14 and the suction portion 22 of the ejector 13. It is installed on the upstream side (the entrance side) from 16. The refrigerant pump 15 is a component that adjusts the flow rate of refrigerant flowing into the evaporator 16 by changing the ON / OFF interval. For example, the longer the ON time of the refrigerant pump 15 is, the longer the refrigerant flow rate flowing into the evaporator 16 is. The evaporator 16 is an air cooling unit that is installed in the middle of the bypass pipe 27 and cools the air by exchanging heat between the refrigerant flowing inside and the air passing through the air conditioning case 2.
[0018]
The air-conditioning control device 10 is a component corresponding to the air-conditioning control means of the present invention, and is supplied with power from the battery 30 when the ignition switch is turned on, and from each switch on the operation panel provided on the front surface of the vehicle interior. A switch signal is input and various control processes are performed. In the air conditioning control device 10, a known microcomputer including a CPU, ROM, RAM, and the like is provided. When the relay coil 34 is energized, the relay switch 35 is closed and the refrigerant pump 15 is energized, and the relay coil 36. Is closed, the relay switch 37 is closed and the electromagnetic clutch 18 is energized.
[0019]
In addition, the air-conditioning control device 10 includes an outlet temperature sensor 31 that detects the temperature on the outlet side of the evaporator 16, an outlet pressure sensor 32 that detects pressure on the outlet side of the evaporator 16 (low pressure pressure and evaporation pressure of the refrigeration cycle 9), and Sensor signals are input from sensors such as a rotation speed sensor 33 that detects the rotation speed of the compressor 11. The outlet temperature sensor 31 and the outlet pressure sensor 32 are parts corresponding to the superheat degree detecting means of the present invention, and the rotational speed sensor 33 is a part corresponding to the rotational speed detecting means of the present invention.
[0020]
The air conditioning controller 10 calculates the degree of superheat on the outlet side of the evaporator 16 from the temperature on the outlet side of the evaporator 16 detected by the outlet temperature sensor 31 and the pressure on the outlet side of the evaporator 16, and this degree of superheat is a set value. The rotational speed of the refrigerant pump 15 is controlled so as to be (for example, 1 ° C. to 2 ° C.), and the flow rate of the refrigerant flowing into the evaporator 16 is adjusted. In addition, the air-conditioning control device 10 inputs the rotational speed of the compressor 11 detected by the rotational speed sensor 33 and absorbs the fluctuation of the refrigerant flow rate flowing into the evaporator 16 caused by the fluctuation of the rotational speed of the compressor 11. The rotational speed of the refrigerant pump 15 is controlled to adjust the refrigerant flow rate sucked into the compressor 11 and the refrigerant flow rate flowing into the evaporator 16.
[0021]
(Effects of Example)
Next, the operation of the air conditioning unit 1 of this embodiment will be briefly described with reference to FIGS. Here, FIG. 3 shows the state of the refrigerant in the refrigerant circuit of the refrigeration cycle 9 in FIG. 1A on the Mollier diagram, and a to b on the refrigerant circuit of the refrigeration cycle 9 in FIG. The state of the refrigerant of f corresponds to a to f on the Mollier diagram of FIG.
[0022]
3, PH is the high pressure (condensation pressure) of the refrigeration cycle 9, PD is the suction pressure of the compressor 11, PL is the low pressure (evaporation pressure) of the refrigeration cycle 9, and PS is the outlet pressure of the nozzle 21. It is. In FIG. 3, Ge is a refrigerant flow rate that flows into the evaporator 16 due to the suction force of the refrigerant pump 15, and Gn is a refrigerant flow rate due to the suction force of the compressor 11. ΔP is the pressure increase of the ejector 13, Δie is the adiabatic heat drop at the nozzle 21, and Δir is the amount of compression work recovered by the compressor 11 by the ejector 13.
[0023]
The gas refrigerant (state point b) that has been compressed by the compressor 11 to become a high-temperature and high-pressure is condensed and liquefied by the condenser 12 to become a high-temperature and high-pressure liquid refrigerant (state point c) and flows into the ejector 13. The liquid refrigerant flowing into the ejector 13 is reduced in pressure when passing through the nozzle 21 to reach the state point d2, and further increased in pressure when passing through the diffuser 23 to reach the state point d.
[0024]
At this time, the gas refrigerant at the state point d1 is sucked into the suction portion 22 of the ejector 13 from the bypass pipe 27 by using the pressure drop around the refrigerant jetted from the nozzle 21 at high speed when the liquid refrigerant passes through the nozzle 21. The For this reason, the liquid refrigerant flowing in from the condenser 12 and the gas refrigerant sucked from the bypass pipe 27 are mixed in the diffuser 23. As a result, the gas-liquid two-phase refrigerant flowing out of the ejector 13 becomes the state point d determined by the state points d1, d2 and the refrigerant flow rate from the condenser 12 and the refrigerant flow rate from the evaporator 16.
[0025]
Thereafter, the gas-liquid two-phase refrigerant flows into the gas-liquid separator 14 from the refrigerant inlet 24 through the refrigerant pipe 17 and is separated into gas refrigerant and liquid refrigerant. Of these, the gas refrigerant (state point a) flows out of the gas refrigerant outlet 25 of the gas-liquid separator 14 by the suction force of the compressor 11 and is sucked into the compressor 11 through the refrigerant pipe 17.
[0026]
The liquid refrigerant (state point e) in one gas-liquid separator 14 is sucked into the refrigerant pump 15 and flows out from the liquid refrigerant outlet portion 26 of the gas-liquid separator 14 and flows into the bypass pipe 27. Then, the liquid refrigerant that has flowed into the bypass pipe 27 is increased in pressure by the suction effect of the refrigerant pump 15 (state point f) and then flows into the evaporator 16. The liquid refrigerant that has flowed into the evaporator 16 evaporates and passes through the evaporator 16 (state point d1), and is then sucked into the suction portion 22 of the ejector 13.
[0027]
Here, in order to use the nozzle efficiency of the ejector 13 at the optimum value, it is necessary to keep the flow rate of the refrigerant flowing into the evaporator 16 at a constant value. However, since the compressor 11 is driven to rotate by the power engine, the compressor 11 As shown in the graph of FIG. 4, the rotational speed of fluctuates from an idle rotational speed (for example, 800 rpm) to a rotational speed (for example, 200 rpm) that matches the normal traveling speed.
[0028]
Therefore, in this embodiment, the rotation of the compressor 11 is absorbed in order to absorb the fluctuation amount of the refrigerant flow rate flowing into the evaporator 16 (refer to the conventional example in FIG. 4C) caused by the fluctuation of the rotation speed of the compressor 11. The suction pressure of the compressor 11 is lowered by controlling the rotational speed of the refrigerant pump 15 according to the speed and adjusting the refrigerant flow rate sucked into the compressor 11 and the refrigerant flow rate flowing into the evaporator 16 (FIG. 4). (See the Example section in (b)). As a result, the suction specific volume of the compressor 11 is increased, so that the flow rate of the refrigerant sucked into the compressor 11 becomes a constant value (see the embodiment in FIG. 4C) regardless of the increase or decrease in the rotation speed of the compressor 11. Kept.
[0029]
[Effects of Examples]
All of the air conditioning units 1 that use the compressor 11 that is rotationally driven by a power engine for running a vehicle have a problem that the cooling capacity is low when idling (idle rotational speed). As a countermeasure, the ejector 13 can recover the energy loss at the expansion valve, reduce the work of the compressor 11, and improve the cooling capacity by increasing the refrigerant flow rate.
[0030]
However, since the refrigeration cycle 9 provided with the ejector 13 greatly depends on the nozzle efficiency of the ejector 13, as described above, the nozzle efficiency of the ejector 13 and the evaporation pressure of the refrigeration cycle 9 must be used at optimum values. There is a concern that the cooling capacity will decrease. In the present embodiment, it was made for the purpose of solving this problem, and the flow rate of refrigerant flowing into the evaporator 16 by controlling the rotation speed of the refrigerant pump 15 regardless of the increase or decrease of the rotation speed of the power engine (compressor 11). By adjusting the pressure , the liquid refrigerant in the gas-liquid separator 14 is forcibly circulated to the evaporator 16 to use the nozzle efficiency of the ejector 13 and the evaporation pressure of the refrigeration cycle 9 at optimum values (FIG. 4 ( a)). Thereby, as shown in FIG.4 (d), the fall of the cooling capability can be suppressed. In particular, the present embodiment can improve the cooling capacity in the low speed region of the compressor 11 as compared with the conventional example.
[0031]
The operation of the refrigerant pump 15 is a normal superheat amount (set value: 10 ° C., for example) with respect to the degree of superheat (superheat amount) on the outlet side of the evaporator 16 calculated from the outlet temperature sensor 31 and the outlet pressure sensor 32. The ON / OFF control may be performed at ± 1 ° C. centering on. Note that the amount of superheat is not limited to 10 ° C., and the heat transfer rate to the air is improved as it is smaller.
[0032]
[Modification]
In the present embodiment, the present invention is applied to a vehicle air conditioner (air conditioner). However, the present invention may be applied to a vehicle cooling device, a vehicle refrigeration device, or a vehicle refrigeration device. Further, the present invention may be applied to a stationary refrigeration apparatus.
[0033]
In this embodiment, the compressor 11 is rotationally driven by a power engine for vehicle travel, but the compressor 11 may be rotationally driven by an auxiliary engine (sub engine) different from the power engine for vehicle travel. Further, the compressor 11 may be rotationally driven by other driving means such as an electric motor.
[0034]
In the present embodiment, the ejector 13 and the gas-liquid separator 14 are connected by the refrigerant pipe 17, but a first refrigerant evaporator may be installed in the middle of the refrigerant pipe 17. In this case, the evaporator 16 becomes a second refrigerant evaporator. Further, if necessary, a decompression device (fixed throttle) may be installed between the gas-liquid separator 14 and the refrigerant pump 15.
[0035]
In the present embodiment, the refrigerant pump 15 is installed in the bypass pipe 27 on the upstream side of the evaporator 16, but refrigerant pumping means such as an electric compressor may be installed in the bypass pipe 27 on the downstream side of the evaporator 16.
[Brief description of the drawings]
FIG. 1A is a circuit diagram illustrating a refrigerant circuit of a refrigeration cycle, and FIG. 1B is a schematic diagram illustrating a ventilation system of a vehicle air conditioner (Example).
FIG. 2 is an electric circuit diagram showing a control system of the vehicle air conditioner (Example).
FIG. 3 is a Mollier diagram of a refrigeration cycle (Example).
FIG. 4 is a graph showing the relationship between the evaporation pressure, the compressor suction pressure, the refrigerant suction flow rate, and the cooling capacity with respect to the rotation speed of the compressor (Example).
FIG. 5 is a cross-sectional view showing a conventional ejector (conventional example).
FIG. 6 is a graph showing the relationship between nozzle inlet dryness and nozzle efficiency (conventional example).
FIG. 7 is a cross-sectional view showing a conventional ejector (conventional example).
FIG. 8 is a graph showing the relationship between the nozzle outlet diameter and the nozzle efficiency (conventional example).
FIG. 9 is a graph showing the relationship between the refrigerant flow rate of the evaporator and the boosting performance of the ejector (conventional example).
[Explanation of symbols]
1 Air-conditioning unit 9 Refrigeration cycle 10 Air-conditioning control device (air-conditioning control means)
11 Compressor (refrigerant compressor)
12 Condenser (refrigerant condenser)
13 Ejector 14 Gas-liquid separator 15 Refrigerant pump (refrigerant pumping means)
16 Evaporator (refrigerant evaporator)
17 Refrigerant piping (refrigerant flow path)
21 Nozzle 22 Suction part 26 Liquid refrigerant outlet part (liquid refrigerant side)
27 Bypass piping (bypass flow path)
31 Outlet temperature sensor (superheat detection means)
32 Outlet pressure sensor (superheat detection means)
33 Rotational speed sensor (rotational speed detection means)

Claims (3)

冷媒圧縮機、冷媒凝縮器、エジェクタおよび気液分離器を冷媒流路で環状に連結すると共に、前記気液分離器の液相冷媒側と前記エジェクタの吸引部とをバイパス配管で連結し、そのバイパス配管の途中に冷媒蒸発器を設置した冷凍サイクルを備えた冷凍装置において、
前記バイパス配管の途中に設置されて、前記気液分離器内の液相冷媒を前記冷媒蒸発器に強制的に圧送する冷媒圧送手段と、
前記エジェクタのノズル効率や前記冷凍サイクルの蒸発圧力を最適値で使用するために、前記冷媒圧縮機の回転速度の変動によって生じる前記冷媒蒸発器に流入する冷媒流量の変動分を吸収するように前記冷媒圧送手段を制御することにより、前記冷媒圧縮機の回転速度の増減に拘らず、前記冷媒圧縮機に吸引される冷媒流量および前記冷媒蒸発器に流入する冷媒流量を所定値に保つ空調制御手段
を備えたことを特徴とする冷凍装置。
A refrigerant compressor, a refrigerant condenser, an ejector, and a gas-liquid separator are connected in an annular shape with a refrigerant flow path, and the liquid-phase refrigerant side of the gas-liquid separator and the suction part of the ejector are connected by a bypass pipe, In a refrigeration apparatus equipped with a refrigeration cycle in which a refrigerant evaporator is installed in the middle of a bypass pipe,
Refrigerant pumping means installed in the middle of the bypass pipe and forcibly pumping the liquid phase refrigerant in the gas-liquid separator to the refrigerant evaporator;
In order to use the nozzle efficiency of the ejector and the evaporation pressure of the refrigeration cycle at the optimum values, the fluctuation amount of the refrigerant flow flowing into the refrigerant evaporator caused by the fluctuation of the rotation speed of the refrigerant compressor is absorbed. By controlling the refrigerant pressure feeding means, the air conditioning control means for maintaining the refrigerant flow rate sucked into the refrigerant compressor and the refrigerant flow rate flowing into the refrigerant evaporator at a predetermined value regardless of increase or decrease in the rotational speed of the refrigerant compressor. And a refrigeration apparatus comprising:
請求項1に記載の冷凍装置において、
前記冷媒圧送手段は、前記バイパス配管のうち前記冷媒蒸発器よりも上流側に設置された冷媒ポンプであり、
前記空調制御手段は、前記冷媒蒸発器の出口側の過熱度を検出する過熱度検出手段を有し、この過熱度検出手段で検出した検出値が設定値となるように前記冷媒ポンプの回転速度を増減して前記冷媒蒸発器に流入する冷媒流量を調節することを特徴とする冷凍装置。
The refrigeration apparatus according to claim 1,
The refrigerant pressure feeding means is a refrigerant pump installed on the upstream side of the refrigerant evaporator in the bypass pipe,
The air conditioning control means has superheat degree detection means for detecting the superheat degree on the outlet side of the refrigerant evaporator, and the rotational speed of the refrigerant pump is set so that the detection value detected by the superheat degree detection means becomes a set value. And adjusting the flow rate of the refrigerant flowing into the refrigerant evaporator by increasing or decreasing the value.
請求項2に記載の冷凍装置において、
前記空調制御手段は、前記冷媒圧縮機の回転速度を検出する回転速度検出手段を有し、この回転速度検出手段で検出した検出値が増加すればする程、前記冷媒ポンプの回転速度を遅くして前記冷媒圧縮機に吸引される冷媒流量および前記冷媒蒸発器に流入する冷媒流量を調節することを特徴とする冷凍装置。
The refrigeration apparatus according to claim 2,
The air conditioning control means has a rotational speed detecting means for detecting the rotational speed of the refrigerant compressor, and the rotational speed of the refrigerant pump decreases as the detected value detected by the rotational speed detecting means increases. And adjusting the refrigerant flow rate sucked into the refrigerant compressor and the refrigerant flow rate flowing into the refrigerant evaporator.
JP00971097A 1997-01-22 1997-01-22 Refrigeration equipment Expired - Fee Related JP3690030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00971097A JP3690030B2 (en) 1997-01-22 1997-01-22 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00971097A JP3690030B2 (en) 1997-01-22 1997-01-22 Refrigeration equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005069911A Division JP3992046B2 (en) 2005-03-11 2005-03-11 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH10205898A JPH10205898A (en) 1998-08-04
JP3690030B2 true JP3690030B2 (en) 2005-08-31

Family

ID=11727817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00971097A Expired - Fee Related JP3690030B2 (en) 1997-01-22 1997-01-22 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3690030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10603985B2 (en) 2014-09-04 2020-03-31 Denso Corporation Liquid ejector and ejector refrigeration cycle

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477857B2 (en) 2000-03-15 2002-11-12 Denso Corporation Ejector cycle system with critical refrigerant pressure
JP3966044B2 (en) * 2002-04-02 2007-08-29 株式会社デンソー Air conditioner
US6904769B2 (en) * 2002-05-15 2005-06-14 Denso Corporation Ejector-type depressurizer for vapor compression refrigeration system
JP3695438B2 (en) 2002-10-15 2005-09-14 株式会社デンソー Mobile cooling system
JP4200780B2 (en) * 2003-02-14 2008-12-24 株式会社デンソー Vapor compression refrigerator
JP4232484B2 (en) 2003-03-05 2009-03-04 株式会社日本自動車部品総合研究所 Ejector and vapor compression refrigerator
US6918266B2 (en) 2003-04-21 2005-07-19 Denso Corporation Ejector for vapor-compression refrigerant cycle
JP4285060B2 (en) * 2003-04-23 2009-06-24 株式会社デンソー Vapor compression refrigerator
CN100436962C (en) * 2005-08-04 2008-11-26 株式会社电装 Refrigeration cycle device with injector
DE102008005074A1 (en) * 2008-01-18 2009-07-23 Valeo Klimasysteme Gmbh Ejector for air conditioning
JP5018725B2 (en) * 2008-04-18 2012-09-05 株式会社デンソー Ejector refrigeration cycle
DE112009000608B4 (en) * 2008-04-18 2017-12-28 Denso Corporation An ejector-type refrigeration cycle device
JP5018756B2 (en) * 2008-04-18 2012-09-05 株式会社デンソー Ejector refrigeration cycle
WO2009128271A1 (en) * 2008-04-18 2009-10-22 株式会社デンソー Ejector-type refrigeration cycle device
JP5003665B2 (en) * 2008-04-18 2012-08-15 株式会社デンソー Ejector refrigeration cycle
JP5967022B2 (en) * 2012-11-16 2016-08-10 株式会社デンソー Refrigeration cycle equipment
JP2014190587A (en) * 2013-03-26 2014-10-06 Hibiya Eng Ltd Ejector type refrigeration cycle device and control method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10603985B2 (en) 2014-09-04 2020-03-31 Denso Corporation Liquid ejector and ejector refrigeration cycle

Also Published As

Publication number Publication date
JPH10205898A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
JP3690030B2 (en) Refrigeration equipment
US6782713B2 (en) Refrigerant cycle with ejector having throttle changeable nozzle
US8047018B2 (en) Ejector cycle system
JP6011507B2 (en) Refrigeration cycle equipment
US8424338B2 (en) Vapor compression refrigerating cycle apparatus with an ejector and distributor
US7062929B2 (en) Vehicle air conditioner with vapor-compression refrigerant cycle and method of operating the same
US6945074B2 (en) Vapor-compression refrigerant cycle system
JP4006782B2 (en) Air conditioner having a cooler for heat generating equipment
JP2007139269A (en) Supercritical refrigerating cycle
JP2004142506A (en) Air conditioning device for vehicle
WO2018088034A1 (en) Refrigeration cycle device
JP2000283577A (en) Refrigeration cycle for refrigerating plant
JP3992046B2 (en) Refrigeration equipment
US20040003615A1 (en) Vapor compression refrigerant cycle
JP3820664B2 (en) Air conditioner for vehicles
JP4259092B2 (en) Ejector cycle, air conditioner, and vehicle air conditioner
JP4835296B2 (en) Ejector refrigeration cycle
JP2006313050A (en) Supercritical refrigeration cycle and vehicular air conditioner
JP2992818B1 (en) Compressor protection device for vehicle air conditioner
JP6319041B2 (en) Ejector refrigeration cycle
WO2018088033A1 (en) Refrigeration cycle device
JP3339040B2 (en) Vehicle air conditioner
JP2010043754A (en) Vapor compression type refrigeration cycle
JP6319043B2 (en) Ejector refrigeration cycle
JP2020029983A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees