Nothing Special   »   [go: up one dir, main page]

JP3689923B2 - Method for producing plastic film having antireflection film - Google Patents

Method for producing plastic film having antireflection film

Info

Publication number
JP3689923B2
JP3689923B2 JP30743594A JP30743594A JP3689923B2 JP 3689923 B2 JP3689923 B2 JP 3689923B2 JP 30743594 A JP30743594 A JP 30743594A JP 30743594 A JP30743594 A JP 30743594A JP 3689923 B2 JP3689923 B2 JP 3689923B2
Authority
JP
Japan
Prior art keywords
film
magnesium fluoride
antireflection
aluminum oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30743594A
Other languages
Japanese (ja)
Other versions
JPH08165564A (en
Inventor
信行 蔵田
衡 宮北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP30743594A priority Critical patent/JP3689923B2/en
Publication of JPH08165564A publication Critical patent/JPH08165564A/en
Application granted granted Critical
Publication of JP3689923B2 publication Critical patent/JP3689923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Polarising Elements (AREA)

Description

【0001】
【産業上の利用分野】
本発明は耐擦傷性、耐久性、反射防止性能に優れた反射防止膜を有するプラスチックフィルムの製造法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
液晶ディスプレイやブラウン管等の表示画面を見る場合、窓からの外光や室内照明の光が画面上で反射し、表示が見難くなり、ディスプレイ作業における疲労の原因とも成っている。この対策の一つとして、表示画面の表面に反射防止膜を設け、表示画質を向上させることが行われている。
【0003】
従来からレンズ等の光学部品には、反射防止膜として弗化マグネシウム層を付与することが行われている。図1にプラスチックフィルム表面に弗化マグネシウムの単層膜を有する場合と無い場合の反射スペクトルを示す。Aは弗化マグネシウム層がある場合、Bはない場合であり、弗化マグネシウムの単層膜は優れた反射防止効果を有している。通常、弗化マグネシウム層は蒸着法により付与されるが、波長550nmにおける反射率が1.4%と必ずしも充分でないこと、更に密着性、耐久性が悪い等の問題点を有しており、その対策がいくつか提案されている。
【0004】
密着性、耐久性を向上させるために、プラスチック表面にアルゴンイオンガンを照射して行う方法(特開昭61−290402号公報)、二酸化シリコンを接着層として蒸着する方法(特開昭62−186203号公報)が提案されている。しかしこれらの方法においても初期の密着性は向上するものの、高温高湿下での耐久性においては満足できる結果は得られない。
【0005】
また、特公昭61−602号公報には、耐擦傷性、耐久性の改良、さらに反射防止性能の向上を目的として、プラスチック表面に酸化アルミニウム、弗化マグネシウムをこの順に蒸着する2層構成の反射防止膜が開示されている。この方法は、プラスチック基材表面に酸化アルミニウム層を接着層として付与することにより、耐擦傷性、耐久性を改善するだけではなく、酸化アルミニウム層をプラスチック基材より高い屈折率とすることによって反射防止性能も向上させたものである。しかしこの方法は、蒸着法を使用しているため、屈折率の高い酸化アルミニウムを得るためには付加的な手段を講じる必要があり、ここではイオンプレーティングを使用した例が示されている。この方法では、初期の膜質の改良は相当程度できるものの、湿熱下において反射率の変動が生じ、また耐擦傷性も低下し、耐久性の点で不十分である。
【0006】
このようにプラスチック基材より高い屈折率を持つ接着層を付与することにより反射防止性能に優れ、なおかつプラスチック基材と弗化マグネシウムとの密着性を向上させ、更には性能にバラツキのない均質な反射防止性能を得る方法は未だ確立されておられず、弗化マグネシウムを使用した反射防止膜が実用化されるための大きな技術課題となっている。
【0007】
本発明は、このような問題に鑑みてなされたものであり、良好な反射防止性能を有し、密着性、耐久性に優れた反射防止膜を有するプラスチックフィルムを提供するものである。
本発明者らは、酸化アルミニウム層と弗化マグネシウム層の2層からなる反射防止膜について鋭意検討した結果、その製膜の際に酸素イオンガンを照射することによって、湿熱耐久性が良好な反射防止膜を有するプラスチックフィルムが得られることを見い出し、本発明を完成させるに至った。
【0008】
【課題を解決するための手段】
すなわち本発明は、プラスチックフィルム表面に、表面側から空気層側へ順に、酸化アルミニウム層、弗化マグネシウム層からなる反射防止膜を有するプラスチックフィルムを製造する方法において、酸化アルミニウム層および弗化マグネシウム層を蒸着する際に酸素イオンガンを照射して行うことを特徴とする反射防止膜を有するプラスチックフィルムの製造方法である。
【0009】
プラスチック基材としては特に限定されるものではなく、ポリオレフィン、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレート、トリアセチルセルロース等スパッタプロセスに使用できるものであればどの様なものでも良い。また反射防止膜の耐擦傷性を向上させる目的で樹脂によるハードコートを施されたものを使用するのも有効である。
【0010】
本発明の反射防止膜を有するプラスチックフィルムは偏光板として好ましく用いられる。偏光板としては特に限定されるものではなく、例えば、ポリビニルアルコール系フィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、ポリ(エチレン−酢酸ビニル)共重合体系ケン化フィルム等の親水性高分子フィルムにヨウ素および/または二色性染料を吸着配向させた偏光子に、トリアセチルセルロースフィルム等の透明性に優れた保護フィルムがポリビニルアルコール系接着剤、ウレタン系接着剤等を用いて接着されている偏光板が挙げられる。好ましくは、ポリビニルアルコール系フィルムにヨウ素および/または二色性染料を吸着配向させた偏光子とトリアセチルセルロースフィルムの保護フィルムからなる偏光板である。例えば、このトリアセチルセルロースフィルムの保護フィルムに、酸化アルミニウム層および弗化マグネシウムからなる反射防止膜が設けられる。
【0011】
酸化アルミニウム層の付与は、蒸着法にて行い、蒸着の際に酸素イオンガンを照射して行う。蒸着法は特に限定されるものではなく、抵抗加熱蒸着法、電子線(EB)加熱蒸着法、誘導加熱蒸着法等が用いられる。イオンガンに使用するガスは酸素ガスである必要があり、アルゴンガス等の酸素以外のガスでは効果が得られない。酸素イオンガン照射時の加速電圧は300〜700ボルトが好ましく、プラスチックフィルムが熱に弱く、酸素イオンガンの照射による温度上昇を防ぐ必要がある場合は、加速電圧300〜500ボルトで行われる。
【0012】
この方法により屈折率が1.57以上の酸化アルミニウム層を容易に得ることができる。この酸化アルミニウム層はプラスチック基材と弗化マグネシウム層との密着性を向上させるとともに、反射防止性能を向上させる役割を持つものであり、その膜厚は200Å以上が好ましい。更に反射防止性能の向上を必要とする場合は、光学膜厚0.25λ以上0.5λ以下が例示できる。
【0013】
弗化マグネシウム層の付与は、酸化アルミニウム層の付与と同様に行う。すなわち、蒸着法を用い、蒸着の際に酸素イオンガンを照射して行う。蒸着法は特に限定されるものではなく、抵抗加熱蒸着法、EB加熱蒸着法、誘導加熱蒸着法等が用いられる。イオンガンに使用するガスは酸素ガスである必要があり、アルゴンガス等の酸素以外のガスでは効果が得られない。酸素イオンガン照射時の加速電圧は300〜700ボルトが好ましく、プラスチックフィルムが熱に弱く、酸素イオンガン照射による温度上昇を防ぐ必要がある場合は、加速電圧300〜500ボルトで行われる。
【0014】
この方法により湿熱下での膜の劣化がなく、耐擦傷性の優れた弗化マグネシウム層を得ることができる。この弗化マグネシウム層の膜厚dは弗化マグネシウムの屈折率をn、反射防止を行う光の波長をλとするとd=λ/4nに設定され、λ=550nmの場合、dは950〜1050Å程度となる。
【0015】
また酸化アルミニウムのプラスチックフィルムへの密着性を向上させるため、酸化アルミニウム蒸着前にプラスチックフィルム表面を酸素イオンガンを照射してイオンクリーニングを実施することも有効である。更に、弗化マグネシウム表面の耐擦傷性向上または、カップリング反応を使用した防汚処理を目的として、弗化マグネシウム表面に酸化アルミニウム、二酸化シリコン等の金属酸化物層を付与することも有効である。
【0016】
【実施例】
本発明を実施例で詳細に説明するが、本発明はこれら実施例に限定されるものではない。
実施例1
プラスチックフィルムとして、トリアセチルセルロースフィルムにアクリルウレタン系のハードコートを行ったもの(H−TACと略する)を使用し、表1に示すような層構成で反射防止膜を構成した。蒸着は、以下の条件で行った。まず酸素イオンガンでプラスチック表面のイオンクリーニングを20秒間行った後、酸化アルミニウム層の蒸着を、真空度5×10-5TorrでEB加熱蒸着により酸素イオンガンを照射しながら行った。イオンクリーニングおよび蒸着時の酸素イオンガンの照射条件は同じであり、加速電圧500V、加速電流は40mAであった。蒸着時間は6分間であり、屈折率1.59を有する酸化アルミニウム層を光学膜厚0.25λ(λ=550nm)形成させた。
【0017】
次に酸化アルミニウム層の上に弗化マグネシウム層の蒸着を行った。蒸着は真空度5×10-5TorrでEB加熱蒸着法により、酸素イオンガンを照射しながら行った。酸素イオンガンの照射条件は加速電圧500V、加速電流は40mAであり、4分間の蒸着で光学膜厚0.23λ(λ=550nm)の膜厚を形成させた。更に耐擦傷性向上及び防汚処理を目的としてEB蒸着法で二酸化珪素層を100Å形成させた。この時、上記と同一条件で酸素イオンガンを照射して行った。
【0018】
得られた反射防止膜を有するプラスチックフィルムについて反射スペクトルの測定、耐擦傷性テスト、耐久性テストを行った。結果を表2に示す。反射スペクトルを図2のCに示す。
○耐擦傷性テスト:スチールウール(#0000)を用い、250g/cm2 で表面を擦り、傷の入る具合を観察した。
○耐久性テスト:温度90℃×湿度0%、温度65℃×湿度95%の条件で1000時間放置し、表面に微細なクラックの発生、膜の劣化(透明度の低下)の有無について観察すると共に、耐擦傷性テスト、反射スペクトルの測定を行い、変動の有無を確認した。
【0019】
【表1】

Figure 0003689923
【0020】
実施例2
酸化アルミニウムの膜厚が0.06λ、弗化マグネシウムの膜厚が0.25λであり、二酸化珪素層を設けなかった以外は実施例1と同様に行った。
反射スペクトルを図2のDに示す。耐擦傷性および耐久性の評価結果を表2に示す。
【0021】
比較例1
酸化アルミニウム層は設けず、弗化マグネシウム層を酸素イオンガンを照射せずにEB加熱蒸着で付与した以外は実施例2と同様に行った。
反射スペクトルを図3のEに示す。耐擦傷性および耐久性の評価結果を表2に示す。
【0022】
比較例2
酸化アルミニウム層および弗化マグネシウム層の蒸着を酸素イオンガンを照射せずに行い、酸化アルミニウム層の蒸着時の真空度を6×10-5Torrで行った以外は実施例2と同様に行った。
反射スペクトルを図3のFに示す。耐擦傷性および耐久性の評価結果を表2に示す。
【0023】
比較例3
酸素イオンガンの代わりにアルゴンイオンガンを使用した以外は実施例1と同様に行った。
反射スペクトルを図3のGに示す。耐擦傷性および耐久性の評価結果を表2に示す。
【0024】
図2および図3の反射スペクトルの比較から、実施例1および実施例2のフィルムは弗化マグネシウムのみのフィルム(比較例1)以上の反射防止性能を示し、また同一層構成(酸化アルミニウム層の膜厚が同一)であれば実施例のフィルムが比較例のフィルムに比べて反射防止性能が優れていることが判る。
また、表2から、実施例1および実施例2のフィルムは耐熱耐久性テスト、湿熱耐久性テスト後においても耐擦傷性、耐久性とも優れたものであったが比較例1のフィルムは耐擦傷性、耐久性とも悪く、比較例2のフィルムは湿熱耐久性テストにおいて反射率の変動が生じ、また湿熱耐久性テスト後では耐擦傷性も大きく低下していることがわかる。
比較例3では、耐擦傷性の初期性能が悪く、傷が付きやすいうえに耐久性も悪く、表面のくもり、表面反射率の変動、耐擦傷性の低下が発生する。
【0025】
【表2】
Figure 0003689923
【0026】
【発明の効果】
本発明により、プラスチック表面に付与した弗化マグネシウム層の密着性、耐久性を向上させることができると共に、屈折率の高い酸化アルミニウム層が均質に得られることから、反射防止性能を改善することができ、またそのバラツキを少なくすることができる
【図面の簡単な説明】
【図1】従来の弗化マグネシウムの反射防止膜の反射スペクトルを示す図である。
【図2】実施例のプラスチックフィルムの反射スペクトルを示す図である。
【図3】比較例のプラスチックフィルムの反射スペクトルを示す図である。
【符号の説明】
A:従来の弗化マグネシウムからなる反射防止膜の反射スペクトル
B:弗化マグネシウムからなる反射防止膜がないフィルムの反射スペクトル
C:実施例1のフィルムの反射スペクトル
D:実施例2のフィルムの反射スペクトル
E:比較例1のフィルムの反射スペクトル
F:比較例2のフィルムの反射スペクトル
G:比較例3のフィルムの反射スペクトル[0001]
[Industrial application fields]
The present invention relates to a method for producing a plastic film having an antireflection film excellent in scratch resistance, durability and antireflection performance.
[0002]
[Background Art and Problems to be Solved by the Invention]
When viewing a display screen such as a liquid crystal display or a cathode ray tube, the external light from the window or the light from the room light is reflected on the screen, making it difficult to see the display, which also causes fatigue in display work. As one of countermeasures, an antireflection film is provided on the surface of the display screen to improve display image quality.
[0003]
Conventionally, an optical component such as a lens is provided with a magnesium fluoride layer as an antireflection film. FIG. 1 shows reflection spectra with and without a magnesium fluoride monolayer on the plastic film surface. A is the case where there is a magnesium fluoride layer and B is not, and the single layer film of magnesium fluoride has an excellent antireflection effect. Usually, the magnesium fluoride layer is applied by a vapor deposition method, but has a problem that the reflectance at a wavelength of 550 nm is not always sufficient as 1.4%, and the adhesion and durability are poor. Several countermeasures have been proposed.
[0004]
In order to improve adhesion and durability, a method of irradiating a plastic surface with an argon ion gun (Japanese Patent Laid-Open No. 61-290402), a method of depositing silicon dioxide as an adhesive layer (Japanese Patent Laid-Open No. 62-186203) Publication). However, although these methods improve initial adhesion, satisfactory results cannot be obtained in durability under high temperature and high humidity.
[0005]
Japanese Patent Publication No. 61-602 discloses a two-layer reflection in which aluminum oxide and magnesium fluoride are vapor-deposited in this order on a plastic surface for the purpose of improving scratch resistance and durability, and further improving antireflection performance. A barrier film is disclosed. This method not only improves the scratch resistance and durability by providing an aluminum oxide layer as an adhesive layer on the surface of the plastic substrate, but also reflects it by making the aluminum oxide layer have a higher refractive index than the plastic substrate. The prevention performance is also improved. However, since this method uses a vapor deposition method, it is necessary to take additional measures in order to obtain aluminum oxide having a high refractive index. Here, an example using ion plating is shown. Although this method can considerably improve the initial film quality, the reflectance fluctuates under wet heat, and the scratch resistance is lowered, which is insufficient in terms of durability.
[0006]
By providing an adhesive layer having a refractive index higher than that of the plastic base material in this way, the anti-reflection performance is improved, the adhesion between the plastic base material and magnesium fluoride is improved, and the performance is not uniform. A method for obtaining the antireflection performance has not yet been established, and this is a major technical problem for the practical application of an antireflection film using magnesium fluoride.
[0007]
The present invention has been made in view of such problems, and provides a plastic film having an antireflection film having good antireflection performance and excellent adhesion and durability.
As a result of intensive studies on an antireflection film comprising two layers of an aluminum oxide layer and a magnesium fluoride layer, the present inventors, as a result of irradiating an oxygen ion gun at the time of forming the film, antireflection with good wet heat durability. The inventors have found that a plastic film having a film can be obtained, and have completed the present invention.
[0008]
[Means for Solving the Problems]
That is, the present invention relates to a method for producing a plastic film having an antireflection film comprising an aluminum oxide layer and a magnesium fluoride layer in order from the surface side to the air layer side on the surface of the plastic film. This is a method for producing a plastic film having an antireflection film, which is performed by irradiating an oxygen ion gun at the time of vapor deposition.
[0009]
The plastic substrate is not particularly limited, and any plastic substrate such as polyolefin, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, or triacetyl cellulose may be used as long as it can be used in the sputtering process. It is also effective to use a resin-coated hard coat for the purpose of improving the scratch resistance of the antireflection film.
[0010]
The plastic film having the antireflection film of the present invention is preferably used as a polarizing plate. The polarizing plate is not particularly limited. For example, iodine and a hydrophilic polymer film such as a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, a poly (ethylene-vinyl acetate) copolymer saponified film, and the like. A polarizing plate in which a protective film excellent in transparency such as a triacetyl cellulose film is bonded to a polarizer obtained by adsorbing and orienting a dichroic dye using a polyvinyl alcohol adhesive, a urethane adhesive, or the like. Can be mentioned. Preferably, it is a polarizing plate comprising a polarizer obtained by adsorbing and orienting iodine and / or a dichroic dye on a polyvinyl alcohol film and a protective film of a triacetyl cellulose film. For example, an antireflection film made of an aluminum oxide layer and magnesium fluoride is provided on the protective film of the triacetyl cellulose film.
[0011]
The application of the aluminum oxide layer is performed by a vapor deposition method, and is performed by irradiating an oxygen ion gun during the vapor deposition. The evaporation method is not particularly limited, and a resistance heating evaporation method, an electron beam (EB) heating evaporation method, an induction heating evaporation method, or the like is used. The gas used for the ion gun needs to be oxygen gas, and an effect cannot be obtained with a gas other than oxygen such as argon gas. The acceleration voltage at the time of irradiation with the oxygen ion gun is preferably 300 to 700 volts. When the plastic film is weak against heat and it is necessary to prevent the temperature increase due to the irradiation with the oxygen ion gun, the acceleration voltage is 300 to 500 volts.
[0012]
By this method, an aluminum oxide layer having a refractive index of 1.57 or more can be easily obtained. This aluminum oxide layer improves the adhesion between the plastic substrate and the magnesium fluoride layer and improves the antireflection performance, and the film thickness is preferably 200 mm or more. Further, when it is necessary to improve the antireflection performance, an optical film thickness of 0.25λ to 0.5λ can be exemplified.
[0013]
The application of the magnesium fluoride layer is performed in the same manner as the application of the aluminum oxide layer. That is, a vapor deposition method is used, and an oxygen ion gun is irradiated during vapor deposition. The evaporation method is not particularly limited, and a resistance heating evaporation method, an EB heating evaporation method, an induction heating evaporation method, or the like is used. The gas used for the ion gun needs to be oxygen gas, and an effect cannot be obtained with a gas other than oxygen such as argon gas. The acceleration voltage at the time of oxygen ion gun irradiation is preferably 300 to 700 volts. When the plastic film is weak against heat and it is necessary to prevent the temperature rise due to the oxygen ion gun irradiation, the acceleration voltage is 300 to 500 volts.
[0014]
By this method, there is no deterioration of the film under wet heat, and a magnesium fluoride layer having excellent scratch resistance can be obtained. The film thickness d of this magnesium fluoride layer is set to d = λ / 4n where n is the refractive index of magnesium fluoride and λ is the wavelength of the light for antireflection, and when λ = 550 nm, d is 950 to 1050Å. It will be about.
[0015]
In order to improve the adhesion of aluminum oxide to the plastic film, it is also effective to perform ion cleaning by irradiating the surface of the plastic film with an oxygen ion gun before vapor deposition of aluminum oxide. It is also effective to provide a metal oxide layer such as aluminum oxide or silicon dioxide on the surface of magnesium fluoride for the purpose of improving scratch resistance on the surface of magnesium fluoride or for antifouling treatment using a coupling reaction. .
[0016]
【Example】
Examples The present invention will be described in detail by examples, but the present invention is not limited to these examples.
Example 1
As a plastic film, a triacetyl cellulose film obtained by applying an acrylic urethane hard coat (abbreviated as H-TAC) was used, and an antireflection film having a layer structure as shown in Table 1 was formed. Deposition was performed under the following conditions. First, ion cleaning of the plastic surface was performed with an oxygen ion gun for 20 seconds, and then an aluminum oxide layer was deposited while irradiating the oxygen ion gun with EB heating vapor deposition at a vacuum degree of 5 × 10 −5 Torr. The irradiation conditions of the oxygen ion gun during ion cleaning and vapor deposition were the same, and the acceleration voltage was 500 V and the acceleration current was 40 mA. The deposition time was 6 minutes, and an aluminum oxide layer having a refractive index of 1.59 was formed with an optical film thickness of 0.25λ (λ = 550 nm).
[0017]
Next, a magnesium fluoride layer was deposited on the aluminum oxide layer. Vapor deposition was performed by EB heating vapor deposition at a vacuum degree of 5 × 10 −5 Torr while irradiating an oxygen ion gun. The irradiation conditions of the oxygen ion gun were an acceleration voltage of 500 V, an acceleration current of 40 mA, and an optical film thickness of 0.23λ (λ = 550 nm) was formed by vapor deposition for 4 minutes. Further, a silicon dioxide layer having a thickness of 100 mm was formed by EB vapor deposition for the purpose of improving scratch resistance and antifouling treatment. At this time, an oxygen ion gun was irradiated under the same conditions as described above.
[0018]
The obtained plastic film having an antireflection film was subjected to measurement of reflection spectrum, scratch resistance test, and durability test. The results are shown in Table 2. The reflection spectrum is shown in FIG.
O Scratch resistance test: Steel wool (# 0000) was used, and the surface was rubbed at 250 g / cm 2 to observe the degree of scratches.
○ Durability test: Leave for 1000 hours under conditions of temperature 90 ° C x humidity 0%, temperature 65 ° C x humidity 95%, and observe the occurrence of fine cracks on the surface and film deterioration (decrease in transparency). Then, the scratch resistance test and the reflection spectrum were measured to confirm the presence or absence of fluctuation.
[0019]
[Table 1]
Figure 0003689923
[0020]
Example 2
The same procedure as in Example 1 was performed except that the aluminum oxide film thickness was 0.06λ, the magnesium fluoride film thickness was 0.25λ, and the silicon dioxide layer was not provided.
The reflection spectrum is shown in FIG. Table 2 shows the evaluation results of scratch resistance and durability.
[0021]
Comparative Example 1
The same procedure as in Example 2 was performed except that an aluminum oxide layer was not provided and a magnesium fluoride layer was applied by EB heating vapor deposition without irradiation with an oxygen ion gun.
The reflection spectrum is shown in FIG. Table 2 shows the evaluation results of scratch resistance and durability.
[0022]
Comparative Example 2
The aluminum oxide layer and the magnesium fluoride layer were deposited without irradiating the oxygen ion gun, and the same procedure as in Example 2 was performed except that the degree of vacuum during the deposition of the aluminum oxide layer was 6 × 10 −5 Torr.
The reflection spectrum is shown in F of FIG. Table 2 shows the evaluation results of scratch resistance and durability.
[0023]
Comparative Example 3
The same operation as in Example 1 was performed except that an argon ion gun was used instead of the oxygen ion gun.
The reflection spectrum is shown in FIG. Table 2 shows the evaluation results of scratch resistance and durability.
[0024]
From the comparison of the reflection spectra of FIGS. 2 and 3, the films of Example 1 and Example 2 show antireflection performances higher than that of the magnesium fluoride only film (Comparative Example 1), and the same layer structure (the aluminum oxide layer) If the film thickness is the same), it can be seen that the film of the example has better antireflection performance than the film of the comparative example.
Further, from Table 2, the films of Example 1 and Example 2 were excellent in both scratch resistance and durability even after the heat resistance durability test and wet heat durability test, but the film of Comparative Example 1 was scratch resistance. It can be seen that the film of Comparative Example 2 has a change in reflectance in the wet heat durability test, and the scratch resistance is greatly reduced after the wet heat durability test.
In Comparative Example 3, the initial performance of the scratch resistance is poor, the scratch is easily scratched, the durability is also poor, the surface is clouded, the surface reflectance is changed, and the scratch resistance is lowered.
[0025]
[Table 2]
Figure 0003689923
[0026]
【The invention's effect】
According to the present invention, the adhesion and durability of the magnesium fluoride layer applied to the plastic surface can be improved, and an aluminum oxide layer having a high refractive index can be obtained uniformly, thereby improving the antireflection performance. And the variation thereof can be reduced .
[Brief description of the drawings]
FIG. 1 is a view showing a reflection spectrum of a conventional magnesium fluoride antireflection film.
FIG. 2 is a diagram showing a reflection spectrum of a plastic film of an example.
FIG. 3 is a diagram showing a reflection spectrum of a plastic film of a comparative example.
[Explanation of symbols]
A: Reflection spectrum of a conventional antireflection film made of magnesium fluoride B: Reflection spectrum of a film without an antireflection film made of magnesium fluoride C: Reflection spectrum of the film of Example 1 D: Reflection of the film of Example 2 Spectrum E: Reflection spectrum of the film of Comparative Example 1 F: Reflection spectrum of the film of Comparative Example 2 G: Reflection spectrum of the film of Comparative Example 3

Claims (2)

プラスチックフィルム表面に、表面から空気層側へ順に、酸化アルミニウム層、弗化マグネシウム層からなる反射防止膜を有するプラスチックフィルムを製造する方法において、酸化アルミニウム層および弗化マグネシウム層を蒸着する際に酸素イオンガンを照射して行うことを特徴とする反射防止膜を有するプラスチックフィルムの製造方法。In the method of manufacturing a plastic film having an antireflection film composed of an aluminum oxide layer and a magnesium fluoride layer in order from the surface to the air layer side on the surface of the plastic film, oxygen is deposited when the aluminum oxide layer and the magnesium fluoride layer are deposited. A method for producing a plastic film having an antireflection film, which is performed by irradiation with an ion gun. プラスチックフィルムが偏光板である請求項1記載の反射防止膜を有するプラスチックフィルムの製造方法。The method for producing a plastic film having an antireflection film according to claim 1, wherein the plastic film is a polarizing plate.
JP30743594A 1994-12-12 1994-12-12 Method for producing plastic film having antireflection film Expired - Fee Related JP3689923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30743594A JP3689923B2 (en) 1994-12-12 1994-12-12 Method for producing plastic film having antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30743594A JP3689923B2 (en) 1994-12-12 1994-12-12 Method for producing plastic film having antireflection film

Publications (2)

Publication Number Publication Date
JPH08165564A JPH08165564A (en) 1996-06-25
JP3689923B2 true JP3689923B2 (en) 2005-08-31

Family

ID=17969045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30743594A Expired - Fee Related JP3689923B2 (en) 1994-12-12 1994-12-12 Method for producing plastic film having antireflection film

Country Status (1)

Country Link
JP (1) JP3689923B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4217027B2 (en) * 2002-04-26 2009-01-28 株式会社タンガロイ Covering member
JP4895343B2 (en) * 2004-09-22 2012-03-14 富士フイルム株式会社 Antireflection film, method for producing the same, polarizing plate, and image display device

Also Published As

Publication number Publication date
JPH08165564A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
JP3520627B2 (en) Anti-reflection member, method of manufacturing the same, and cathode ray tube
US20030021972A1 (en) Antireflection film
JP2006267561A (en) Optical element and manufacturing method thereof
JP2001512578A (en) Matrix molded opaque low reflection coating on glass
JP2000214302A (en) Antireflection film and its production
JPH0798414A (en) Polarizing plate and production of polarizing plate
US7575798B2 (en) Optical element with an opaque chrome coating having an aperture and method of making same
JP7279713B2 (en) Optical thin film, optical member, and method for producing optical thin film
JP3689923B2 (en) Method for producing plastic film having antireflection film
JPS585855B2 (en) semi-reflective glass
WO2006129528A1 (en) Front surface mirror
US7033855B2 (en) Optical component and method of manufacturing the same
JP3497236B2 (en) Anti-reflection coating for high precision optical components
JP3769039B2 (en) Polarizing plate with antireflection film and method for producing the same
JPH1062603A (en) Conductive reflection preventing plate, and optical part provided with it
JPH07119845B2 (en) Optical components
JP3541606B2 (en) Low reflection resin substrate
JPH08144048A (en) Production of plastic film with antireflection film
JP3987169B2 (en) Optical thin film manufacturing method
JP3352172B2 (en) Optical thin film of plastic optical component and method of forming the same
JP3412302B2 (en) Method for manufacturing plastic optical component having antireflection film
JP3353944B2 (en) Antireflection film for optical component and optical component formed with this antireflection film
JPH07119844B2 (en) Optical component having antireflection film
JP3353948B2 (en) Beam splitter
JP2979327B2 (en) Anti-reflective coating deposited on low melting point substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees