Nothing Special   »   [go: up one dir, main page]

JP3685224B2 - Piezoelectric vibration gyro using energy confinement vibration mode - Google Patents

Piezoelectric vibration gyro using energy confinement vibration mode Download PDF

Info

Publication number
JP3685224B2
JP3685224B2 JP16892496A JP16892496A JP3685224B2 JP 3685224 B2 JP3685224 B2 JP 3685224B2 JP 16892496 A JP16892496 A JP 16892496A JP 16892496 A JP16892496 A JP 16892496A JP 3685224 B2 JP3685224 B2 JP 3685224B2
Authority
JP
Japan
Prior art keywords
piezoelectric
vibration
energy confinement
electrode pair
gyro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16892496A
Other languages
Japanese (ja)
Other versions
JPH1068624A (en
Inventor
哲男 吉田
洋 阿部
博 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP16892496A priority Critical patent/JP3685224B2/en
Priority to US08/878,409 priority patent/US5887480A/en
Priority to TW086108565A priority patent/TW334651B/en
Priority to EP97110056A priority patent/EP0814319B1/en
Priority to DE69701595T priority patent/DE69701595T2/en
Priority to CA002208369A priority patent/CA2208369C/en
Priority to KR1019970025983A priority patent/KR100494967B1/en
Priority to CN97113960A priority patent/CN1086806C/en
Publication of JPH1068624A publication Critical patent/JPH1068624A/en
Priority to US09/217,561 priority patent/US6138510A/en
Application granted granted Critical
Publication of JP3685224B2 publication Critical patent/JP3685224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,自動車のナビゲーションシステムやカメラ一体型VTRカメラの手ぶれ補正などに用いられるジャイロスコープの内,圧電振動子の超音波振動を利用した振動ジャイロに関し,特に圧電振動子の振動モードとしてエネルギー閉じ込め振動モードを利用し,構造が簡単で支持が容易な耐振動特性および耐衝撃性に優れた圧電振動ジャイロに関する。
【0002】
【従来の技術】
圧電振動ジャイロとは,振動している物体に回転角速度が加えられると,その振動方向と直角な方向にコリオリ力を生ずると言う力学現象を利用したジャイロスコープである。
【0003】
一般に,直交する二つの異なる方向の振動を励振可能に構成した複合振動系において,一方の振動を励振した状態で,振動子を回転させると,前述のコリオリ力の作用によりこの振動と直角な方向に力が作用し,他方の振動が励振される。この振動の大きさは,入力側の振動の振幅および回転角速度に比例するため,入力側の振動振幅を一定にした場合,出力電圧の大きさから印加された回転角速度の大きさを求めることができる。
【0004】
図4は,従来の圧電振動ジャイロの構造を示す斜視図である。図4に示すように,圧電振動ジャイロ100は,正方形断面形状を有する金属角柱101の隣合う面のほぼ中央部に,圧電セラミックス薄板102,103が接合され,角柱振動子を構成している。これらの圧電セラミックス薄板102,103は,それぞれ両面に電極が形成され,厚さ方向に分極されており,一面に引き出し用のリード端子104,105が形成されている。
【0005】
正方形断面の金属角柱101には,互いに直交する二つの屈曲振動モードが存在し,材料の特性が均質である場合には,二つの屈曲振動モードの共振周波数はほぼ等しくなることが知られている。従って,圧電セラミックス薄板102にこの金属角柱101の屈曲振動の共振周波数にほぼ等しい周波数の電圧を印加すると,圧電セラミックス薄板102を接合した面が凹凸となる方向(y軸方向)に屈曲振動する。この状態で,金属角柱101を長さ方向と平行な軸(z軸)の回りに回転させると,コリオリ力の作用により,金属角柱101は,圧電セラミックス薄板103を接合した面が凹凸となる方向(x軸方向)にも屈曲振動し,圧電効果により,圧電セラミックス薄板103に電圧が発生する。この電圧の大きさは,圧電セラミックス薄板102により励振されている振動の大きさと印加した回転角速度(Ω)の大きさに比例する。
【0006】
従って,圧電セラミックス薄板102に印加する励振電圧の大きさを一定とすれば,圧電セラミックス薄板103に発生する電圧は,金属角柱101の回転角速度(Ω)に比例した電圧となる。
【0007】
また,FMラジオやテレビの中間周波数フィルタに広く用いられている圧電振動子として,図5(a)の平面図,及び図5(b)の断面図に示すようなエネルギー閉じ込め振動を行う圧電振動子が知られている。ここで,エネルギー閉じ込め振動とは,振動のエネルギーが駆動電極近傍に集中している振動モードで,圧電板10の厚さ方向の縦振動やすべり振動,圧電矩形板の幅方向の縦振動やすべり振動など多くの振動モードがある。また,図6は図5(a)及び(b)に示された圧電振動子を用いたフィルタの側面図である。
【0008】
図5(a)及び(b)を参照すると,エネルギー閉じ込め振動は,振動のエネルギーが駆動電極の近傍に集中しているため,例えば,図5において,6mm×6mmで厚さ0.2mmの圧電板10を用いて,そのほぼ中央部の直径1.5mmの領域に駆動電極51,52,および53を形成したFMラジオ用10.7MHzセラミックフィルタを形成した場合において,図6に示すように,駆動電極51,52,および53を中心として直径約3mmの領域の両面に空洞部分54を形成すれば,その他の部分を樹脂層55で固定しても振動子特性にほとんど影響を与えない。すなわち,リード端子の形成が自由で,支持による影響の無い圧電振動子あるいはそれを利用したフィルタが得られる。
【0009】
【発明が解決しようとする課題】
前述した従来の圧電振動ジャイロにおいては,金属角柱の屈曲振動モードを利用しているため,角柱振動子の支持,固定は振動の節の位置で行わなければならない。また,従来の圧電振動ジャイロにおいて,駆動,検出回路と振動子の電極をリード線で接続する必要があり,接続の状態のばらつきによる特性のばらつきを抑えることが難しかった。さらに,駆動,検出回路の構成された基板の上に,保持具により支持された角柱振動子を載せて組み立てるため,小形,薄形の圧電振動ジャイロを構成することが困難であった。
【0010】
したがって,上記図5(a)及び(b)に示したセラミックフィルタ用の圧電振動子を圧電振動ジャイロに適用できれば,図4の角柱振動子を用いたジャイロの欠点を解決することができるものと考えられる。
【0011】
そこで,本発明の技術的課題は,以上に示した従来の圧電振動ジャイロにおける欠点を除去し,構造が簡単で,入出力用の端子をリード線を用いないで接続することが可能で,駆動,検出回路を圧電振動ジャイロを構成した同一基板上に構成することができる小形,薄形の圧電振動ジャイロを提供することにある。
【0012】
【課題を解決するための手段】
本発明によれば,厚さ方向に分極軸を有する圧電板の一面のほぼ中央部に所定の間隔を隔てて対向する第1の電極対と,前記第1の電極対を略90度回転させた位置に対向する第2の電極対とを形成し,前記圧電板の他面の前記第1及び第2の電極対が形成された領域と対向する位置に,前記第1の電極対の対向する方向と略45度の方向に,互いに対向する第3の電極対を形成し,前記第3の電極対間に励振用の電圧を印加し,前記圧電板を前記一面と略直交する軸の回りに回転させたときに前記第1および第2の電極対間に発生する出力電圧の差の電圧を検出するように構成したことを特徴とするエネルギー閉じ込め振動モードを利用した圧電振動ジャイロが得られる。
【0013】
また,本発明によれば,前記エネルギー閉じ込め振動モードを利用した圧電振動ジャイロにおいて,前記圧電板として圧電セラミックスを用い,前記第1乃至第3の電極対が形成された領域近傍のみを厚さ方向に分極したことを特徴とするエネルギー閉じ込め振動モードを利用した圧電振動ジャイロが得られる。
【0014】
【発明の実施の形態】
以下,本発明の実施の形態について図面を参照して説明する。
【0015】
図1は,本発明の一実施の形態によるエネルギー閉じ込めモードを利用した圧電振動ジャイロ1(以下,単に圧電振動ジャイロ1と呼ぶ)の構造を示す斜視図である。図1に示すように,厚さ方向に分極軸を有する圧電板10の一方の主面のほぼ中央部に所定の間隔を隔てて対向する第1の電極対11a,11bと,この第1の電極対11a,11bを90度回転させた位置に対向する第2の電極対12a,12bが形成され,この圧電板10の他方の面の前記第1および第2の電極対11a,11b,及び12a,12bが形成された領域と対向する位置に,図において破線で示すように第1の電極対11a,11bの対向する方向と45度の方向に対向する第3の電極対13a,13bが形成されている。
【0016】
ここで,駆動原理は後で詳述するように,第3の電極対13a,13b間に,周波数が圧電板10の厚みすべりモードの共振周波数にほぼ等しい励振用の交流電圧を印加すると,第3の電極対13a,13bが対向する領域に,これらの電極対が対向する方向のエネルギー閉じ込め振動モードのすべり振動が発生する。この状態で,圧電板10をその主面と直交する軸の回りに回転させると,コリオリ力の作用により,励振されている厚みすべり振動モードの方向と直角な方向の厚みすべり振動が発生する。このコリオリ力により発生した厚みすべり振動により,第1の電極対11a,11b間および第2の電極対12a,12b間の夫々に電圧を発生するが,第1の電極対11a,11bに発生した電圧と第2の電極対12a,12bに発生した電圧は,それぞれの電極対が前記励振されている厚みすべり振動の方向に対して,それぞれ±45度だけ方向がずれているため,振幅が等しく,互いに180度位相の異なった電圧となる。
【0017】
従って,これらの電極対間に発生した電圧の差の電圧を検出し,この電圧を所定のタイミングで同期検波をすることにより,印加した回転角速度に比例した出力電圧を得ることが出来る。
【0018】
ここで,本発明の実施の形態において,重要な点は,各電極対が対向する領域に不要振動の無いきれいなエネルギー閉じ込め振動を励振することであり,特に圧電板10として圧電セラミックスを用いた場合には,第1から第3の電極対が形成された領域近傍のみを厚さ方向に分極することにより,この目的を達成することが出来る。
【0019】
さらに,本発明の実施の形態に用いたエネルギー閉じ込めモードを利用した圧電ジャイロの圧電振動子の動作原理について,図2及び図3を用いて詳しく説明する。
【0020】
図2(a)及び(b)は,図1の圧電振動ジャイロの圧電振動子を更に単純化した構造の圧電振動子の平面図および断面図であり,このような圧電振動子は,平行電界励振型厚みすべりエネルギー閉じ込め振動子と呼ばれている。また,図3は図2(a)及び(b)に示した圧電振動子の厚さ方向の変位を示す図である。図2(a)及び(b)を参照すると,厚さ方向(z軸)に分極された圧電板10の中央部の同一面上に,x軸方向に互いに対向するように部分電極14a,14bが形成されている。これら部分電極14a,14bに挟まれている部分には,ほぼ圧電板10の一面に平行な方向の電界が印加されるため,この電界と直交する厚さ方向の分極との相互作用により,部分電極14a,14bの寸法を,使用する圧電材料の特性に合わせて適当に設計すると,この部分に平行電界励振型厚みすべりエネルギー閉じ込め振動子を構成することができる。さらに,圧電振動ジャイロの駆動,検出回路をこの振動子を形成した同一基板上に構成することができるので,小形で薄形の圧電振動ジャイロが得られる。
【0021】
図3は,図2(a)及び(b)の圧電振動子の半波長で共振している場合の厚さ方向の変位分布が示され,x軸,y軸,z軸は図2(a)のx軸,y軸,z軸方向と夫々対応している。上述の厚みすべり振動とは,変位が板面に平行で,波の伝搬方向が板の厚さ方向の振動である。
【0022】
【発明の効果】
以上に示したように,本発明によれば,構造が簡単で,入出力用の端子をリード線を用いないで接続することが可能で,支持,固定によるジャイロ特性への影響がほとんど無く,強固に支持することが可能で,耐振動,耐衝撃特性の優れた小形の圧電振動ジャイロが得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態によるエネルギー閉じ込めモードを利用した圧電振動ジャイロの構造を示す斜視図である。
【図2】図1の圧電振動ジャイロに用いる平行電界励振型厚みすべりモードエネルギー閉じ込め振動子の動作原理の説明に供せられる図であり,(a)は平面図,(b)は断面図である。
【図3】図2の厚みすべりモードエネルギー閉じ込め振動子の変位分布である。
【図4】従来の圧電振動ジャイロの説明に供せられる斜視図である。
【図5】従来のエネルギー閉じ込め振動子の一例を示す図であり,(a)は平面図,(b)は断面図である。
【図6】図5のエネルギー閉じ込め振動子の支持構造図である。
【符号の説明】
1,100 圧電振動ジャイロ
10 圧電板
11a,11b 第1の電極対
12a,12b 第2の電極対
13a,13b 第3の電極対
14a,14b 部分電極
51,52,53 駆動電極
55 樹脂層
101 金属角柱
102,103 圧電セラミックス薄板
104,105 リード端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration gyro using ultrasonic vibration of a piezoelectric vibrator among gyroscopes used for camera shake correction of an automobile navigation system or a camera-integrated VTR camera, and more particularly to energy confinement as a vibration mode of the piezoelectric vibrator. The present invention relates to a piezoelectric vibration gyro that uses vibration mode, has a simple structure and is easily supported, and has excellent vibration resistance and shock resistance.
[0002]
[Prior art]
A piezoelectric vibratory gyroscope is a gyroscope that uses a mechanical phenomenon that when a rotational angular velocity is applied to a vibrating object, a Coriolis force is generated in a direction perpendicular to the vibration direction.
[0003]
In general, in a composite vibration system configured to excite vibrations in two different directions orthogonal to each other, when one of the vibrations is excited and the vibrator is rotated, the direction perpendicular to this vibration is caused by the action of the Coriolis force described above. A force acts on the other, and the other vibration is excited. Since the magnitude of this vibration is proportional to the amplitude and rotational angular velocity of the input side, it is possible to obtain the magnitude of the applied rotational angular velocity from the magnitude of the output voltage when the input side vibration amplitude is constant. it can.
[0004]
FIG. 4 is a perspective view showing the structure of a conventional piezoelectric vibration gyro. As shown in FIG. 4, the piezoelectric vibration gyro 100 has a rectangular column vibrator formed by bonding piezoelectric ceramic thin plates 102 and 103 to substantially the center of adjacent surfaces of a metal prism 101 having a square cross-sectional shape. Each of these piezoelectric ceramic thin plates 102 and 103 has electrodes formed on both surfaces thereof and is polarized in the thickness direction, and lead terminals 104 and 105 for lead-out are formed on one surface.
[0005]
It is known that the metal prism 101 having a square cross section has two bending vibration modes orthogonal to each other, and the resonance frequencies of the two bending vibration modes are substantially equal when the material characteristics are uniform. . Therefore, when a voltage having a frequency substantially equal to the resonance frequency of the bending vibration of the metal prism 101 is applied to the piezoelectric ceramic thin plate 102, the piezoelectric ceramic thin plate 102 bends and vibrates in a direction (y-axis direction) where the surface where the piezoelectric ceramic thin plate 102 is joined becomes uneven. In this state, when the metal prism 101 is rotated around an axis (z axis) parallel to the length direction, the metal prism 101 is in a direction in which the surface where the piezoelectric ceramic thin plate 103 is joined becomes uneven due to the action of the Coriolis force. Bending vibration is also generated (in the x-axis direction), and a voltage is generated in the piezoelectric ceramic thin plate 103 due to the piezoelectric effect. The magnitude of this voltage is proportional to the magnitude of vibration excited by the piezoelectric ceramic thin plate 102 and the magnitude of the applied rotational angular velocity (Ω).
[0006]
Therefore, if the magnitude of the excitation voltage applied to the piezoelectric ceramic thin plate 102 is constant, the voltage generated in the piezoelectric ceramic thin plate 103 becomes a voltage proportional to the rotational angular velocity (Ω) of the metal prism 101.
[0007]
Further, as a piezoelectric vibrator widely used in an intermediate frequency filter of FM radio or television, a piezoelectric vibration that performs energy confinement vibration as shown in the plan view of FIG. 5A and the cross-sectional view of FIG. The child is known. Here, the energy confinement vibration is a vibration mode in which vibration energy is concentrated in the vicinity of the drive electrode, and the longitudinal vibration and slip vibration in the thickness direction of the piezoelectric plate 10 and the longitudinal vibration and slip in the width direction of the piezoelectric rectangular plate. There are many vibration modes such as vibration. FIG. 6 is a side view of a filter using the piezoelectric vibrator shown in FIGS. 5 (a) and 5 (b).
[0008]
Referring to FIGS. 5 (a) and 5 (b), the energy confinement vibration is such that the vibration energy is concentrated in the vicinity of the drive electrode. For example, in FIG. 5, a 6 mm × 6 mm piezoelectric film having a thickness of 0.2 mm is used. In the case where the 10.7 MHz ceramic filter for FM radio in which the drive electrodes 51, 52, and 53 are formed in a region having a diameter of 1.5 mm in the substantially central portion using the plate 10, as shown in FIG. If the cavity portions 54 are formed on both surfaces of a region having a diameter of about 3 mm with the drive electrodes 51, 52 and 53 as the center, even if the other portions are fixed by the resin layer 55, the vibrator characteristics are hardly affected. That is, it is possible to obtain a piezoelectric vibrator or a filter using the piezoelectric vibrator that is free to form lead terminals and is not affected by the support.
[0009]
[Problems to be solved by the invention]
Since the above-described conventional piezoelectric vibration gyro uses the bending vibration mode of a metal prism, the support and fixing of the prism oscillator must be performed at the position of the vibration node. In addition, in the conventional piezoelectric vibration gyro, it is necessary to connect the drive / detection circuit and the electrodes of the vibrator with lead wires, and it is difficult to suppress variations in characteristics due to variations in the connection state. Furthermore, since a prismatic vibrator supported by a holder is mounted on a substrate on which a drive and detection circuit is configured, it is difficult to construct a small and thin piezoelectric vibration gyro.
[0010]
Therefore, if the ceramic filter piezoelectric vibrator shown in FIGS. 5A and 5B can be applied to a piezoelectric vibratory gyro, the disadvantage of the gyroscope using the prismatic vibrator of FIG. 4 can be solved. Conceivable.
[0011]
Therefore, the technical problem of the present invention is that the conventional piezoelectric vibration gyro described above is eliminated, the structure is simple, and the input / output terminals can be connected without using lead wires. An object of the present invention is to provide a small and thin piezoelectric vibration gyro in which the detection circuit can be configured on the same substrate on which the piezoelectric vibration gyro is formed.
[0012]
[Means for Solving the Problems]
According to the present invention, the first electrode pair opposed to the substantially central portion of one surface of the piezoelectric plate having the polarization axis in the thickness direction at a predetermined interval, and the first electrode pair are rotated by approximately 90 degrees. A second electrode pair that is opposed to the first electrode pair, and is opposed to the region on the other surface of the piezoelectric plate where the first and second electrode pairs are formed. in direction approximately 45 degrees to form a third pair of electrodes facing each other, said during the third electrode pair and applying a voltage for excitation, the piezoelectric plate an axis substantially perpendicular to the one surface A piezoelectric vibration gyro using an energy confinement vibration mode is obtained, which is configured to detect a voltage of a difference between output voltages generated between the first and second electrode pairs when rotated around. It is done.
[0013]
According to the present invention, in the piezoelectric vibration gyro using the energy confinement vibration mode, piezoelectric ceramic is used as the piezoelectric plate, and only the vicinity of the region where the first to third electrode pairs are formed is measured in the thickness direction. A piezoelectric vibration gyro using an energy confinement vibration mode characterized by polarization is obtained.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0015]
FIG. 1 is a perspective view showing a structure of a piezoelectric vibration gyro 1 (hereinafter simply referred to as a piezoelectric vibration gyro 1) using an energy confinement mode according to an embodiment of the present invention. As shown in FIG. 1, a first electrode pair 11a, 11b opposed to a substantially central portion of one main surface of a piezoelectric plate 10 having a polarization axis in the thickness direction at a predetermined interval, A second electrode pair 12a, 12b is formed opposite to a position obtained by rotating the electrode pair 11a, 11b by 90 degrees, and the first and second electrode pairs 11a, 11b on the other surface of the piezoelectric plate 10 and The third electrode pair 13a, 13b facing the direction opposite to the first electrode pair 11a, 11b and the direction of 45 degrees as shown by the broken line in the figure at a position facing the region where 12a, 12b is formed. Is formed.
[0016]
Here, as will be described in detail later, when an excitation AC voltage having a frequency substantially equal to the resonance frequency of the thickness-slip mode of the piezoelectric plate 10 is applied between the third electrode pairs 13a and 13b, as described in detail later, In the region where the three electrode pairs 13a and 13b are opposed, the sliding vibration of the energy confinement vibration mode in the direction in which these electrode pairs are opposed to each other occurs. In this state, when the piezoelectric plate 10 is rotated about an axis orthogonal to the main surface, thickness shear vibration in a direction perpendicular to the direction of the excited thickness shear vibration mode is generated by the action of the Coriolis force. Due to the thickness-shear vibration generated by this Coriolis force, a voltage is generated between the first electrode pair 11a and 11b and between the second electrode pair 12a and 12b, but is generated at the first electrode pair 11a and 11b. Since the voltage and the voltage generated in the second electrode pair 12a and 12b are shifted in direction by ± 45 degrees with respect to the direction of the thickness shear vibration in which each electrode pair is excited, the amplitudes are equal. , The voltages are 180 degrees out of phase with each other.
[0017]
Therefore, by detecting the voltage difference between the voltages generated between these electrode pairs and synchronously detecting this voltage at a predetermined timing, an output voltage proportional to the applied rotational angular velocity can be obtained.
[0018]
Here, in the embodiment of the present invention, an important point is to excite clean energy confinement vibration without unnecessary vibration in a region where each electrode pair is opposed, particularly when piezoelectric ceramic is used as the piezoelectric plate 10. In this case, this object can be achieved by polarizing only the vicinity of the region where the first to third electrode pairs are formed in the thickness direction.
[0019]
Furthermore, the operation principle of the piezoelectric vibrator of the piezoelectric gyro using the energy confinement mode used in the embodiment of the present invention will be described in detail with reference to FIGS.
[0020]
2A and 2B are a plan view and a cross-sectional view of a piezoelectric vibrator having a structure obtained by further simplifying the piezoelectric vibrator of the piezoelectric vibration gyro shown in FIG. This is called an excitation-type thickness-slip energy confinement oscillator. FIG. 3 is a diagram showing the displacement in the thickness direction of the piezoelectric vibrator shown in FIGS. 2 (a) and 2 (b). Referring to FIGS. 2A and 2B, partial electrodes 14a and 14b are disposed on the same surface of the central portion of the piezoelectric plate 10 polarized in the thickness direction (z-axis) so as to face each other in the x-axis direction. Is formed. Since an electric field in a direction substantially parallel to one surface of the piezoelectric plate 10 is applied to the portion sandwiched between the partial electrodes 14a and 14b, the partial electric field is caused by the interaction with the polarization in the thickness direction perpendicular to the electric field. When the dimensions of the electrodes 14a and 14b are appropriately designed in accordance with the characteristics of the piezoelectric material to be used, a parallel electric field excitation type thickness shear energy confinement vibrator can be formed in this portion. Further, since the drive and detection circuit of the piezoelectric vibration gyro can be configured on the same substrate on which the vibrator is formed, a small and thin piezoelectric vibration gyro can be obtained.
[0021]
FIG. 3 shows the displacement distribution in the thickness direction when the piezoelectric vibrators of FIGS. 2A and 2B are resonating at half wavelength. The x-axis, y-axis, and z-axis are shown in FIG. ) Corresponding to the x-axis, y-axis, and z-axis directions. The above-mentioned thickness shear vibration is vibration in which the displacement is parallel to the plate surface and the wave propagation direction is in the thickness direction of the plate.
[0022]
【The invention's effect】
As described above, according to the present invention, the structure is simple, the input / output terminals can be connected without using lead wires, and there is almost no influence on the gyro characteristics due to support and fixing. A small piezoelectric vibration gyro that can be firmly supported and has excellent vibration resistance and shock resistance is obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a structure of a piezoelectric vibration gyro using an energy confinement mode according to an embodiment of the present invention.
FIGS. 2A and 2B are diagrams for explaining the operation principle of a parallel electric field excitation type thickness-slip mode energy confinement vibrator used in the piezoelectric vibration gyro of FIG. 1; FIG. 2A is a plan view, and FIG. is there.
FIG. 3 is a displacement distribution of the thickness-slip mode energy confinement vibrator of FIG. 2;
FIG. 4 is a perspective view for explaining a conventional piezoelectric vibration gyro.
FIGS. 5A and 5B are diagrams showing an example of a conventional energy confinement vibrator, where FIG. 5A is a plan view and FIG. 5B is a cross-sectional view.
6 is a support structure diagram of the energy confinement vibrator of FIG. 5; FIG.
[Explanation of symbols]
1,100 Piezoelectric vibrating gyroscope 10 Piezoelectric plates 11a, 11b First electrode pair 12a, 12b Second electrode pair 13a, 13b Third electrode pair 14a, 14b Partial electrodes 51, 52, 53 Drive electrode 55 Resin layer 101 Metal Square pillars 102, 103 Piezoelectric ceramic thin plates 104, 105 Lead terminals

Claims (2)

厚さ方向に分極軸を有する圧電板の一面のほぼ中央部に所定の間隔を隔てて対向する第1の電極対と,前記第1の電極対を略90度回転させた位置に対向する第2の電極対とを形成し,前記圧電板の他面の前記第1及び第2の電極対が形成された領域と対向する位置に,前記第1の電極対の対向する方向と略45度の方向に,互いに対向する第3の電極対を形成し,前記第3の電極対間に励振用の電圧を印加し,前記圧電板を前記一面と略直交する軸の回りに回転させたときに前記第1および第2の電極対間に発生する出力電圧の差の電圧を検出するように構成したことを特徴とするエネルギー閉じ込め振動モードを利用した圧電振動ジャイロ。A first electrode pair opposed to a substantially central portion of one surface of the piezoelectric plate having a polarization axis in the thickness direction with a predetermined interval, and a first electrode pair opposed to a position obtained by rotating the first electrode pair by approximately 90 degrees. 2 at a position facing the region where the first and second electrode pairs are formed on the other surface of the piezoelectric plate, approximately 45 degrees from the facing direction of the first electrode pair. in the direction to form a third pair of electrodes facing each other, when the voltage for excitation is applied between the third electrode pair, and rotates the piezoelectric plate about an axis substantially perpendicular to the one surface A piezoelectric vibration gyro using an energy confinement vibration mode configured to detect a voltage difference between output voltages generated between the first and second electrode pairs. 請求項1記載のエネルギー閉じ込め振動モードを利用した圧電振動ジャイロにおいて,前記圧電板として圧電セラミックスを用い,前記第1乃至第3の電極対が形成された領域近傍のみを厚さ方向に分極したことを特徴とするエネルギー閉じ込め振動モードを利用した圧電振動ジャイロ。  2. The piezoelectric vibration gyro using the energy confinement vibration mode according to claim 1, wherein piezoelectric ceramics are used as the piezoelectric plate, and only the vicinity of the region where the first to third electrode pairs are formed is polarized in the thickness direction. Piezoelectric vibration gyro using energy confinement vibration mode characterized by
JP16892496A 1996-06-20 1996-06-28 Piezoelectric vibration gyro using energy confinement vibration mode Expired - Fee Related JP3685224B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP16892496A JP3685224B2 (en) 1996-06-20 1996-06-28 Piezoelectric vibration gyro using energy confinement vibration mode
US08/878,409 US5887480A (en) 1996-06-20 1997-06-18 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode
EP97110056A EP0814319B1 (en) 1996-06-20 1997-06-19 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode
DE69701595T DE69701595T2 (en) 1996-06-20 1997-06-19 Piezoelectric vibratory gyroscope that uses an energy trapping vibration mode
TW086108565A TW334651B (en) 1996-06-20 1997-06-19 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode
CA002208369A CA2208369C (en) 1996-06-20 1997-06-20 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibrationmode
KR1019970025983A KR100494967B1 (en) 1996-06-20 1997-06-20 Piezoelectric vibrating gyroscope utilizing an energy-trapping vibration mode
CN97113960A CN1086806C (en) 1996-06-20 1997-06-20 Piezoelectric vibrating gyroscope utilizing energy-confinement vibration mode
US09/217,561 US6138510A (en) 1996-06-20 1998-12-21 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-159467 1996-06-20
JP15946796 1996-06-20
JP16892496A JP3685224B2 (en) 1996-06-20 1996-06-28 Piezoelectric vibration gyro using energy confinement vibration mode

Publications (2)

Publication Number Publication Date
JPH1068624A JPH1068624A (en) 1998-03-10
JP3685224B2 true JP3685224B2 (en) 2005-08-17

Family

ID=26486261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16892496A Expired - Fee Related JP3685224B2 (en) 1996-06-20 1996-06-28 Piezoelectric vibration gyro using energy confinement vibration mode

Country Status (1)

Country Link
JP (1) JP3685224B2 (en)

Also Published As

Publication number Publication date
JPH1068624A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
KR100494967B1 (en) Piezoelectric vibrating gyroscope utilizing an energy-trapping vibration mode
JP3685224B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP2590553Y2 (en) Piezoelectric vibration gyro
JP3640003B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP3240416B2 (en) Piezoelectric vibration gyro
JP3640004B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP3172924B2 (en) Piezoelectric vibration gyro
JP3698840B2 (en) Piezoelectric vibrator for piezoelectric vibration gyro
JP3690448B2 (en) Piezoelectric vibrator for piezoelectric vibration gyro
JP2005345404A (en) Vibrator for piezoelectric vibration gyroscope, and its manufacturing method
JPH10170270A (en) Vibrator and vibratory gyroscope using it
JP2001074466A (en) Vibrator for piezoelectric vibrating gyro
JP3172943B2 (en) Piezoelectric vibratory gyro using energy trapped vibration mode
JPH10318756A (en) Oscillatory gyro
JP3521315B2 (en) Piezoelectric vibration gyro
JP3211183B2 (en) Piezoelectric vibratory gyroscope using energy trapped vibration mode
JPH10141960A (en) Piezoelectric oscillation gyro using energy-confinement oscillation mode
JP3172944B2 (en) Piezoelectric vibratory gyro using energy trapped vibration mode
JP3830056B2 (en) Piezoelectric vibration gyro
JPH10246638A (en) Piezoelectric oscillation gyro
JPH04307322A (en) Piezoelectric vibrating gyro
JP2004020294A (en) Piezoelectric vibration gyro
JPH11248463A (en) Piezoelectric oscillator for piezoelectric oscillation gyro
JPH1114369A (en) Piezoelectric vibrator for piezoelectric vibration gyroscope and manufacture therefor
JPH08166242A (en) Piezoelectric oscillator for piezoelectric oscillatory gyroscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees