Nothing Special   »   [go: up one dir, main page]

JP3678066B2 - Incremental encoder - Google Patents

Incremental encoder Download PDF

Info

Publication number
JP3678066B2
JP3678066B2 JP23382399A JP23382399A JP3678066B2 JP 3678066 B2 JP3678066 B2 JP 3678066B2 JP 23382399 A JP23382399 A JP 23382399A JP 23382399 A JP23382399 A JP 23382399A JP 3678066 B2 JP3678066 B2 JP 3678066B2
Authority
JP
Japan
Prior art keywords
sine wave
signal
formula
output
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23382399A
Other languages
Japanese (ja)
Other versions
JP2001056238A (en
Inventor
知久 来住
恵市 冨士川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP23382399A priority Critical patent/JP3678066B2/en
Publication of JP2001056238A publication Critical patent/JP2001056238A/en
Application granted granted Critical
Publication of JP3678066B2 publication Critical patent/JP3678066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)
  • Analogue/Digital Conversion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ACサーボモータなどの回転位置センサとして用いられるインクリメンタル型エンコーダの信号逓倍装置に関するものである。
【0002】
【従来の技術】
一般に光学式エンコーダは、位置検出方法の違いによりインクリメンタル型とアブソリュート型の二種に大別される。
【0003】
近年、設備機器の高性能化にともないACサーボモータはインクリメンタル型エンコーダの信号を逓倍し、高分解能化を図っている。
【0004】
以下、従来の逓倍式インクリメンタル型エンコーダの一般的な例について説明する。
【0005】
図4において、疑似正弦波信号と、疑似正弦波信号とおよそ90°、およそ180°の位相差を有する2相の疑似正弦波信号の合計3相の疑似正弦波信号を生成する原信号生成手段101、原信号生成手段101によって生成される3相の疑似正弦波信号を抵抗分割による演算を実行することによって位相の異なる複数の疑似正弦波信号を生成する正弦波信号生成手段102、正弦波信号生成手段102にて生成された位相の異なる複数の疑似正弦波信号をそれぞれ二値化する比較手段103、比較手段103によって二値化された信号を論理処理することにより逓倍信号を得る信号逓倍手段104を有している。
【0006】
原信号生成手段101はさらに、発光素子1011、モータ軸に固定され、明暗のスリットを有する回転板1012、モータブラケットに固定され、回転板1012と同様のスリットを少なくとも4セグメント有する固定板1013、少なくとも固定板1013のセグメントに対応する受光部を有する受光素子1014、受光素子からの出力電流を電圧に変換する電流電圧変換部1015、電流電圧変換部1015にて電圧変換された信号の差算を実行する差動回路部1016からなっている。発光素子1011から出射された光が回転板1012と固定板1013のスリットを透過して受光素子1014に入射し、入射光に応じた電流が出力される。回転板1012が回転することにより出力される電流がおよそ90°の2相の疑似正弦波信号aとb及びそれらの逆相信号/aと/bとなるよう、回転板1012のスリット及び固定板1013の各セグメントのスリットを構成しておく。受光素子1014から出力された2相の疑似正弦波信号及びそれらの逆相信号は電流電圧変換部1015によってリファレンス電圧を基準とした電圧信号に変換される。さらに光信号のオフセット成分を消すために差動回路部1016においてリファレンス電圧を基準としてa−/a(=CA)、b−/b(=CB)、/a−a(=−CA)の演算がなされ、CA及びCBがおよそ90°、CA及び−CAがおよそ180°の位相差を有する計3相の疑似正弦波信号として出力される。正弦波信号生成手段102は抵抗分割部1021により構成されている。正弦波信号生成手段102においては、CAとCB、CBと(−CA)をそれぞれ抵抗分割することにより演算を行い、位相の異なる複数の疑似正弦波信号dn(n:整数)を得る。
【0007】
一般にエンコーダの出力信号であるA相信号、B相信号という逓倍信号を得るために必要な疑似正弦波信号の数は偶数であり、例えば、エンコーダの出力として4逓倍信号を得る場合の抵抗分割部1021の詳細図(図5)とタイミングチャート(図6)を示す。
【0008】
この場合、n=0,1,,,,,7とし、CAからの位相ずれをそれぞれn×360°/16とするように抵抗分割部1021の回路定数比を決定する。
【0009】
また、エンコーダの出力として8逓倍信号を得る場合は、n=0,1,,,,15とし、CAからの位相ずれをそれぞれn×360°/32とするように抵抗分割部の回路定数比を決定する。
【0010】
次に比較手段103においては、位相の異なる複数の疑似正弦波信号dnをリファレンス電圧にて二値化処理を行い、デジタル信号Dn(n=0,1,,,,7)を得る。そして信号逓倍手段104においてDnを論理処理することにより、原信号生成手段101によって生成された疑似正弦波信号を二値化した信号の周期の1/4の周期をもち、互いにおよそ90°の位相差を有する信号すなわち逓倍信号であるA相信号、B相信号が得られる。
【0011】
【発明が解決しようとする課題】
しかしながら従来の方式においては、正弦波信号生成手段内の抵抗分割部の出力である各疑似正弦波信号の信号線の出力インピーダンスが異なっており、次段の比較手段の入力容量とのCR結合に応じて発生する時間遅れが、各信号間において異なり、特に高速回転時や高分解能信号生成時といった最終出力信号である逓倍信号の周期が小さい場合に、時間遅れの差異の影響が大きくなり、ひいては逓倍信号の位相がアンバランスになるという問題を有している。
【0012】
本発明は上記従来例の課題を解決するものであり、特に高速回転時や、高分解能信号生成時といった最終出力信号である逓倍信号の周期が小さい場合にも、逓倍信号の位相の安定したインクリメンタル型エンコーダを提供することを目的とする。
【0013】
【課題を解決するための手段】
この課題を解決するために本発明は、正弦波信号生成手段と比較手段の間に配置され、前記正弦波信号生成手段の出力の各信号線の出力インピーダンスを整合するインピーダンス整合手段を各信号線に直列に挿入された抵抗器によって形成したインクリメンタル型エンコーダである。
【0014】
【発明の実施の形態】
この課題を解決するために本発明は、疑似正弦波信号と前記疑似正弦波信号とそれぞれ略90°,略180°の位相差を有する2相の疑似正弦波信号の計3相の疑似正弦波信号を生成する原信号生成手段、前記原信号生成手段によって生成される3相の疑似正弦波信号を抵抗分割による演算を実行することによって互いに位相の異なる複数の疑似正弦波信号を生成する正弦波信号生成手段、前記正弦波信号生成手段にて生成された位相の異なる複数の疑似正弦波信号をそれぞれ二値化する比較手段、前記比較手段によって二値化された信号を論理処理により逓倍信号を得る信号逓倍手段を有するインクリメンタル型エンコーダにおいて、前記正弦波信号生成手段と前記比較手段の間に配置され、前記正弦波信号生成手段の出力の各信号線の出力インピーダンスを整合するインピーダンス整合手段を各信号線に直列に挿入された抵抗器によって形成したインクリメンタル型エンコーダである。
【0015】
このように、正弦波信号生成手段内の抵抗分割部の出力である各疑似正弦波信号の信号線の出力インピーダンスを整合するインピーダンス整合手段に抵抗器を備えているために、出力インピーダンスと次段の比較手段の入力容量とのCR結合に応じて発生する時間遅れを整合させることができ、その結果、最終出力信号である逓倍信号の周期が小さい場合にも、逓倍信号の位相が安定するという作用を有する。
【0016】
【実施例】
以下、本発明の実施例について図を用いて説明する。
【0017】
図1において、1は疑似正弦波信号とそれぞれおよそ90°、およそ180°の位相差を有する2相の疑似正弦波信号の計3相の疑似正弦波信号を生成する原信号生成手段、2は原信号生成手段1によって生成される3相の疑似正弦波信号を演算することによって互いに位相の異なる複数の疑似正弦波信号を生成する正弦波信号生成手段、3は正弦波信号生成手段2にて生成された互いに位相の異なる複数の疑似正弦波信号をそれぞれ二値化する比較手段、4は比較手段3によって二値化された信号を論理処理することにより逓倍信号を得る信号逓倍手段である。5は正弦波信号生成手段2と比較手段3の間に配置され、正弦波信号生成手段2の出力の各信号線の出力インピーダンスを整合するインピーダンス整合手段である。
【0018】
次にそれらの作用について説明する。まず、原信号生成手段1は図4における従来例と同等の作用にて、CA、CAとおよそ90°の位相差を有するCB、CAとおよそ180°の位相差を有する−CAの計3相の疑似正弦波信号を出力する。次に、従来例の抵抗分割部と同様の正弦波信号生成手段2内の抵抗分割部21において、CAとCB,CBと−CAをそれぞれ抵抗分割することにより、互いに位相の異なる複数の疑似正弦波信号dnを生成する。
【0019】
例えば、エンコーダの出力として4逓倍信号を得る場合、抵抗分割部21の回路図は図5と同等、タイミングチャートは図6と同等である。
【0020】
この場合も、n=0,1,,,7とし、CAからの位相ずれをそれぞれn×360°/16とするように抵抗分割部21の回路定数比を決定することも同等である。
【0021】
次に、インピーダンス整合手段の作用について説明する。図2において、原信号生成手段1の差動回路部16、抵抗分割部21、抵抗器を用いたインピーダンス整合手段5で、疑似正弦波信号CA,CB,−CAの差動回路部16の出力インピーダンスをZ、抵抗分割部21の出力信号のdn(n=0,1,,,7)の信号線の出力インピーダンスをZn、インピーダンス整合手段5の出力信号のdn’(n=0,1,,,7)の信号線の出力インピーダンスをZn’とすると、Znは下記式にて表わされる。
【0022】
Z0=Z (式1)
Z1=(Z+R01)//(Z+R12+R23+R34) (式2)
Z2=(Z+R01+R12)//(Z+R23+R34) (式3)
Z3=(Z+R01+R12+R23)//(Z+R34) (式4)
Z4=Z (式5)
Z5=(Z+R45)//(Z+R56+R67+R78) (式6)
Z6=(Z+R45+R56)//(Z+R67+R78) (式7)
Z7=(Z+R45+R56+R67)//(Z+R78) (式8)
ここで、()//()は、()内のインピーダンスの並列の合成インピーダンスを示す。またZn’は下式にて表わされる。
【0023】
Z0’=Z+R0 (式9)
Z1’=(Z+R01)//(Z+R12+R23+R34)+R1(式10)
Z2’=(Z+R01+R12)//(Z+R23+R34)+R2(式11)
Z3’=(Z+R01+R12+R23)//(Z+R34)+R3(式12)
Z4’=Z+R4 (式13)
Z5’=(Z+R45)//(Z+R56+R67+R78)+R5(式14)
Z6’=(Z+R45+R56)//(Z+R67+R78)+R6(式15)
Z7’=(Z+R45+R56+R67)//(Z+R78)+R7(式16)
通常は、R01〜R78の抵抗器に流れる電流が差動回路部16の出力電流容量以下となるように、R01〜R78は数百Ω〜数十kΩの抵抗値が使用され、また、差動回路部16にはオペアンプの差動増幅回路が使用されるため、その出力インピーダンスZは数Ω以下である。すなわちR01〜R78に比べてZは十分小さく無視できるため、(式1)〜(式16)は下記式と近似できる。
【0024】
Z0=0 (式17)
Z1=(R01)//(R12+R23+R34) (式18)
Z2=(R01+R12)//(R23+R34) (式19)
Z3=(R01+R12+R23)//(R34) (式20)
Z4=0 (式21)
Z5=(R45)//(R56+R67+R78) (式22)
Z6=(R45+R56)//(R67+R78) (式23)
Z7=(R45+R56+R67)//(R78) (式24)
Z0’=R0 (式25)
Z1’=(R01)//(R12+R23+R34)+R1 (式26)
Z2’=(R01+R12)//(R23+R34)+R2 (式27)
Z3’=(R01+R12+R23)//(R34)+R3 (式28)
Z4’=R4 (式29)
Z5’=(R45)//(R56+R67+R78)+R5 (式30)
Z6’=(R45+R56)//(R67+R78)+R6 (式31)
Z7’=(R45+R56+R67)//(R78)+R7 (式32)
この時、インピーダンス整合手段5の出力信号の信号線の出力インピーダンスを整合するためにはZn’が全て等しくなるようにRnを決定すれば良く、R0=Rとすると、Rnは下式の値となる。
【0025】
R0=R (式33)
R1=R−(R01)//(R12+R23+R34) (式34)
R2=R−(R01+R12)//(R23+R34) (式35)
R3=R−(R01+R12+R23)//(R34) (式36)
R4=R (式37)
R5=R−(R45)//(R56+R67+R78) (式38)
R6=R−(R45+R56)//(R67+R78) (式39)
R7=R−(R45+R56+R67)//(R78) (式40)
このようにRnを決定すると出力インピーダンスが整合され、各dn’信号の時間遅れが同一となる。以降の信号処理方法及びタイミングチャートは従来例と同様である。各dn’信号の時間遅れが同一となると比較手段3において各dn’信号を二値化して得られる各Dn信号の時間遅れも同一となり、信号逓倍手段4において各Dn信号を論理処理して生成される逓倍信号のA相信号、B相信号の位相差が安定する。
【0026】
なお、インピーダンス整合手段5の抵抗器と比較手段3の入力段に一般的に使用されている入力抵抗器を合成し、1つの抵抗器として構成しても同様の効果が得られる。
【0027】
次に、インピーダンス整合手段にバッファー回路を用いた参考実施例を図3に示す。
【0028】
ここで、疑似正弦波信号CA,CB,−CAの差動回路部16の出力インピーダンスをZ、抵抗分割部21の出力信号のdn(n=0,1,,,7)の信号線の出力インピーダンスをZn、インピーダンス整合手段51の出力信号のdn’(n=0,1,,,7)の信号線の出力インピーダンスをZn’とすることは上述の図2の場合と同じであり、バッファー回路として出力インピーダンスをZ’の回路を用いると、
Zn’=Z’=0,1,,,7) (式41)となり、インピーダンスが整合される。出力インピーダンスが整合されると、抵抗器を用いたインピーダンス整合手段の場合と同様にして逓倍信号のA相信号、B相信号の位相差が安定する。
【0029】
ここで、バッファー回路としては、オペアンプを用いた反転増幅回路や非反転増幅回路等が用いられるのが一般的であるが、アナログのバッファー回路としてインピーダンスを変換できるのであれば、特に回路構成は問わない。
【0030】
なお、Z=Z’となるようにバッファー回路を決定すると、d0,d4の信号ラインのバッファー回路はなくても出力インピーダンスは整合され、同様の効果が得られる。
【0031】
【発明の効果】
上記の実施例から明らかなように本発明によれば、正弦波信号生成手段内の抵抗分割部の出力である各dnの信号線の出力インピーダンスを整合するインピーダンス整合手段を備えているために、出力インピーダンスと次段の比較手段の入力容量のCR結合に応じて発生する時間遅れが整合され、その結果、特に高速回転時や、高分解能信号生成時といった最終出力信号である逓倍信号の周期が小さい場合にも、逓倍信号の位相が安定するという効果を有する。
【図面の簡単な説明】
【図1】 本発明の実施例を示すブロック図
【図2】 本発明の実施例の要部回路図
【図3】 本発明の参考実施例の要部回路図
【図4】 従来例のブロック図
【図5】 従来の実施例の要部回路図
【図6】 従来の実施例のタイミングチャート
【符号の説明】
1 原信号生成手段
2 正弦波信号生成手段
3 比較手段
4 信号逓倍手段
5 インピーダンス整合手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a signal multiplier for an incremental encoder used as a rotational position sensor such as an AC servomotor.
[0002]
[Prior art]
In general, optical encoders are roughly classified into an incremental type and an absolute type depending on the position detection method.
[0003]
In recent years, AC servo motors have increased the resolution by multiplying the signals of incremental encoders with the improvement in performance of equipment.
[0004]
Hereinafter, a general example of a conventional multiplying incremental encoder will be described.
[0005]
In FIG. 4, the original signal generating means for generating a total of three-phase pseudo sine wave signals including a pseudo sine wave signal and a two-phase pseudo sine wave signal having a phase difference of approximately 90 ° and approximately 180 ° with respect to the pseudo sine wave signal. 101, a sine wave signal generating unit 102 for generating a plurality of pseudo sine wave signals having different phases by performing an operation by resistance division on the three-phase pseudo sine wave signal generated by the original signal generating unit 101, a sine wave signal Comparing means 103 for binarizing a plurality of pseudo sine wave signals having different phases generated by the generating means 102, and a signal multiplying means for obtaining a multiplied signal by logically processing the signals binarized by the comparing means 103 104.
[0006]
The original signal generation means 101 further includes a light emitting element 1011, a rotating plate 1012 fixed to the motor shaft and having bright and dark slits, a fixed plate 1013 fixed to the motor bracket and having at least four segments similar to the rotating plate 1012, at least A light receiving element 1014 having a light receiving part corresponding to a segment of the fixed plate 1013, a current / voltage converting part 1015 for converting an output current from the light receiving element into a voltage, and a difference of signals converted by the current / voltage converting part 1015 are executed. The differential circuit unit 1016 includes: Light emitted from the light emitting element 1011 passes through the slits of the rotating plate 1012 and the fixed plate 1013 and enters the light receiving element 1014, and a current corresponding to the incident light is output. The slits and fixed plate of the rotating plate 1012 so that the current output by rotating the rotating plate 1012 becomes the two-phase pseudo sine wave signals a and b of approximately 90 ° and their opposite phase signals / a and / b. The slit of each segment of 1013 is configured. The two-phase pseudo sine wave signals output from the light receiving element 1014 and their opposite phase signals are converted into voltage signals based on the reference voltage by the current-voltage converter 1015. Further, in order to eliminate the offset component of the optical signal, the differential circuit unit 1016 calculates a− / a (= CA), b− / b (= CB), and / a−a (= −CA) with reference to the reference voltage. Are output as three-phase pseudo sine wave signals having a phase difference of about 90 ° for CA and CB and about 180 ° for CA and -CA. The sine wave signal generation means 102 is constituted by a resistance divider 1021. In the sine wave signal generation means 102, CA and CB, and CB and (-CA) are divided by resistance, respectively, to obtain a plurality of pseudo sine wave signals dn (n: integer) having different phases.
[0007]
In general, the number of pseudo sine wave signals required to obtain a multiplied signal such as an A-phase signal and a B-phase signal that are output signals of an encoder is an even number. For example, a resistance divider for obtaining a quadruple signal as an encoder output A detailed view (FIG. 5) and a timing chart (FIG. 6) of 1021 are shown.
[0008]
In this case, n = 0, 1,..., 7 and the circuit constant ratio of the resistance divider 1021 is determined so that the phase shift from CA is n × 360 ° / 16.
[0009]
In addition, when obtaining a signal multiplied by 8 as the output of the encoder, n = 0, 1,..., 15 and the circuit constant ratio of the resistor divider so that the phase shift from CA is n × 360 ° / 32 respectively. To decide.
[0010]
Next, the comparison means 103 binarizes a plurality of pseudo sine wave signals dn having different phases with a reference voltage to obtain a digital signal Dn (n = 0, 1,..., 7). Then, Dn is logically processed in the signal multiplying means 104 to have a quarter of the period of the signal obtained by binarizing the pseudo sine wave signal generated by the original signal generating means 101 and about 90 ° from each other. A signal having a phase difference, that is, an A-phase signal and a B-phase signal which are multiplied signals are obtained.
[0011]
[Problems to be solved by the invention]
However, in the conventional method, the output impedance of each pseudo sine wave signal signal line, which is the output of the resistance divider in the sine wave signal generation means, is different, and CR coupling with the input capacity of the comparison means in the next stage is different. The time delay that occurs depends on the difference between the signals, especially when the frequency of the multiplied signal, which is the final output signal, such as during high-speed rotation or high-resolution signal generation, is small. There is a problem that the phase of the multiplied signal becomes unbalanced.
[0012]
The present invention solves the above-described problems of the conventional example. In particular, even when the cycle of the multiplied signal that is the final output signal is small, such as during high-speed rotation or when a high-resolution signal is generated, the incremental signal has a stable phase of the multiplied signal. An object is to provide a type encoder.
[0013]
[Means for Solving the Problems]
The present invention in order to solve this problem, is arranged between the comparison means and the sine wave signal generating means, each signal line impedance matching means for matching the output impedance of each signal line of the output of the sine wave signal generating means Incremental encoder formed by resistors inserted in series .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve this problem, the present invention provides a total of three-phase pseudo sine waves, that is, a pseudo sine wave signal and a two-phase pseudo sine wave signal having a phase difference of approximately 90 ° and approximately 180 °, respectively. An original signal generating means for generating a signal, and a sine wave for generating a plurality of pseudo sine wave signals having different phases from each other by performing an operation by resistance division on the three-phase pseudo sine wave signal generated by the original signal generating means A signal generating means; a comparing means for binarizing a plurality of pseudo sine wave signals having different phases generated by the sine wave signal generating means; and a signal obtained by binarizing the signals binarized by the comparing means by a logical process. Incremental encoder having signal multiplying means to obtain, output between each signal line of output of said sine wave signal generating means, arranged between said sine wave signal generating means and said comparing means This is an incremental encoder in which impedance matching means for matching impedance is formed by a resistor inserted in series with each signal line .
[0015]
As described above, since the impedance matching means for matching the output impedance of the signal line of each pseudo sine wave signal that is the output of the resistance divider in the sine wave signal generation means is provided with the resistor, the output impedance and the next stage The time delay generated according to the CR coupling with the input capacitance of the comparison means can be matched, and as a result, the phase of the multiplied signal is stabilized even when the cycle of the multiplied signal that is the final output signal is small. Has an effect.
[0016]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0017]
In FIG. 1, reference numeral 1 denotes an original signal generating means for generating a total of three-phase pseudo sine wave signals of a pseudo sine wave signal and a two-phase pseudo sine wave signal having a phase difference of about 90 ° and about 180 °, respectively. A sine wave signal generating unit 3 generates a plurality of pseudo sine wave signals having different phases by calculating the three-phase pseudo sine wave signal generated by the original signal generating unit 1. Comparing means 4 for binarizing the generated pseudo sine wave signals having different phases from each other, 4 is a signal multiplying means for obtaining a multiplied signal by logically processing the signal binarized by the comparing means 3. An impedance matching unit 5 is disposed between the sine wave signal generation unit 2 and the comparison unit 3 and matches the output impedance of each signal line of the output of the sine wave signal generation unit 2.
[0018]
Next, their operation will be described. First, the original signal generating means 1 operates in the same manner as the conventional example in FIG. 4 and has a phase difference of about 90 ° with respect to CA and CA and a phase difference of about 180 ° with respect to CB and CA with a total of three phases of -CA. The pseudo sine wave signal is output. Next, in the resistance dividing unit 21 in the sine wave signal generating means 2 similar to the resistance dividing unit of the conventional example, CA and CB, CB and -CA are divided by resistance, respectively, thereby a plurality of pseudo sine having different phases from each other. A wave signal dn is generated.
[0019]
For example, when a quadruple signal is obtained as the output of the encoder, the circuit diagram of the resistance divider 21 is equivalent to FIG. 5, and the timing chart is equivalent to FIG.
[0020]
In this case, it is also equivalent to determine the circuit constant ratio of the resistance divider 21 so that n = 0, 1,..., 7 and the phase shift from CA is n × 360 ° / 16 respectively.
[0021]
Next, the operation of the impedance matching means will be described. In FIG. 2, the differential circuit unit 16 of the original signal generating unit 1, the resistor dividing unit 21, and the impedance matching unit 5 using resistors output the pseudo sine wave signals CA, CB, -CA from the differential circuit unit 16. The impedance is Z, the output impedance of the signal line dn (n = 0, 1, 7) of the resistance divider 21 is Zn, and the output signal dn ′ (n = 0, 1, 7) of the impedance matching means 5 is used. , 7) If Zn ′ represents the output impedance of the signal line, Zn is represented by the following equation.
[0022]
Z0 = Z (Formula 1)
Z1 = (Z + R01) // (Z + R12 + R23 + R34) (Formula 2)
Z2 = (Z + R01 + R12) // (Z + R23 + R34) (Formula 3)
Z3 = (Z + R01 + R12 + R23) // (Z + R34) (Formula 4)
Z4 = Z (Formula 5)
Z5 = (Z + R45) // (Z + R56 + R67 + R78) (Formula 6)
Z6 = (Z + R45 + R56) // (Z + R67 + R78) (Formula 7)
Z7 = (Z + R45 + R56 + R67) // (Z + R78) (Formula 8)
Here, () // () indicates a combined impedance in parallel with the impedance in (). Zn ′ is represented by the following formula.
[0023]
Z0 ′ = Z + R0 (Formula 9)
Z1 ′ = (Z + R01) // (Z + R12 + R23 + R34) + R1 (Formula 10)
Z2 ′ = (Z + R01 + R12) // (Z + R23 + R34) + R2 (Formula 11)
Z3 ′ = (Z + R01 + R12 + R23) // (Z + R34) + R3 (Formula 12)
Z4 ′ = Z + R4 (Formula 13)
Z5 ′ = (Z + R45) // (Z + R56 + R67 + R78) + R5 (Formula 14)
Z6 ′ = (Z + R45 + R56) // (Z + R67 + R78) + R6 (Formula 15)
Z7 ′ = (Z + R45 + R56 + R67) // (Z + R78) + R7 (Formula 16)
Normally, resistance values of several hundred Ω to several tens of kΩ are used for R01 to R78 so that the current flowing through the resistors of R01 to R78 is less than or equal to the output current capacity of the differential circuit section 16. Since the circuit unit 16 uses a differential amplifier circuit of an operational amplifier, its output impedance Z is several Ω or less. That is, since Z is sufficiently small and can be ignored as compared with R01 to R78, (Expression 1) to (Expression 16) can be approximated by the following expressions.
[0024]
Z0 = 0 (Formula 17)
Z1 = (R01) // (R12 + R23 + R34) (Formula 18)
Z2 = (R01 + R12) // (R23 + R34) (Formula 19)
Z3 = (R01 + R12 + R23) // (R34) (Formula 20)
Z4 = 0 (Formula 21)
Z5 = (R45) // (R56 + R67 + R78) (Formula 22)
Z6 = (R45 + R56) // (R67 + R78) (Formula 23)
Z7 = (R45 + R56 + R67) // (R78) (Formula 24)
Z0 '= R0 (Formula 25)
Z1 ′ = (R01) // (R12 + R23 + R34) + R1 (Formula 26)
Z2 ′ = (R01 + R12) // (R23 + R34) + R2 (Formula 27)
Z3 ′ = (R01 + R12 + R23) // (R34) + R3 (Formula 28)
Z4 ′ = R4 (Formula 29)
Z5 ′ = (R45) // (R56 + R67 + R78) + R5 (Formula 30)
Z6 ′ = (R45 + R56) // (R67 + R78) + R6 (Formula 31)
Z7 ′ = (R45 + R56 + R67) // (R78) + R7 (Formula 32)
At this time, in order to match the output impedance of the signal line of the output signal of the impedance matching means 5, Rn may be determined so that all Zn ′ are equal. When R0 = R, Rn is the value of the following equation: Become.
[0025]
R0 = R (Formula 33)
R1 = R− (R01) // (R12 + R23 + R34) (Formula 34)
R2 = R− (R01 + R12) // (R23 + R34) (Formula 35)
R3 = R- (R01 + R12 + R23) // (R34) (Formula 36)
R4 = R (Formula 37)
R5 = R− (R45) // (R56 + R67 + R78) (Formula 38)
R6 = R− (R45 + R56) // (R67 + R78) (Formula 39)
R7 = R− (R45 + R56 + R67) // (R78) (Formula 40)
When Rn is determined in this way, the output impedance is matched, and the time delay of each dn ′ signal is the same. The subsequent signal processing method and timing chart are the same as in the conventional example. When the time delays of the respective dn ′ signals are the same, the time delays of the respective Dn signals obtained by binarizing the respective dn ′ signals in the comparison means 3 are also the same, and the signal multiplying means 4 generates the respective Dn signals by logical processing. The phase difference between the A phase signal and the B phase signal of the multiplied signal is stabilized.
[0026]
The same effect can be obtained even if the resistor of the impedance matching means 5 and the input resistor generally used in the input stage of the comparison means 3 are combined and configured as one resistor.
[0027]
Next, FIG. 3 shows a reference embodiment in which a buffer circuit is used as the impedance matching means.
[0028]
Here, the output impedance of the differential circuit unit 16 of the pseudo sine wave signals CA, CB, and -CA is Z, and the output of the output signal dn (n = 0, 1,... 7) of the resistance dividing unit 21 is output. The impedance is Zn and the output impedance of the signal line dn ′ (n = 0, 1,... 7) of the output signal of the impedance matching means 51 is Zn ′, which is the same as in the case of FIG. If a circuit with an output impedance of Z ′ is used as the circuit,
Zn ′ = Z ′ = 0, 1,... 7) (Equation 41), and the impedance is matched. When the output impedance is matched, the phase difference between the A-phase signal and the B-phase signal of the multiplied signal is stabilized as in the case of the impedance matching means using a resistor.
[0029]
Here, as the buffer circuit, an inverting amplifier circuit or a non-inverting amplifier circuit using an operational amplifier is generally used. However, the circuit configuration is not particularly limited as long as the impedance can be converted as an analog buffer circuit. Absent.
[0030]
When the buffer circuit is determined so that Z = Z ′, the output impedance is matched even if there is no buffer circuit for the signal lines d0 and d4, and the same effect can be obtained.
[0031]
【The invention's effect】
As apparent from the above embodiment, according to the present invention, since the impedance matching means for matching the output impedance of each dn signal line, which is the output of the resistance divider in the sine wave signal generating means, is provided, The time delay generated according to the output impedance and the CR coupling of the input capacity of the comparison means of the next stage is matched, and as a result, the cycle of the multiplied signal which is the final output signal especially at the time of high speed rotation or high resolution signal generation Even when the frequency is small, the phase of the multiplied signal is stabilized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention. FIG. 2 is a main circuit diagram of an embodiment of the present invention. FIG. 3 is a main circuit diagram of a reference embodiment of the present invention. FIG. 5 is a circuit diagram of a main part of a conventional embodiment. FIG. 6 is a timing chart of a conventional embodiment.
DESCRIPTION OF SYMBOLS 1 Original signal generation means 2 Sinusoidal signal generation means 3 Comparison means 4 Signal multiplication means 5 Impedance matching means

Claims (1)

疑似正弦波信号と前記疑似正弦波信号とそれぞれ略90°,略180°の位相差を有する2相の疑似正弦波信号の計3相の疑似正弦波信号を生成する原信号生成手段、前記原信号生成手段によって生成される3相の疑似正弦波信号を抵抗分割による演算を実行することによって互いに位相の異なる複数の疑似正弦波信号を生成する正弦波信号生成手段、前記正弦波信号生成手段にて生成された位相の異なる複数の疑似正弦波信号をそれぞれ二値化する比較手段、前記比較手段によって二値化された信号を論理処理により逓倍信号を得る信号逓倍手段を有するインクリメンタル型エンコーダにおいて、前記正弦波信号生成手段と前記比較手段の間に配置され、前記正弦波信号生成手段の出力の各信号線の出力インピーダンスを整合するインピーダンス整合手段を各信号線に直列に挿入された抵抗器によって形成したインクリメンタル型エンコーダ。An original signal generating means for generating a total of three-phase pseudo sine wave signals of a pseudo sine wave signal and a two-phase pseudo sine wave signal having a phase difference of approximately 90 ° and approximately 180 ° with respect to the pseudo sine wave signal; A sine wave signal generating means for generating a plurality of pseudo sine wave signals having different phases from each other by performing an operation by resistance division on the three-phase pseudo sine wave signal generated by the signal generating means, and the sine wave signal generating means Incremental encoders having a comparing means for binarizing a plurality of pseudo sine wave signals having different phases generated in the above, and a signal multiplying means for obtaining a multiplied signal by logical processing of the signals binarized by the comparing means, Impeder arranged between the sine wave signal generating means and the comparing means and matching the output impedance of each signal line of the output of the sine wave signal generating means Incremental encoder formed by a resistor inserted in series with each signal line .
JP23382399A 1999-08-20 1999-08-20 Incremental encoder Expired - Fee Related JP3678066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23382399A JP3678066B2 (en) 1999-08-20 1999-08-20 Incremental encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23382399A JP3678066B2 (en) 1999-08-20 1999-08-20 Incremental encoder

Publications (2)

Publication Number Publication Date
JP2001056238A JP2001056238A (en) 2001-02-27
JP3678066B2 true JP3678066B2 (en) 2005-08-03

Family

ID=16961132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23382399A Expired - Fee Related JP3678066B2 (en) 1999-08-20 1999-08-20 Incremental encoder

Country Status (1)

Country Link
JP (1) JP3678066B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565990B2 (en) 2005-07-08 2014-08-06 オリンパス株式会社 Encoder
JP5547950B2 (en) 2009-10-30 2014-07-16 オリンパス株式会社 Encoder
JP2016197044A (en) * 2015-04-03 2016-11-24 株式会社ミツトヨ Phase adjuster, and encoder
JP2021135161A (en) * 2020-02-27 2021-09-13 株式会社東海理化電機製作所 Rotation detection device
CN115683177B (en) * 2022-08-30 2024-07-09 苏州萨沙迈半导体有限公司 Decoding device of sine and cosine encoder and micro-control unit

Also Published As

Publication number Publication date
JP2001056238A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
Kang et al. Phase difference correction method for phase and frequency in spectral analysis
JP5173962B2 (en) Resolver / digital conversion apparatus and resolver / digital conversion method
JPH07218288A (en) Absolute position detector and its error correcting method
CN105841603A (en) Semiconductor device
EP0853231A2 (en) Method and device for varying interpolation factors
JP3678066B2 (en) Incremental encoder
JP3232795B2 (en) Detector
US6571194B2 (en) Position detection data generating method and apparatus based on phase shift principle
EP2079988B1 (en) Interpolation method and a circuit for carrying out said method used in a high-resolution encoder
JP2005140737A (en) Magnetic encoder device
KR100954083B1 (en) Rotation-angle detecting apparatus
JP3914818B2 (en) Rotation angle detector
JP3365913B2 (en) Position detection device
JPS59225316A (en) Absolute position detecting method using rotary type absolute value detector
JPH0658769A (en) Signal processing method and displacement detector using method thereof
JPH0658772A (en) Signal processing circuit of encoder
JPS6347612A (en) Displacement detector
JP2865219B2 (en) Position detection device using resolver
JP3121854B2 (en) Absolute signal generation method
JP3024265B2 (en) Optical encoder
JPH0861980A (en) Displacement amount detecting device
JPH01248063A (en) Speed signal detecting circuit of encoder
JP3302864B2 (en) Motor rotation speed detection circuit
JPH0611476Y2 (en) Period measurement circuit
JP2001074502A (en) Incremental encoder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees