JP3648537B2 - Electron beam irradiation device - Google Patents
Electron beam irradiation device Download PDFInfo
- Publication number
- JP3648537B2 JP3648537B2 JP14287398A JP14287398A JP3648537B2 JP 3648537 B2 JP3648537 B2 JP 3648537B2 JP 14287398 A JP14287398 A JP 14287398A JP 14287398 A JP14287398 A JP 14287398A JP 3648537 B2 JP3648537 B2 JP 3648537B2
- Authority
- JP
- Japan
- Prior art keywords
- electron beam
- conveyor
- vibration
- granular material
- bottom plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Apparatus For Disinfection Or Sterilisation (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は粉体を処理する電子線照射装置の搬送部分の改良に関する。電子線照射装置は真空中で発生した電子線を電子線照射窓から通して大気中へ取り出し被処理物に照射する装置である。電線高分子被覆架橋、樹脂の硬化、塗膜の硬化、医療器具殺菌、などさまざまの用途に用いられる。被処理物は従来、定形固体のものがほとんどであった。固体の被処理物は無端周回コンベヤによって筐体の内部を運ばれ電子線照射窓の下を通る時に電子線照射を受けるようになっている。小さい固体の被処理物の場合はトレイに入れてコンベヤに置かれる事もある。
【0002】
電子線照射装置には電子線分布の違う2種類のものがある。電子線を走査する走査型と、走査しない非走査型(エリア型)である。走査型は電子線を交番磁界の作用によって搬送方向(x方向)と直角の方向(y方向)に電子線を走査する。これはエネルギーの高い場合に良く用いられる。
【0003】
非走査型は広い実効面積を持つフィラメントから電子線を発生させ広い断面積のビームを得て加速し被処理物に照射するものである。比較的エネルギーの低い電子線を照射するものである。加速エネルギーが低いから加速の為の距離が短く、走査しないので装置を小型にできる。
【0004】
電子線の発生加速は真空中で行われる。被処理物は大気中を搬送される。その間には照射窓がある。これはTiやAlの金属箔を貼った窓である。窓箔によって電子線発生部加速部の真空を維持する。窓箔は薄いので電子線を透過させる。透過した電子線が大気中の被処理物に照射される。電子線は高い運動エネルギーを持つので箔を通過できるが透過損失がある。損失エネルギーは熱になる。窓箔はそのために強く加熱される。窓箔の溶融破損を避けるためは風または水によって冷却される。
【0005】
搬送装置は函体の内部を無限周回運動するコンベヤが一般に用いられる。電子線がコンベヤや被処理物に衝突するとオゾンとX線が発生する。何れも有害な物質である。有害な物質や放射線が外部に出てはいけない。それで閉じた函体によってコンベヤを囲む。無端周回コンベヤは幾つものローラによって接触支持されており上下に何度か曲がるようになっている。ローラに回転駆動力が掛かっているからコンベヤは一定方向に一定速度で進行する。自在に速度調節もできる。また函体は幾つもの金属板によって仕切られる。金属板には幾つもの通し穴が開けられており通し穴をコンベヤが通過する。コンベヤの通る通し穴が一直線状に並ばないようになっている。これはX線が外部に漏れないためである。照射窓の直下には窒素ガスなどが循環するようになっている。オゾンを除くためである。酸素がなければオゾンは発生しない。
【0006】
【従来の技術】
これまで電子線照射装置の処理の対象となっていたものは寸法形状の決まった固体であった。固体の場合は大抵、表面処理が目的である。だからある表面だけに電子線が当たれば良いと言う事が多い。かなりの寸法があり形状の決まっている固体の場合はコンベヤに直接に置いて入口からコンベヤ経路を進行させ照射窓で処理を受け、出口までそのまま搬送することができる。形状寸法がコンベヤにそのまま置くに適しない場合は適当なトレイに入れてコンベヤに載せて搬送する。
【0007】
ところが近年になって電子線照射装置によって粉体を殺菌処理したいという要望が寄せられるようになってきた。粉体は無定形であるのでそのままコンベヤに載せるという訳には行かない。ビニール袋につめ、押さえて薄くしてコンベヤに載せ、照射窓直下で電子線を当てるようにするという方法がある。粉体の場合は粉体の全部に電子線が当たらないといけないが電子線の透過距離は数ミリ〜1cmの程度で極浅いものである。それで袋詰めして押さえて数ミリの厚さにして電子線処理をする必要がある。コンベヤを搬送手段に使うが一旦袋詰めし電子線処理した後は袋から出す。粉体の場合袋詰めする手間と袋から粉体を取り出すという手間がかかる。袋詰めに伴う損失もある。このように固体と粉体では搬送形態にかなりの相違がある。
【0008】
【発明が解決しようとする課題】
さらに定形固体でも無定形粉体でもない粒状物体も電子線処理したいという新たな要望が出てきた。粉体と粒体は同じようなものであるから、粉体と同様の方法で電子線を照射できるであろうと、思われるかもしれない。しかしそれは誤りである。粒体は直径が数ミリの不定形の粒状体である。粉体の直径にくらべて格段に大きい。したがって袋づめにして電子線を照射するとまったく電子線が照射されない粒体ができる。むしろ照射されない粒体のほうが多いといえよう。これでは、なんのために電子線照射しているかわからない。もっと効率の良く粒体に電子線照射できる装置を考えなくてはならない。例えばコンベヤの両側に隆起を付けてこぼれないようにすれば無限周回コンベヤで搬送できよう。
【0009】
しかしそのようにした実績はない。そもそも粒状物質を電子線処理するということ自体が新規な要望であって処理した実績はない。新しい要求であるから新しい対策が必要であろう。粒状物質には表裏の別がない。粒状物質の場合全表面に電子線を当てる必要がある。つまりある面だけでなくその裏面にも側面にも電子線を当てる必要がある。これが粒状物質の電子線処理に困難さをもたらす。
【0010】
電子線の侵入深さdより直径Dが小さい場合は(D<d)裏面まで電子線が到達できる。電子線加速エネルギーを高くすればこれは可能であろう。しかしそうすると粒状体の内部まで電子線が入ってしまう。ところがものによって内部は電子線被爆しない方が良いということがある。その場合粒状体の内部まで電子線による変質を及ぼしてはならない。粒状対象の場合、内部に電子線がはいらず、全周面に電子線をあてなければならない。ところがそれは容易でない。 単に粒状物体をザザーとコンベヤに投入して運ぶようにしても上になっている面に電子線が当たるだけで裏面には当たらない。しかもホッパから少しづつコンベヤに粒状体を投下しても粒状体の群が固まって山を作る。山になると最上部の粒にしか電子線が当たらない。かといって粒状物を1層だけコンベヤに敷き詰めるというようなことは簡単にはできない。つまり粒状物を電子線処理するという場合、粒状物を互いに重ならず1層だけコンベヤに敷き裏面にも電子線を当てる、という殆ど不可能のような事が要求される。
【0011】
これができないこともあって、現在も尚、粒状物を処理できる電子線照射装置は存在しない。粒状対象物を処理できる電子線照射装置を提供する事が本発明の第1の目的である。粒状物が互いに重なって電子線を遮る事のないようにした電子線照射装置を提供する事が本発明の第2の目的である。粒状物の表面も、側面も裏面も一様に電子線を当てる事のできる電子線照射装置を提供する事が本発明の第3の目的である。
【0012】
【課題を解決するための手段】
本発明は粒状物を搬送するために振動コンベヤを用いる。しかも振動コンベヤの裏面に冷却水の経路を設け直接に振動コンベヤを冷却する。ホッパから粒状物を振動コンベヤに落下させると、振動コンベヤは板面の振動によって粒状物を一定方向に送る。入口から照射窓直下の照射位置を経て出口まで延びる振動コンベヤがあるので、振動とともに粒状物が一定方向に進行してゆく。
【0013】
無端周回コンベヤと違ってそれ自体は進行せず振動によって粒状物を運ぶ。振動するから粒子が回転し表裏反転するからどの面にもほぼ均一に電子線が当たる。これが重要な長所である。弱い電子線であっても全面に電子線を当てることができ内部にまで入らないようにできる。またたとえ一時的に山になったとしても振動によって山がつぶれ結局1層の分布になるから全部の粒体が等しく全面に電子線を浴びることができる。
【0014】
電子線照射によってコンベヤが加熱されるが冷却水を直接に板面の裏面に流すので有効に板面が冷却される。周回コンベヤと違って同じ部位が常に電子線を受けて加熱されるので冷却はひときわ重要である。本発明は冷却水を直接に板裏面に流す事によって十分な冷却を行う。
【0015】
【発明の実施の形態】
図1は本発明の実施例にかかる電子線照射装置の概略縦断面図である。横長の筐体1は鉄板、鉛板など金属板で作られ内部を被処理物の搬送空間としている。その中間部には電子線発生装置2が設けられる。ここで非走査型の電子線発生装置2を示しているが、走査型の装置であっても良い。電子線発生装置2は真空チャンバ3と内部に設けられたフィラメント4と電子線を外部へ取り出す照射窓5とを含む。フィラメント4には直流の電流が流れて発熱する。温度が上がるので熱電子が出る。また真空チャンバ3に対して負のバイアスが掛かっているので熱電子は照射窓5の方向に引き出される。
【0016】
照射窓5は角型の開口である。ここにはTi或いはAlの窓箔6が貼ってある。窓箔の上は真空であって下は大気圧である。極薄いものの窓箔6は電子線7の一部を吸収する。これによって発熱するから空気などを吹き付けて冷却するのが普通である。しかしここでは窓箔冷却装置は図示しない。
【0017】
筐体の内部には搬送機構がある。これが通常の無端周回コンベヤではない。そうではなくて振動コンベヤ8が搬送機構となっている。これが本発明の特徴である。電子線照射の被処理物は粒状物9である。筐体1の一端には粒状物9を筐体に導くための入口ホッパ10がある。入口ホッパ10から粒状物は筐体1の入口領域11に入る。振動コンベヤ8は振動底板12、振動側板13、支柱14、振動発生装置15などよりなる。支柱14は前後左右において振動底板12を振動可能に支持する。支柱14の一部は防震ゴム16になっていて振動底板12が上下に振動すること許すようになっている。振動発生装置15は例えばモータと偏心カムなどによって構成される。或いは超音波振動子などによっても振動を与えることができる。これによって、振動底板12が振動するが僅かな傾斜があるので粒状物は一定方向に前進する。傾斜がなくても振動モードを前後非対称にすることによって一定方向に前進させることもできる。また振動底板12に特別の表面形状を与えることによって一方向へのみ搬送するようにすることもできる。
【0018】
振動底板12の上を前進(x方向)すると粒状物はやがて照射窓5の直下にいたる。ここで粒状物9は電子線照射を受ける。電子線によって粒状物に適当な処理がなされる。振動底板12の直下には冷却水管17が設けられる。電子線7を受けることによって振動底板12が発熱する。そのまま放置すると底板12が焼損する。これを避けるために冷却するのである。図2に冷却水管17の部分の横断平面図を示す。
【0019】
この例では冷却水管17が底板18、側壁19、前壁20、後壁21をもち、内部に蛇行状の流路を形成するために隔壁22、22…が設けられている。流路の始端には冷却水入口23があり、終端には冷却水出口24がある。入口23から出口24に至る蛇行流路ができる。この中を冷却水25が蛇行しながら通って行く。冷却水管17は直接に振動底板12を冷却する。
【0020】
電子線照射によって発生した熱は冷却水の作用によって冷却される。冷却水の方は加熱されて出口24から排出される。
振動コンベヤによって粒状物を搬送すると、図3に示すように振動によって粒状物が前後左右に転動する。微小な振動であるが上下前後左右に振動するので粒状物が飛び上がり転がり廻る。粒状物は転動しているから電子線に向かう面はつねに変動する。だからどの面も等しく電子線照射を受ける。電子線エネルギーが低くて粒状物の内部には電子線が入らないにするがコロコロと振動コンベヤで転がるので全ての面が電子線処理を受ける。これはまことに好都合な性質である。振動しない通常の無端周回コンベヤではこのようなわけにはゆかない。
【0021】
振動コンベヤの終端の筐体の出口領域26までくると粒状物はここから落下する。出口ホッパ27を通り次段のコンベヤ28に落下する。このコンベヤによって次の工程の装置へと搬送される。
【0022】
【発明の効果】
本発明は筐体内部での粒状物の搬送に振動コンベヤを使っている。通常の無端周回コンベヤと違って、粒状物に上下左右の運動が加わるので粒状物が転がり廻る。ために上から照射されるだけの電子線を全面に受けることができる。粒状物表面に等しく電子線が当たるので理想的な表面処理がなされる。
【0023】
また水冷のための装置を振動コンベヤの底板に設けているから電子線によって発熱しても熱を逃がす事ができて底板が熱損傷を受けない。粒状物自体もあまり加熱すると変質する可能性があるが本発明は冷却水によって底板の冷却を行っているから粒状物の温度が過度に上がらないようにすることができる。
【図面の簡単な説明】
【図1】本発明の実施例にかかる電子線照射装置の概略の縦断面図。
【図2】振動底板の直下に設けた冷却水管の横断平面図。
【図3】振動底板の一部の縦断面図。
【符号の説明】
1 筐体
2 電子線発生装置
3 真空チャンバ
4 フィラメント
5 照射窓
6 窓箔
7 電子線
8 振動コンベヤ
9 粒状物
10 入口ホッパ
11 入口領域
12 振動底板
13 振動側板
14 支柱
15 振動発生装置
16 防震ゴム
17 冷却水管
18 底壁
19 側壁
20 前壁
21 後壁
22 隔壁
23 冷却水入口
24 冷却水出口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a conveyance portion of an electron beam irradiation apparatus for processing powder. The electron beam irradiation apparatus is an apparatus that passes an electron beam generated in a vacuum through an electron beam irradiation window to the atmosphere and irradiates an object to be processed. Used for various purposes such as cross-linking of electric wire polymer coating, resin curing, coating film curing, and medical instrument sterilization. Conventionally, most of the objects to be processed are of a fixed solid. The solid object to be processed is transported inside the casing by an endless conveyor and receives electron beam irradiation when passing under the electron beam irradiation window. In the case of a small solid workpiece, it may be placed on a conveyor in a tray.
[0002]
There are two types of electron beam irradiation devices with different electron beam distributions. A scanning type that scans an electron beam and a non-scanning type (area type) that does not scan. The scanning type scans an electron beam in a direction (y direction) perpendicular to the transport direction (x direction) by the action of an alternating magnetic field. This is often used when energy is high.
[0003]
In the non-scanning type, an electron beam is generated from a filament having a large effective area, a beam having a wide cross section is obtained and accelerated to irradiate an object to be processed. Irradiates an electron beam with relatively low energy. Since the acceleration energy is low, the distance for acceleration is short, and scanning is not performed, so the apparatus can be miniaturized.
[0004]
The generation of electron beams is accelerated in a vacuum. The object to be processed is conveyed in the atmosphere. There is an irradiation window between them. This is a window with a Ti or Al metal foil. The vacuum of the electron beam generator acceleration part is maintained by the window foil. Since the window foil is thin, it transmits the electron beam. The transmitted electron beam is irradiated to the object to be processed in the atmosphere. Since electron beams have high kinetic energy, they can pass through the foil but have transmission loss. Loss energy becomes heat. The window foil is heated strongly for that purpose. In order to avoid melting breakage of the window foil, it is cooled by wind or water.
[0005]
As the conveying device, a conveyor that moves infinitely around the box is generally used. When an electron beam collides with a conveyor or an object to be processed, ozone and X-rays are generated. Both are harmful substances. Hazardous substances and radiation should not go outside. Then the conveyor is surrounded by a closed box. The endless conveyor is supported by a number of rollers and bends up and down several times. Since the rotational driving force is applied to the rollers, the conveyor advances in a constant direction at a constant speed. The speed can be adjusted freely. The box is partitioned by several metal plates. A number of through holes are made in the metal plate, and the conveyor passes through the through holes. The through holes through which the conveyor passes are not arranged in a straight line. This is because X-rays do not leak outside. Nitrogen gas circulates directly under the irradiation window. This is to remove ozone. Without oxygen, ozone is not generated.
[0006]
[Prior art]
Until now, what has been the object of processing of the electron beam irradiation apparatus is a solid having a dimensional shape. In the case of solids, surface treatment is usually the purpose. Therefore, it is often said that an electron beam only needs to hit a certain surface. In the case of a solid having a considerable size and having a fixed shape, it can be placed directly on the conveyor, proceeded from the entrance to the conveyor path, processed by the irradiation window, and directly conveyed to the exit. If the geometry is not suitable for placing on the conveyor, place it in a suitable tray and transport it on the conveyor.
[0007]
However, in recent years, there has been a demand for sterilizing powder using an electron beam irradiation apparatus. Since the powder is amorphous, it cannot be put on the conveyor as it is. There is a method to squeeze into a plastic bag, hold it thin, place it on a conveyor, and hit an electron beam directly under the irradiation window. In the case of powder, an electron beam must hit all of the powder, but the transmission distance of the electron beam is extremely shallow with a few millimeters to 1 cm. Therefore, it is necessary to pack the bag and hold it down to a thickness of a few millimeters for electron beam processing. The conveyor is used as a transport means, but after the bag is packed and processed with an electron beam, it is taken out of the bag. In the case of powder, it takes time to pack the bag and to take out the powder from the bag. There are also losses associated with bagging. Thus, there is a considerable difference in the transport form between solid and powder.
[0008]
[Problems to be solved by the invention]
In addition, there has been a new demand for electron beam processing of granular objects that are neither shaped solids nor amorphous powders. Since powder and granules are similar, it may be thought that an electron beam could be irradiated in the same way as powder. But that is wrong. The granule is an irregular granule having a diameter of several millimeters. It is much larger than the diameter of the powder. Accordingly, when the electron beam is irradiated in a bag, a granule that is not irradiated with the electron beam at all is formed. Rather, it can be said that there are more particles that are not irradiated. In this case, it is not known why the electron beam is irradiated. We must consider a device that can irradiate the particles more efficiently. For example, if the ridges on both sides of the conveyor are not spilled, it can be transported by an infinite circuit.
[0009]
However, there is no record of doing so. In the first place, the electron beam treatment of the particulate material itself is a new demand, and there is no record of treatment. Because it is a new requirement, a new countermeasure will be required. There is no distinction between the front and back of granular materials. In the case of a granular material, it is necessary to irradiate the entire surface with an electron beam. In other words, it is necessary to irradiate an electron beam not only on a certain surface but also on the back surface and side surface. This presents difficulties for electron beam processing of particulate matter.
[0010]
When the diameter D is smaller than the penetration depth d of the electron beam (D <d), the electron beam can reach the back surface. This could be possible by increasing the electron beam acceleration energy. However, if it does so, an electron beam will enter the inside of the granular material. However, there are times when it is better not to be exposed to an electron beam inside. In that case, the inside of the granular material should not be altered by the electron beam. In the case of a granular object, an electron beam does not enter inside, and an electron beam must be applied to the entire peripheral surface. However, it is not easy. Even if a granular object is simply put into a zaza and a conveyor and carried, the electron beam hits the upper surface but not the back surface. Moreover, even if the particles are dropped from the hopper onto the conveyor little by little, the group of particles is solidified to form a mountain. In the case of a mountain, the electron beam only hits the top grain. However, it is not easy to spread a single layer of granular material on a conveyor. In other words, when an electron beam treatment is performed on a granular material, it is almost impossible that the granular material does not overlap each other and only one layer is placed on a conveyor and the back surface is irradiated with an electron beam.
[0011]
Since this is not possible, there is still no electron beam irradiation apparatus capable of processing particulate matter. It is a first object of the present invention to provide an electron beam irradiation apparatus capable of processing a granular object. It is a second object of the present invention to provide an electron beam irradiation apparatus in which the granular materials do not overlap each other and block the electron beam. It is a third object of the present invention to provide an electron beam irradiation apparatus that can uniformly apply an electron beam to the front surface, side surface, and back surface of a granular material.
[0012]
[Means for Solving the Problems]
The present invention uses an oscillating conveyor to convey particulate matter. In addition, a path for cooling water is provided on the back of the vibrating conveyor to directly cool the vibrating conveyor. When the granular material is dropped from the hopper onto the vibrating conveyor, the vibrating conveyor feeds the granular material in a certain direction by the vibration of the plate surface. Since there is a vibrating conveyor that extends from the entrance to the exit through the irradiation position directly under the irradiation window, the granular material advances in a certain direction along with the vibration.
[0013]
Unlike endless conveyors, they themselves do not travel and carry particulates by vibration. Because it vibrates, the particles rotate and turn upside down, so the electron beam strikes almost evenly on any surface. This is an important advantage. Even if it is a weak electron beam, it can hit an electron beam to the whole surface, and it can be prevented from entering the inside. Even if it temporarily becomes a mountain, the mountain collapses due to vibration and eventually becomes a distribution of one layer, so that all the particles can be equally exposed to the electron beam.
[0014]
Although the conveyor is heated by the electron beam irradiation, the cooling water is allowed to flow directly to the back surface of the plate surface, so that the plate surface is effectively cooled. Unlike the circular conveyor, the same part is always heated by receiving an electron beam, so cooling is particularly important. The present invention provides sufficient cooling by allowing cooling water to flow directly to the back of the plate.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic longitudinal sectional view of an electron beam irradiation apparatus according to an embodiment of the present invention. The horizontally
[0016]
The irradiation window 5 is a square opening. Here, a
[0017]
There is a transport mechanism inside the housing. This is not a normal endless conveyor. Instead, the vibrating
[0018]
When moving forward (x direction) on the vibrating
[0019]
In this example, the cooling
[0020]
Heat generated by electron beam irradiation is cooled by the action of cooling water. The cooling water is heated and discharged from the
When the granular material is conveyed by the vibration conveyor, the granular material rolls back and forth and left and right by vibration as shown in FIG. Although it is a minute vibration, it vibrates up, down, front, back, left and right, so that the granular material jumps up and rolls around. Since the granular material is rolling, the surface toward the electron beam always changes. So every surface is equally irradiated with electron beam. The electron beam energy is low so that no electron beam enters the inside of the granular material, but all surfaces are subjected to electron beam processing because they are rolled by a roller and a vibrating conveyor. This is a very advantageous property. This is not the case with ordinary endless conveyors that do not vibrate.
[0021]
The particulates fall from here when it reaches the
[0022]
【The invention's effect】
The present invention uses an oscillating conveyor for conveying particulate matter inside the housing. Unlike normal endless conveyors, the granular material rolls around because the vertical and horizontal movements are applied to the granular material. Therefore, the entire surface can receive an electron beam irradiated from above. Since the electron beam is equally applied to the surface of the granular material, an ideal surface treatment is performed.
[0023]
In addition, since a water cooling device is provided on the bottom plate of the vibration conveyor, heat can be released even if heat is generated by the electron beam, and the bottom plate is not damaged by heat. Although the granular material itself may change in quality when it is heated too much, since the present invention cools the bottom plate with cooling water, the temperature of the granular material can be prevented from excessively rising.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of an electron beam irradiation apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional plan view of a cooling water pipe provided immediately below a vibration bottom plate.
FIG. 3 is a longitudinal sectional view of a part of a vibration bottom plate.
[Explanation of symbols]
DESCRIPTION OF
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14287398A JP3648537B2 (en) | 1998-05-25 | 1998-05-25 | Electron beam irradiation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14287398A JP3648537B2 (en) | 1998-05-25 | 1998-05-25 | Electron beam irradiation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11337700A JPH11337700A (en) | 1999-12-10 |
JP3648537B2 true JP3648537B2 (en) | 2005-05-18 |
Family
ID=15325590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14287398A Expired - Fee Related JP3648537B2 (en) | 1998-05-25 | 1998-05-25 | Electron beam irradiation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3648537B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000304900A (en) * | 1999-04-22 | 2000-11-02 | Natl Food Res Inst | Electron beam irradiation device and particle sterilizing method |
JP2001318200A (en) * | 2000-05-08 | 2001-11-16 | Nissin High Voltage Co Ltd | Electron beam irradiator |
JP3777080B2 (en) * | 2000-05-08 | 2006-05-24 | 株式会社Nhvコーポレーション | Electron beam irradiation device |
JP2001321137A (en) * | 2000-05-16 | 2001-11-20 | Nisshin Seifun Group Inc | Device and method for sterilizing grain |
JP3822426B2 (en) * | 2000-09-06 | 2006-09-20 | 株式会社Nhvコーポレーション | Electron beam irradiation device |
JP2002085029A (en) * | 2000-09-07 | 2002-03-26 | Nisshin Seifun Group Inc | Electron beam irradiator |
JP5621085B2 (en) * | 2010-09-10 | 2014-11-05 | 独立行政法人農業・食品産業技術総合研究機構 | Seed disinfection equipment |
EA201892101A3 (en) | 2012-10-10 | 2019-07-31 | Ксилеко, Инк. | BIOMASS PROCESSING |
KR20150067144A (en) * | 2012-10-10 | 2015-06-17 | 질레코 인코포레이티드 | Equipment protecting enclosures |
US10689196B2 (en) | 2012-10-10 | 2020-06-23 | Xyleco, Inc. | Processing materials |
NZ706072A (en) | 2013-03-08 | 2018-12-21 | Xyleco Inc | Equipment protecting enclosures |
-
1998
- 1998-05-25 JP JP14287398A patent/JP3648537B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11337700A (en) | 1999-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3648537B2 (en) | Electron beam irradiation device | |
US4484341A (en) | Method and apparatus for selectively radiating materials with electrons and X-rays | |
JP6283554B2 (en) | 3D additive manufacturing equipment | |
JP2009035330A (en) | Device for sterilizing container | |
RU2223119C2 (en) | Method and device for irradiating objects | |
JP7201231B2 (en) | Continuous decontamination equipment | |
JP2000304900A (en) | Electron beam irradiation device and particle sterilizing method | |
JP4859517B2 (en) | Electron beam irradiation device for open container | |
US4102056A (en) | Method and apparatus for introducing a particulate or pulverulent material into a flow of gas | |
CN208061677U (en) | Irradiate industrial wastewater control process system | |
JPH10268100A (en) | Electron beam irradiation device | |
US5825037A (en) | Compact, selfshielded electron beam processing technique for three dimensional products | |
JPH11109100A (en) | Electron-applying device | |
JP2010008387A (en) | Electron beam irradiation equipment | |
JP4372391B2 (en) | Radiation treatment system | |
JP3730850B2 (en) | Particle transport mechanism in electron beam irradiation equipment | |
JP3777080B2 (en) | Electron beam irradiation device | |
JP2002085029A (en) | Electron beam irradiator | |
JP2008079891A (en) | Electron beam irradiation apparatus | |
JP2001318200A (en) | Electron beam irradiator | |
JP2000254486A (en) | Device and method for electron beam irradiation and material to be treated | |
JP2002000705A (en) | Electron beam radiating apparatus of medical apparatus | |
JP4777545B2 (en) | Method for sterilizing granular object and apparatus for sterilizing granular object used therefor | |
JPH03123900A (en) | Irradiation quantity controller | |
JP2001318197A (en) | Structure for shielding and transportation in electron beam irradiator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20031031 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20031215 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040331 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041012 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050117 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090225 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100225 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100225 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100225 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100225 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120225 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130225 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |