Nothing Special   »   [go: up one dir, main page]

JP3532739B2 - Radiation field forming member fixing device - Google Patents

Radiation field forming member fixing device

Info

Publication number
JP3532739B2
JP3532739B2 JP21324097A JP21324097A JP3532739B2 JP 3532739 B2 JP3532739 B2 JP 3532739B2 JP 21324097 A JP21324097 A JP 21324097A JP 21324097 A JP21324097 A JP 21324097A JP 3532739 B2 JP3532739 B2 JP 3532739B2
Authority
JP
Japan
Prior art keywords
bolus
radiation
frame
forming member
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21324097A
Other languages
Japanese (ja)
Other versions
JPH1147291A (en
Inventor
英生 野中
信孝 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP21324097A priority Critical patent/JP3532739B2/en
Priority to US09/129,838 priority patent/US6080992A/en
Priority to BE9800589A priority patent/BE1011948A3/en
Publication of JPH1147291A publication Critical patent/JPH1147291A/en
Application granted granted Critical
Publication of JP3532739B2 publication Critical patent/JP3532739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/046Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers varying the contour of the field, e.g. multileaf collimators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiation-Therapy Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、回転照射室(ガン
トリと称する)内での放射線照射時に、照射対象の形状
に合わせた照射野を形成するための、最大深さの断面形
状を調整するボーラス、及び、輪郭を最終決定する最終
コリメータを含む照射野形成部材を、ガントリ内の放射
線照射部の先端に固定するための放射線の照射野形成部
材固定装置に係り、特に、陽子線による癌治療に際し
て、ガントリ内の患者の回りを回動可能な放射線照射部
の先端に照射野形成部材を固定する際に用いるのに好適
な、放射線の照射野形成部材固定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention adjusts the maximum depth cross-sectional shape for forming an irradiation field in accordance with the shape of an irradiation target during irradiation of radiation in a rotary irradiation chamber (referred to as a gantry). The present invention relates to a radiation field forming member fixing device for fixing an irradiation field forming member including a bolus and a final collimator for final determination of a contour to a tip of a radiation irradiation section in a gantry, and particularly, cancer treatment by proton beam. In this regard, the present invention relates to a radiation field forming member fixing device suitable for use in fixing a radiation field forming member to the tip of a radiation irradiation unit that can rotate around a patient in a gantry.

【0002】[0002]

【従来の技術】従来の放射線による癌治療には、X線、
ガンマ線、電子線及び速中性子線等が利用されてきた。
これらの放射線は、図12に示す如く、身体表面近くで
放射線が最も強いため、深部の癌を治療する場合には、
正常な体表面付近の組織をも傷付けてしまう可能性が大
きい。一方、水素原子から電子をはぎ取った、正の電荷
を持ち、電子の1836倍の質量を持つ陽子を、加速器
を使って高エネルギまで加速して得られる陽子線は、身
体表面から一定の深さで線量が最大になるブラッグピー
クPを形成し、その後急速に零になるという特性があ
る。
2. Description of the Related Art X-rays have been used to treat cancer by conventional radiation.
Gamma rays, electron rays and fast neutron rays have been used.
As shown in FIG. 12, these radiations are the strongest near the surface of the body, so when treating deep cancer,
There is a high possibility that the tissue around the normal body surface will be damaged. On the other hand, a proton beam obtained by accelerating a proton, which has a positive charge and has a mass of 1836 times that of an electron, stripped of an electron from a hydrogen atom to high energy using an accelerator, has a constant depth from the surface of the body. There is a characteristic that a Bragg peak P that maximizes the dose is formed at, and then becomes zero rapidly.

【0003】これは、陽子が電子に及ぼす電気力は近距
離で大きいので、陽子の運動エネルギが大きく高速で走
っている時は、周辺電子と作用する時間が短く、電離量
は小さいが、運動エネルギを失い止まる寸前になると、
作用する時間が長くなり、電離量は急速に増加するため
である。
This is because the electric force exerted by the protons on the electrons is large at a short distance. Therefore, when the kinetic energy of the protons is large and the protons are running at high speed, the time of interaction with the peripheral electrons is short and the amount of ionization is small, When you're about to lose energy and stop,
This is because the time of action becomes long and the amount of ionization rapidly increases.

【0004】そのため、身体の深部に位置する癌であっ
ても、癌以外の正常細胞に比較的障害を与えずに治療す
ることが可能となる。又、陽子線自体の生物に与える効
果(RBE)が、X線の場合とほぼ同じであることか
ら、陽子線治療は、従来のX線治療における知識や経験
の蓄積を十二分に活用できるという利点も合せ持ってい
る。これらの特徴を生かし、機能器官を除去しないで治
療する、生活の質(クォリティ・オブ・ライフ)の向上
を目指した治療装置として、陽子線治療装置が導入され
つつある。
Therefore, even a cancer located deep in the body can be treated without relatively damaging normal cells other than the cancer. Moreover, since the effect (RBE) of the proton beam on the organism is almost the same as that of the X-ray, the proton beam treatment can fully utilize the accumulated knowledge and experience in the conventional X-ray treatment. It also has the advantage of. A proton beam therapy system is being introduced as a therapy system aiming to improve the quality of life by treating these features without removing functional organs.

【0005】放射線照射による癌の治療では、周辺の正
常組織が回復不能な影響を受けないよう、癌組織のみに
致死的な線量を集中することが理想であり、陽子線治療
は、図12に示したように、物質に入射した陽子線が、
停止する直前にブラッグピークPで最大の線量を与える
という性質を利用して、癌組織のみを該ブラッグピーク
Pで被うことにより、この理想を実現しようとするもの
である。
In the treatment of cancer by radiation irradiation, it is ideal to concentrate a lethal dose only on the cancer tissue so that the surrounding normal tissue is not irreversibly affected. As shown, the proton beam incident on the material is
By utilizing the property that the maximum dose is given at the Bragg peak P immediately before the stop, the ideal is realized by covering only the cancer tissue with the Bragg peak P.

【0006】ところで、加速器から得られる陽子線は細
いビーム状であり、そのエネルギ(ブラッグピークの深
さ)も一定である。一方、癌組織は、様々な大きさと複
雑な形状を持ち、その体内における深さも一定ではな
く、又、陽子線が通過しなければならない組織の密度も
一様ではない。従って、陽子線治療を行うためには、陽
子線ビームを、癌全体が一度に照射できる位の幅広い
ビームに拡大し、癌の深さに応じてそのエネルギを調
整し、奥行きのある癌組織全体が一様に照射できるよ
う、癌の厚みに応じてエネルギ分布を持たせ、更に、
癌の輪郭や陽子線が通過する組織の不均一さに応じた補
正を加える必要がある。
By the way, the proton beam obtained from the accelerator has a thin beam shape, and its energy (Bragg peak depth) is also constant. On the other hand, cancerous tissue has various sizes and complicated shapes, the depth in the body is not constant, and the density of tissue through which the proton beam has to pass is not uniform. Therefore, in order to perform proton therapy, the proton beam is expanded into a wide beam that can be irradiated by the entire cancer at once, and its energy is adjusted according to the depth of the cancer, and the entire deep cancer tissue is Energy distribution according to the thickness of the cancer so that the
It is necessary to make a correction according to the contour of the cancer and the nonuniformity of the tissue through which the proton beam passes.

【0007】そこで、図13に示すようにして、照射対
象の形状に合わせた照射野を形成している。即ち、照射
部まで送られた来た、細い陽子ビーム20に、例えば厚
さ数mmの鉛でできた散乱体22により、横方向に広が
りを持たせて、幅広いビーム24に拡大する。該散乱体
22を頂点とする円錐状に広がって伝搬する拡大ビーム
24から、後述するコリメータを用いて中心軸付近の、
線量率が比較的均一な部分を切り出すと、下方の治療台
(図示省略)上で、治療に必要な直径十数cmの照射野
が得られる。
Therefore, as shown in FIG. 13, an irradiation field corresponding to the shape of the irradiation target is formed. That is, the thin proton beam 20 sent to the irradiation unit is laterally expanded by the scatterer 22 made of, for example, lead having a thickness of several mm to expand into a wide beam 24. From the expanded beam 24 that spreads and propagates in a conical shape having the scatterer 22 as the apex, a collimator described later is used to
When a portion with a relatively uniform dose rate is cut out, an irradiation field with a diameter of ten and several cm necessary for treatment is obtained on the lower treatment table (not shown).

【0008】前記拡大ビーム24は、治療対象(例えば
患者10の体内の腫瘍12)の深さに応じて、陽子線の
最大到達深さを調整するためのファインディグレーダ2
6に入射される。該ファインディグレーダ26は、例え
ば2個の楔型をした対向するアクリルブロック26a、
26bから構成され、該ブロック26a、26bの重な
り方を調節することによって、陽子線が通過する部分の
厚みを連続的に変化させることができる。陽子線は、通
過した物質の厚みに応じてエネルギを失い、到達できる
深さが変わるので、このファインディグレーダ26の調
節により、図12に示したブラッグピークPを、治療が
必要な深さに合わせることができる。
The expanded beam 24 is used for adjusting the maximum reaching depth of the proton beam according to the depth of the object to be treated (for example, the tumor 12 in the body of the patient 10).
It is incident on 6. The fine grader 26 includes, for example, two wedge-shaped opposing acrylic blocks 26a,
The thickness of the portion through which the proton beam passes can be continuously changed by adjusting the overlapping manner of the blocks 26a and 26b. Since the proton beam loses energy depending on the thickness of the substance that has passed therethrough and the reachable depth changes, the adjustment of the fine grader 26 causes the Bragg peak P shown in FIG. Can be matched.

【0009】該ファインディグレーダ26を透過した陽
子線は、腫瘍12の厚みに対応して陽子線のエネルギ深
さに分布ΔPを持たせるためのリッジフィルタ28に入
射される。該リッジフィルタ28は、階段状に厚みの変
化する金属棒を簾状に並べたものであり、厚みの異なる
金属を通過した陽子線は、異なる深さにブラッグピーク
Pを作るので、階段の幅と高さの調節により、それらを
適当に重ね合わせ、ピークの幅ΔPを拡大することがで
きる。
The proton beam that has passed through the fine grader 26 is incident on a ridge filter 28 for making the energy depth of the proton beam have a distribution ΔP corresponding to the thickness of the tumor 12. The ridge filter 28 is formed by arranging metal rods whose thickness varies stepwise in a blind shape. Proton lines passing through metals having different thicknesses produce Bragg peaks P at different depths. By adjusting the height and height, it is possible to appropriately superimpose them and to expand the peak width ΔP.

【0010】該リッジフィルタ28を通過した陽子線
は、陽子線の平面形状を粗く整形するためのブロックコ
リメータ30に入射される。後述する最終コリメータに
加えて、ここで、ブロックコリメータ30による整形を
行っているのは、患者10の近くでブロックコリメータ
による2次放射線が発生しないようにするためである。
The proton beam that has passed through the ridge filter 28 is incident on a block collimator 30 for roughly shaping the planar shape of the proton beam. In addition to the final collimator described below, the shaping by the block collimator 30 is performed here in order to prevent the secondary radiation by the block collimator from being generated near the patient 10.

【0011】該ブロックコリメータ30を通過した陽子
線は、例えば樹脂製の不整形フィルタであるボーラス3
2に入力され、腫瘍12の最大深さの断面形状と組織の
不均一性に関する補正が行われる。このボーラス32の
形状は、腫瘍12の輪郭線と、例えばX線CTのデータ
から求められる周辺組織の電子密度とに基づいて、算出
される。
The proton beam passing through the block collimator 30 is bolus 3 which is, for example, a resin irregular filter.
2 is input to correct the cross-sectional shape of the maximum depth of the tumor 12 and the unevenness of the tissue. The shape of the bolus 32 is calculated based on the contour line of the tumor 12 and the electron density of the surrounding tissue obtained from, for example, X-ray CT data.

【0012】該ボーラス32を通過した陽子線は、例え
ば真鍮等の最終コリメータ34に入射され、腫瘍12の
平面形状の輪郭に合わせた最終調整が行われた後、治療
用陽子線36として、患者10に照射される。
The proton beam that has passed through the bolus 32 is incident on a final collimator 34 made of, for example, brass, and after final adjustment according to the contour of the planar shape of the tumor 12, a therapeutic proton beam 36 is provided to the patient. Irradiated to 10.

【0013】従来の陽子線治療装置は、実験用で放射線
照射部を含めて全て固定されていたので、前記ボーラス
32や最終コリメータ34も、テーブル上に単に載置し
たり、簡単な固定具により固定するだけで、実験の都
度、手作業で芯合わせを行っていた。
Since all of the conventional proton beam treatment devices are fixed, including the radiation irradiating part, for experiments, the bolus 32 and the final collimator 34 are simply placed on the table or simply fixed. I just fixed it and, every time I did the experiment, I did the alignment by hand.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、放射線
治療装置を実際の医療に用いる場合には、例えば20分
に1回程度の使用頻度が考えられるので、ボーラス32
や最終コリメータ34の位置決め及び固定が、迅速に行
える必要がある。更に、エンジニアでなく、医師や放射
線技師が取扱うので、特別な技術を必要とすることな
く、容易に取扱える必要もある。更に、発明者らが設計
中(未公知)の、図1に示すような、整形後の陽子線3
6の照射部120が、患者を固定する治療用ベット20
0の回りに回転可能とされた回転ガントリ100に放射
線照射部120を取り付けた場合には、該放射線照射部
を患者の回りに360°回転させて使用するので、重力
に対して落下等しないようにボーラスや最終コリメータ
を固定する必要がある。
However, when the radiation therapy apparatus is used for actual medical care, the bolus 32 may be used, for example, once every 20 minutes.
Positioning and fixing of the final collimator 34 and the final collimator 34 need to be performed quickly. Furthermore, since it is handled by a doctor or a radiologist instead of an engineer, it is necessary to handle it easily without requiring any special technique. Further, as shown in FIG. 1, the shaped proton beam 3 which is being designed by the inventors (unknown) is used.
The irradiation part 120 of 6 has a bed for treatment 20 for fixing the patient.
When the radiation irradiation unit 120 is attached to the rotating gantry 100 that is rotatable about 0, the radiation irradiation unit is used by rotating the radiation irradiation unit around the patient by 360 ° so that it does not fall against gravity. It is necessary to fix the bolus and the final collimator.

【0015】本発明は、このような要請を満足した、医
療用の陽子線治療装置に用いるのに好適な、ガントリ内
における放射線の照射野形成部材固定装置を提供するこ
とを課題とする。
It is an object of the present invention to provide a radiation irradiation field forming member fixing device in a gantry, which is suitable for use in a medical proton beam therapy device and which satisfies the above requirements.

【0016】[0016]

【課題を解決するための手段】本発明は、ガントリ内で
の放射線照射時に、照射対象の形状に合わせた照射野を
形成するための、最大深さの断面形状を調整するボーラ
ス、及び、輪郭を最終決定する最終コリメータを含む照
射野形成部材を、ガントリ内の放射線照射部の先端に固
定するための放射線の照射野形成部材固定装置におい
て、前記放射線照射部の先端に固定される、前記ボーラ
ス及び最終コリメータを前面から挿入するための溝が左
右両側に形成された、移動可能なフレームと、該フレー
ムに挿入されたボーラス及び最終コリメータを、前面か
ら押して所定位置に位置決めするためのドアと、該ドア
によって押し込まれたボーラス及び最終コリメータを、
フレーム後方で位置決めするための部材とを有すること
により、前記課題を解決したものである。
DISCLOSURE OF THE INVENTION The present invention provides a bolus for adjusting a maximum depth cross-sectional shape and a contour for forming an irradiation field in accordance with the shape of an irradiation target during irradiation of radiation in a gantry. In the radiation field forming member fixing device for fixing the irradiation field forming member including the final collimator to the tip of the radiation irradiation unit in the gantry, the bolus is fixed to the tip of the radiation irradiation unit. And, a groove for inserting the final collimator from the front surface is formed on both left and right sides , a movable frame, and a door for pressing the bolus and the final collimator inserted in the frame from the front surface to position them at a predetermined position, The bolus and final collimator pushed by the door,
By having a member for positioning at the rear of the frame, the above problem is solved.

【0017】又、前記フレームの左右の溝の断面形状を
非対称とし、前記ボーラス及び最終コリメータを、前後
逆向きには挿入できないようにしたものである。
Further, the left and right grooves of the frame are made asymmetric in cross-sectional shape so that the bolus and the final collimator cannot be inserted in the reverse direction.

【0018】又、前記最終コリメータを、放射線の照射
方向に沿って複数に分割し、前記フレーム内で積層して
使用するようにして、真鍮等の重い金属で作られている
最終コリメータの取り扱いを容易としたものである。
Further, the final collimator is divided into a plurality of parts along the irradiation direction of the radiation, and the final collimator is laminated and used in the frame to handle the final collimator made of heavy metal such as brass. It was easy.

【0019】又、前記ドアの内側に、ドア閉時に前記ボ
ーラス及び最終コリメータを完全に押し込むためのプッ
シャを設けることにより、ドアを閉じることによって、
ボーラス及び最終コリメータが完全に所定位置まで押し
込まれるようにしたものである。
Further, by providing a pusher inside the door for completely pushing the bolus and the final collimator when the door is closed, the door is closed,
The bolus and final collimator are pushed all the way into position.

【0020】又、前記フレーム内側の後端近傍に、前記
ボーラス及び最終コリメータの挿入の完了を検出するた
めのリミットスイッチを設けることにより、前記ボーラ
ス及び最終コリメータの挿入完了が電気的に確認できる
ようにしたものである。
Further, a limit switch for detecting the completion of insertion of the bolus and the final collimator is provided near the rear end of the frame so that the completion of the insertion of the bolus and the final collimator can be electrically confirmed. It is the one.

【0021】又、前記フレームの先端にタッチセンサを
設け、該タッチセンサが作動した時は、前記放射線照射
部の移動を停止できるようにして、人や物に触れた時の
安全性を向上したものである。
Further, a touch sensor is provided at the tip of the frame, and when the touch sensor is activated, the movement of the radiation irradiation section can be stopped to improve safety when touching a person or an object. It is a thing.

【0022】更に、照射野が小さい時に使用される小さ
なボーラス及び最終コリメータを、前記フレームに挿入
可能とするためのアダプタを設けて、照射対象が小さい
場合のボーラス及び最終コリメータの小型化を可能と
し、保管や取り扱いを一層容易としたものである。又、
前記アダプタのバックフレームに、前記小さなボーラス
及び最終コリメータが押し込まれた時に、その動きをリ
ミットスイッチに伝えるためのロッドを挿入したもので
ある。
Further, an adapter is provided for allowing a small bolus and a final collimator used when the irradiation field is small to be inserted into the frame, thereby enabling miniaturization of the bolus and the final collimator when the irradiation target is small. It is easier to store and handle. or,
On the back frame of the adapter, attach the small bolus
And when the final collimator is pushed in, its movement is reset.
With a rod inserted to tell the mitt switch
is there.

【0023】[0023]

【発明の実施の形態】以下図面を参照して、図1に示す
如く、陽子線36の照射部120が、治療用ベッド20
0の回りに回転可能とされた回転ガントリ100を有す
る陽子線治療装置に適用した本発明の実施形態を詳細に
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Referring to the drawings, as shown in FIG.
An embodiment of the present invention applied to a proton beam therapy device having a rotating gantry 100 rotatable about 0 will be described in detail.

【0024】図1において、150は、回転ガントリ1
00の手前に配置された準備室、160は、該準備室1
50から、6軸(x、y、z、θx、θy、θz)方向
に移動自在な状態で、ベッド200を回転ガントリ10
0内に挿入するためのベッド駆動装置である。
In FIG. 1, 150 is a rotating gantry 1.
00 is a preparation room arranged in front of 00, 160 is the preparation room 1
The bed 200 rotates the gantry 10 while being movable from 50 in the directions of 6 axes (x, y, z, θx, θy, θz).
It is a bed driving device for inserting into 0.

【0025】本実施形態における放射線照射部120の
全体は、図2に示す如く構成されている。図2におい
て、21はプロファイルモニタ、22a、22bは、第
1及び第2の散乱体、25はリングコリメータ、26は
ファインディグレーダ、28はリッジフィルタ、30は
ブロックコリメータ、32はボーラス、34は最終コリ
メータ、40はワブラー電磁石、42は投光器、44は
線量モニタ、46はモニタ用のX線管、48は線量の平
坦度モニタ、50は、患者に対する照射位置の位置合わ
せを行う際に使用されるレーザポインタ、52は、該レ
ーザポインタ50から照射されるレーザビームの方向を
変えるためのミラーユニットである。
The entire radiation irradiating section 120 in this embodiment is constructed as shown in FIG. In FIG. 2, 21 is a profile monitor, 22a and 22b are first and second scatterers, 25 is a ring collimator, 26 is a fine degrader, 28 is a ridge filter, 30 is a block collimator, 32 is a bolus, and 34 is The final collimator, 40 is a wobbler electromagnet, 42 is a projector, 44 is a dose monitor, 46 is an X-ray tube for monitoring, 48 is a dose flatness monitor, and 50 is used when aligning the irradiation position with respect to the patient. The laser pointer 52 is a mirror unit for changing the direction of the laser beam emitted from the laser pointer 50.

【0026】本発明の第1実施形態に係る照射野形成部
材固定装置70は、図3乃至図6に示す如く、前記ボー
ラス32、及び、陽子線の照射方向(図3乃至図5の上
下方向)に沿って3分割された最終コリメータ34a、
34b、34c(図7参照)を前面から挿入するための
溝73a、73bが、左右両側に形成されたフレーム7
2と、該フレーム72に挿入されたボーラス32及び最
終コリメータ34a、34b、34cを、前面から押し
て所定位置に位置決めするためのドア74と、押し込ま
れたボーラス及び最終コリメータを受け止めるバックパ
ネル76とを含んで構成され、放射線照射部120の先
端(図3乃至図6では下端)に固定されている。
The irradiation field forming member fixing device 70 according to the first embodiment of the present invention is, as shown in FIGS. 3 to 6, the irradiation direction of the bolus 32 and the proton beam (vertical direction in FIGS. 3 to 5). ) Divided into three final collimators 34a,
Frame 7 in which grooves 73a and 73b for inserting 34b and 34c (see FIG. 7) from the front surface are formed on both left and right sides.
2, a door 74 for pressing the bolus 32 and the final collimators 34a, 34b, 34c inserted into the frame 72 from the front to position them in a predetermined position, and a back panel 76 for receiving the pushed bolus and the final collimator. It is configured to include and is fixed to the tip (the lower end in FIGS. 3 to 6) of the radiation irradiation unit 120.

【0027】前記フレーム72の左右の溝73a、73
bは、ドア側から見て左右非対称とされ、ボーラス32
及び最終コリメータ34a、34b、34cが、前後逆
向きでは挿入できないようにされている。
Left and right grooves 73a, 73 of the frame 72
b is asymmetrical when viewed from the door side, and the bolus 32
Also, the final collimators 34a, 34b, 34c are arranged so that they cannot be inserted in the front-rear direction.

【0028】前記ボーラス32及び最終コリメータ34
a、34b、34cの両側面には、図7に示す如く、前
記溝73a、73bとそれぞれ係合する凸条33a、3
3bが設けられている。
The bolus 32 and the final collimator 34
As shown in FIG. 7, the ridges 33a, 3 engaging the grooves 73a, 73b, respectively, are formed on both side surfaces of the a, 34b, 34c.
3b is provided.

【0029】前記最終コリメータは、図7に示したよう
に、陽子線の照射方向(図の上下方向)に沿って3分割
され、図3乃至図5に示したように、前記フレーム72
内で積層して使用するようにされており、通常、真鍮等
の金属でできている最終コリメータの運搬やフレーム7
2への挿入作業が、容易にできるようにされている。
As shown in FIG. 7, the final collimator is divided into three along the irradiation direction of the proton beam (vertical direction in the figure), and as shown in FIGS. 3 to 5, the frame 72 is divided.
It is designed to be used by stacking inside, and is usually used for transporting the final collimator or frame 7 made of metal such as brass.
The insertion work into the 2 is made easy.

【0030】前記ボーラス32及び最終コリメータ34
a、34b、34cには、バーコード35が貼付され、
治療にあったものか、容易に確認できるようにされてい
る。
The bolus 32 and the final collimator 34
A barcode 35 is attached to a, 34b, 34c,
It is possible to easily confirm whether the treatment was suitable.

【0031】前記ドア74の内側には、図5に詳細に示
した如く、ドア閉時に前記ボーラス32及び最終コリメ
ータ34a、34b、34cを完全に押し込むためのス
プリングプランジャからなるプッシャ75が、各溝位置
に対応させて例えば2個ずつ(図3参照:ボーラス32
に対しては4個)設けられている。
Inside the door 74, as shown in detail in FIG. 5, there are pushers 75 formed of spring plungers for completely pushing the bolus 32 and the final collimators 34a, 34b, 34c when the door is closed. Corresponding to the position, for example, two each (see FIG. 3: bolus 32
4) are provided.

【0032】該ドア74の表面には、90°回してから
押し込む構造のポップハンドル78が設けられ、前記ボ
ーラスや最終コリメータの固定を一層に確実に行うよう
にされている。
On the surface of the door 74, there is provided a pop handle 78 which is rotated 90 ° and then pushed in so that the bolus and the final collimator can be fixed more reliably.

【0033】前記バックパネル76には、図5に詳細に
示した如く、前記ボーラス32及び最終コリメータ34
a、34b、34cの挿入完了を検出するためのリミッ
トスイッチ80が、各溝毎に設けられている。
The back panel 76 includes a bolus 32 and a final collimator 34, as shown in detail in FIG.
A limit switch 80 for detecting completion of insertion of a, 34b, 34c is provided for each groove.

【0034】前記フレーム72の先端(図3乃至図5で
は下端)には、例えば4本のライン状タッチセンサ82
a、82bが設けられており、該4本のタッチセンサの
いずれか一つが作動したときは、前記放射線照射部12
0の移動を停止できるようにされている。ここで、前記
タッチセンサのうち、放射線照射部18の移動方向の2
本のタッチセンサ82aは、ゴム付とされ、人間や物に
タッチした場合の安全性を高めている。
At the tip of the frame 72 (bottom end in FIGS. 3 to 5), for example, four line-shaped touch sensors 82 are provided.
a and 82b are provided, and when any one of the four touch sensors is activated, the radiation irradiation unit 12
The movement of 0 can be stopped. Here, of the touch sensors, two in the moving direction of the radiation irradiation unit 18 are used.
The touch sensor 82a of the book is provided with rubber to improve safety when touching a person or an object.

【0035】前記フレーム72は、図6に詳細に示した
如く、放射線照射部120の下面に固定された、例えば
左右2本の直動(LM)ガイド122に取り付けられ、
エアシリンダの一種であるロッドレスシリンダ124に
よって前後方向(図6の上下方向)に移動可能とされて
いる。従って、ボーラスや最終コリメータの交換時に
は、フレーム72を、矢印Aで示す如く、放射線照射部
120の前端(図6の上方)位置に引き出すことによっ
て、交換作業を容易に行えるようにされている。
As shown in detail in FIG. 6, the frame 72 is attached to, for example, two linear motion (LM) guides 122 fixed to the lower surface of the radiation irradiation section 120,
A rodless cylinder 124, which is a type of air cylinder, is movable in the front-rear direction (vertical direction in FIG. 6). Therefore, when replacing the bolus or the final collimator, the frame 72 is pulled out to the front end position (upper part in FIG. 6) of the radiation irradiating section 120, as shown by the arrow A, so that the replacement work can be easily performed.

【0036】以下、本実施形態の作用を説明する。The operation of this embodiment will be described below.

【0037】まず、ロッドレスシリンダ124を作動さ
せて、放射線照射部120の略中央の放射線照射位置か
ら、図5及び図6に矢印Aで示す如く、フレーム72を
放射線照射部前端の照射野形成部材交換位置まで、引き
出す。
First, the rodless cylinder 124 is operated to form the irradiation field at the front end of the radiation irradiating unit from the radiation irradiating position at the substantially center of the radiation irradiating unit 120, as shown by an arrow A in FIGS. 5 and 6. Pull out to the member exchange position.

【0038】次いで、ハンドル78を回してドア74を
開放し、使用されていたボーラスや最終コリメータを、
フレーム72から引き出す。
Next, the handle 78 is turned to open the door 74, and the bolus and final collimator used are
Pull out from the frame 72.

【0039】次いで、交換すべき新しいボーラスや最終
コリメータの左右の凸条33a、33bを、前記フレー
ム72の溝73a、73bに順次係合させて、挿入す
る。
Next, the new bolus to be replaced and the right and left ridges 33a and 33b of the final collimator are sequentially engaged with the grooves 73a and 73b of the frame 72 and inserted.

【0040】挿入完了後、ドア74を閉じ、ポップハン
ドル78を回転してドアを押し込む。すると、ドア74
に設けられたプッシャ75により、ボーラス32及び最
終コリメータ34a、34b、34cがフレーム72内
のバックパネル76と当る位置まで押し込まれる。
After the insertion is completed, the door 74 is closed and the pop handle 78 is rotated to push in the door. Then the door 74
The pusher 75 provided at the position pushes the bolus 32 and the final collimators 34 a, 34 b, and 34 c into a position where the bolus 32 and the final collimator 34 a come into contact with the back panel 76 in the frame 72.

【0041】前記ボーラス32及び最終コリメータ34
a、34b、34cが完全に所定位置まで押し込まれた
ことをリミットスイッチ80の出力により確認した後、
ロッドレスシリンダ124を作動させて、図5及び図6
に矢印Bで示す如く、フレーム72を放射線照射位置に
戻す。
The bolus 32 and the final collimator 34
After confirming by the output of the limit switch 80 that a, 34b, 34c have been completely pushed in to the predetermined positions,
5 and 6 by operating the rodless cylinder 124.
The frame 72 is returned to the radiation irradiation position as indicated by arrow B in FIG.

【0042】次いで、必要に応じて放射線照射部120
全体を患者の回りに回動して位置決めを行い、治療に入
る。
Next, if necessary, the radiation irradiating section 120
The whole is rotated around the patient for positioning, and treatment is started.

【0043】本実施形態においては、バックパネル76
によりボーラスや最終コリメータの位置決めを行ってい
たが、これらの位置決めを行う手段はバックパネルに限
定されず、例えばストッパ状の突起をフレーム72の後
端に設けてもよい。
In this embodiment, the back panel 76 is used.
Although the bolus and the final collimator are positioned by the above method, the means for performing these positioning is not limited to the back panel, and a stopper-shaped projection may be provided at the rear end of the frame 72, for example.

【0044】次に、本発明の第2実施形態を詳細に説明
する。
Next, the second embodiment of the present invention will be described in detail.

【0045】この第2実施形態は、図8及び9に示す如
く、患部が小さい場合に使用される小型のボーラス94
及び最終コリメータ96a、96b、96cを前記フレ
ーム72の溝73a、73bに挿入するためのアダプタ
90を備えたものである。
This second embodiment, as shown in FIGS. 8 and 9, is a small bolus 94 used when the affected area is small.
Also, an adapter 90 for inserting the final collimators 96a, 96b, 96c into the grooves 73a, 73b of the frame 72 is provided.

【0046】前記アダプタ90のサイドフレーム90s
の外側両側面には、図10及び図11に詳細に示す如
く、前記フレーム72の溝73a、73bと係合する凸
条91a、91bが備えられ、同じく内側両側面には、
小型のボーラス94及び最終コリメータ96a、96
b、96cの凸条95a、95bと係合する溝92a、
92bが形成されている。更に、前記アダプタ90のバ
ックフレーム90bには、図9に示した如く、前記小型
ボーラス94及び最終コリメータ96a、96b、96
cが押し込まれた時に、その動きをリミットスイッチ8
0に伝えるためのロッド98が挿入されている。
Side frame 90s of the adapter 90
As shown in detail in FIG. 10 and FIG. 11, on both outer side surfaces of the ridge, there are provided ridges 91a and 91b which engage with the grooves 73a and 73b of the frame 72, and on the inner both side surfaces,
Small bolus 94 and final collimators 96a, 96
grooves 92a that engage with the ridges 95a, 95b of b, 96c,
92b is formed. Further, as shown in FIG. 9, the back frame 90b of the adapter 90 includes the small bolus 94 and the final collimators 96a, 96b, 96.
When c is pushed in, the movement of the limit switch 8
The rod 98 for transmitting to 0 is inserted.

【0047】この第2実施形態によれば、治療対象が小
さく、ボーラスや最終コリメータも小型でよい場合に
は、まず、アダプタ90を前記フレーム72に挿入し、
次いで、該アダプタ90の溝92a、92bに、小型の
ボーラス94及び最終コリメータ96a、96b、96
cを挿入することによって、通常サイズの場合と同様の
作業を行うことができる。
According to the second embodiment, when the treatment target is small and the bolus and the final collimator are small, first, the adapter 90 is inserted into the frame 72,
The small bolus 94 and final collimators 96a, 96b, 96 are then placed in the grooves 92a, 92b of the adapter 90.
By inserting c, the same work as in the case of the normal size can be performed.

【0048】このような小型のボーラス94や最終コリ
メータ96a、96b、96cは、通常サイズのボーラ
ス32や最終コリメータ96a、96b、96cに比べ
て、小型軽量であるため、取り扱いが更に容易であるだ
けでなく、保管場所の確保も容易である。
Since such a small bolus 94 and final collimators 96a, 96b, 96c are smaller and lighter than the normal size bolus 32 and final collimators 96a, 96b, 96c, they are only easier to handle. In addition, it is easy to secure a storage place.

【0049】なお、前記実施形態においては、いずれ
も、最終コリメータが、陽子線の方向に3分割されてい
たが、陽子線方向への分割数はこれに限定されず、2分
割としたり、又は4分割以上とすることも可能である。
更には、従来と同様に一体であってもよい。
In each of the above embodiments, the final collimator was divided into three in the direction of the proton beam, but the number of divisions in the direction of the proton beam is not limited to this, or it may be divided into two. It is also possible to divide it into four or more.
Further, they may be integrated as in the conventional case.

【0050】又、前記実施形態においては、本発明が陽
子線治療装置に適用されていたが、本発明の適用対象は
これに限定されず、X線や電子線等の他の放射線治療装
置にも同様に適用できることは明らかである。
Further, although the present invention is applied to the proton beam treatment apparatus in the above-mentioned embodiments, the application object of the present invention is not limited to this, and it is applicable to other radiation treatment apparatuses such as X-rays and electron beams. Obviously, can be applied similarly.

【0051】[0051]

【発明の効果】本発明によれば、ガントリ内で患者毎に
頻繁に交換する必要があるボーラスや最終コリメータ
を、正確に位置決めしつつ、迅速且つ簡単に固定でき
る。従って、特に実験室段階であった陽子線癌治療装置
の実用化に資するところ大である。
According to the present invention, the bolus and the final collimator, which need to be frequently changed for each patient in the gantry, can be fixed quickly and easily while being accurately positioned. Therefore, it is a great contribution to the practical application of the proton beam cancer treatment apparatus, which was particularly in the laboratory stage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る照射野形成部材固定装置が取り付
けられた放射線照射部の回転ガントリへの取り付け状態
を示す斜視図
FIG. 1 is a perspective view showing a state in which a radiation irradiating section to which an irradiation field forming member fixing device according to the present invention is attached is attached to a rotating gantry.

【図2】同じく放射線照射部の内部構造を示す斜視図FIG. 2 is a perspective view showing the internal structure of the radiation irradiation unit.

【図3】照射野形成部材を交換するべく、本発明の第1
実施形態を、放射線照射部の前端に引き出して、ドアを
開いた状態を示す斜視図
FIG. 3 shows a first part of the present invention for replacing an irradiation field forming member.
FIG. 3 is a perspective view showing a state in which the embodiment is pulled out to the front end of the radiation irradiation unit and the door is opened.

【図4】第1実施形態のドアを閉めた状態を示す正面図FIG. 4 is a front view showing a state in which the door of the first embodiment is closed.

【図5】同じく、陽子線照射位置まで押し込んだ状態を
示す、右側面から見た断面図
FIG. 5 is a cross-sectional view seen from the right side, showing a state in which the same is pushed in to a proton beam irradiation position.

【図6】同じく底面図[Figure 6] Similarly, bottom view

【図7】同じく、ボーラス及び最終コリメータの積層状
態を示す分解斜視図
FIG. 7 is an exploded perspective view showing a laminated state of a bolus and a final collimator, similarly.

【図8】本発明の第2実施形態の要部を示す、正面から
見た断面図
FIG. 8 is a sectional view showing a main part of a second embodiment of the present invention as seen from the front.

【図9】同じく、右側面から見た断面図FIG. 9 is a sectional view of the same as seen from the right side.

【図10】第2実施形態で用いられているアダプタを示
す正面図
FIG. 10 is a front view showing an adapter used in the second embodiment.

【図11】同じく底面図FIG. 11 is a bottom view of the same.

【図12】陽子線治療の原理を示す線図FIG. 12 is a diagram showing the principle of proton beam therapy.

【図13】陽子線治療における照射野形成の原理を示す
斜視図
FIG. 13 is a perspective view showing the principle of irradiation field formation in proton beam therapy.

【符号の説明】[Explanation of symbols]

10…患者 12…腫瘍 20…陽子ビーム 32、94…ボーラス 33a、33b、95a、95b…凸条 34a、34b、34c、96a、96b、96c…最
終コリメータ 70…照射野形成部材固定装置 72…フレーム 73a、73b…溝 74…ドア 75…プッシャ 76…バックパネル 78…ポップハンドル 80…リミットスイッチ 82a、82b…タッチセンサ 90…アダプタ 90s…サイドフレーム 90b…バックフレーム 91a、91b…凸条 92a、92b…溝 120…放射線照射部
10 ... Patient 12 ... Tumor 20 ... Proton beam 32, 94 ... Bolus 33a, 33b, 95a, 95b ... Ribs 34a, 34b, 34c, 96a, 96b, 96c ... Final collimator 70 ... Irradiation field forming member fixing device 72 ... Frame 73a, 73b ... Groove 74 ... Door 75 ... Pusher 76 ... Back panel 78 ... Pop handle 80 ... Limit switch 82a, 82b ... Touch sensor 90 ... Adapter 90s ... Side frame 90b ... Back frame 91a, 91b ... Projection 92a, 92b ... Groove 120 ... Radiation irradiation unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−24111(JP,A) 特開 平8−71165(JP,A) 特開 昭64−68280(JP,A) 実開 平5−65353(JP,U) 実開 平1−93055(JP,U) (58)調査した分野(Int.Cl.7,DB名) A61N 5/00 - 5/10 ─────────────────────────────────────────────────── --- Continuation of front page (56) References JP-A-9-24111 (JP, A) JP-A 8-71165 (JP, A) JP-A 64-68280 (JP, A) 65353 (JP, U) Actual Kaihei 1-93055 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) A61N 5/00-5/10

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガントリ内での放射線照射時に、照射対象
の形状に合わせた照射野を形成するための、最大深さの
断面形状を調整するボーラス、及び、輪郭を最終決定す
る最終コリメータを含む照射野形成部材を、ガントリ内
の放射線照射部の先端に固定するための放射線の照射野
形成部材固定装置において、 前記放射線照射部の先端に固定される、前記ボーラス及
び最終コリメータを前面から挿入するための溝が左右両
側に形成された、移動可能なフレームと、 該フレームに挿入されたボーラス及び最終コリメータ
を、前面から押して所定位置に位置決めするためのドア
と、 該ドアによって押し込まれたボーラス及び最終コリメー
タを、フレーム後方で位置決めするための部材と、 を有することを特徴とする放射線の照射野形成部材固定
装置。
1. A bolus for adjusting a cross-sectional shape having a maximum depth for forming an irradiation field according to a shape of an irradiation target during irradiation of radiation in a gantry, and a final collimator for finalizing a contour. A radiation field forming member fixing device for fixing a field forming member to a tip of a radiation irradiation section in a gantry, wherein the bolus and the final collimator fixed to the tip of the radiation irradiation section are inserted from the front side. grooves for are formed on both left and right sides, and a frame movable, the inserted bolus and the final collimator to the frame, and the door for positioning at a predetermined position by pressing from the front, and bolus pushed by the door And a member for positioning the final collimator at the rear of the frame. Place
【請求項2】請求項1において、前記フレームの左右の
溝の断面形状が非対称とされ、前記ボーラス及び最終コ
リメータを、前後逆向きには挿入できないようにされて
いることを特徴とする放射線の照射野形成部材固定装
置。
2. The radiation according to claim 1, wherein the cross-sectional shapes of the left and right grooves of the frame are asymmetrical so that the bolus and the final collimator cannot be inserted in the backward and forward directions. Irradiation field forming member fixing device.
【請求項3】請求項1において、前記最終コリメータ
が、放射線の照射方向に沿って複数に分割され、前記フ
レーム内で積層して使用するようにされていることを特
徴とする放射線の照射野形成部材固定装置。
3. The radiation irradiation field according to claim 1, wherein the final collimator is divided into a plurality along the radiation irradiation direction and is used by stacking in the frame. Forming member fixing device.
【請求項4】請求項1において、前記ドアの内側に、ド
ア閉時に前記ボーラス及び最終コリメータを完全に押し
込むためのプッシャが設けられていることを特徴とする
放射線の照射野形成部材固定装置。
4. The radiation field forming member fixing device according to claim 1, wherein a pusher for completely pushing in the bolus and the final collimator when the door is closed is provided inside the door.
【請求項5】請求項1において、前記フレーム内側の後
端近傍に、前記ボーラス及び最終コリメータの挿入完了
を検出するためのリミットスイッチが設けられているこ
とを特徴とする放射線の照射野形成部材固定装置。
5. A radiation field forming member according to claim 1, wherein a limit switch for detecting the completion of insertion of the bolus and the final collimator is provided near the rear end inside the frame. Fixing device.
【請求項6】請求項1において、前記フレームの先端に
タッチセンサが設けられ、該タッチセンサが作動した時
は、前記放射線照射部の移動を停止できるようにされて
いることを特徴とする放射線の照射野形成部材固定装
置。
6. The radiation according to claim 1, wherein a touch sensor is provided at the tip of the frame, and when the touch sensor is activated, the movement of the radiation irradiation unit can be stopped. Irradiation field forming member fixing device.
【請求項7】請求項1において、更に、照射野が小さい
時に使用される小さなボーラス及び最終コリメータを、
前記フレームに挿入可能とするためのアダプタを有する
ことを特徴とする放射線の照射野形成部材固定装置。
7. The small bolus and final collimator of claim 1, further used when the field is small,
A radiation irradiation field forming member fixing device, comprising an adapter that can be inserted into the frame.
【請求項8】請求項7において、前記アダプタのバック8. The back of the adapter according to claim 7.
フレームに、前記小さなボーラス及び最終コリメータがOn the frame, the small bolus and final collimator
押し込まれた時に、その動きをリミットスイッチに伝えWhen pushed, it reports the movement to the limit switch
るためのロッドが挿入されていることを特徴とする放射Radiation characterized by the insertion of a rod for
線の照射野形成部材固定装置。Device for fixing radiation field forming members.
JP21324097A 1997-08-07 1997-08-07 Radiation field forming member fixing device Expired - Fee Related JP3532739B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21324097A JP3532739B2 (en) 1997-08-07 1997-08-07 Radiation field forming member fixing device
US09/129,838 US6080992A (en) 1997-08-07 1998-08-06 Apparatus for fixing radiation beam irradiation field forming member
BE9800589A BE1011948A3 (en) 1997-08-07 1998-08-06 Apparatus for securing a member of training field of radiation radiation beam.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21324097A JP3532739B2 (en) 1997-08-07 1997-08-07 Radiation field forming member fixing device

Publications (2)

Publication Number Publication Date
JPH1147291A JPH1147291A (en) 1999-02-23
JP3532739B2 true JP3532739B2 (en) 2004-05-31

Family

ID=16635849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21324097A Expired - Fee Related JP3532739B2 (en) 1997-08-07 1997-08-07 Radiation field forming member fixing device

Country Status (3)

Country Link
US (1) US6080992A (en)
JP (1) JP3532739B2 (en)
BE (1) BE1011948A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101426767B1 (en) * 2012-12-17 2014-08-06 연세대학교 산학협력단 Body fixing device comprising bolus

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6244507B1 (en) * 1999-06-25 2001-06-12 Canon Kabushiki Kaisha Automatic grid parameter logging for digital radiography
AU2002365607A1 (en) * 2001-12-05 2003-06-17 Board Of Regents, The University Of Texas System Fiduciary tray for an imrt collimator
JP2007175540A (en) * 2002-06-12 2007-07-12 Hitachi Ltd Particle beam radiation system and method of controlling radiation apparatus
EP3557956A1 (en) 2004-07-21 2019-10-23 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
ES2587982T3 (en) 2005-11-18 2016-10-28 Mevion Medical Systems, Inc Radiation therapy with charged particles
US7902530B1 (en) * 2006-04-06 2011-03-08 Velayudhan Sahadevan Multiple medical accelerators and a kV-CT incorporated radiation therapy device and semi-automated custom reshapeable blocks for all field synchronous image guided 3-D-conformal-intensity modulated radiation therapy
DE102008030590A1 (en) 2007-06-29 2009-01-08 Carl Zeiss Surgical Gmbh Radiotherapy device applicator for treating tumor in spinal column of patient, has base plate with base area, and guiding area connected to base plate, where diameter of guiding area is smaller or equal to diameter of base area
US8003964B2 (en) * 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8208601B2 (en) * 2008-08-13 2012-06-26 Oncology Tech Llc Integrated shaping and sculpting unit for use with intensity modulated radiation therapy (IMRT) treatment
US20110127443A1 (en) * 2009-11-12 2011-06-02 Sean Comer Integrated beam modifying assembly for use with a proton beam therapy machine
DE102009058581A1 (en) * 2009-12-17 2011-06-22 Carl Zeiss Surgical GmbH, 73447 Applicator device for radiotherapy, fastening device and radiotherapy device
EP2532385B1 (en) * 2011-06-09 2015-04-22 Ion Beam Applications S.A. Shielding device for irradiation unit
TW201438787A (en) 2012-09-28 2014-10-16 Mevion Medical Systems Inc Controlling particle therapy
TW201434508A (en) 2012-09-28 2014-09-16 Mevion Medical Systems Inc Adjusting energy of a particle beam
TW201422279A (en) 2012-09-28 2014-06-16 Mevion Medical Systems Inc Focusing a particle beam
WO2014052721A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Control system for a particle accelerator
TW201424467A (en) 2012-09-28 2014-06-16 Mevion Medical Systems Inc Controlling intensity of a particle beam
TW201424466A (en) 2012-09-28 2014-06-16 Mevion Medical Systems Inc Magnetic field regenerator
CN104813750B (en) 2012-09-28 2018-01-12 梅维昂医疗系统股份有限公司 Adjust the magnetic insert of main coil position
JP6254600B2 (en) 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド Particle accelerator
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
JP6066478B2 (en) * 2013-01-29 2017-01-25 株式会社日立製作所 Particle beam therapy system
US8952345B2 (en) * 2013-03-15 2015-02-10 .Decimal, Inc Radiation therapy apparatus with an aperture assembly and associated methods
US9789343B2 (en) * 2013-03-26 2017-10-17 Ion Beam Applications S.A. Accessory holder for particle beam apparatus
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
WO2015042509A1 (en) * 2013-09-20 2015-03-26 ProNova Solutions, LLC Systems and methods of modifying a proton beam in a proton treatment system
ES2768659T3 (en) 2013-09-27 2020-06-23 Mevion Medical Systems Inc Particle beam scanning
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
JP5976254B1 (en) * 2015-04-09 2016-08-23 三菱電機株式会社 Treatment planning device, bolus device, and particle beam treatment device
JP6587826B2 (en) * 2015-05-14 2019-10-09 株式会社日立製作所 Particle beam irradiation system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
JP6940676B2 (en) 2017-06-30 2021-09-29 メビオン・メディカル・システムズ・インコーポレーテッド Configurable collimator controlled using a linear motor
CN113811355B (en) 2019-03-08 2024-07-23 美国迈胜医疗系统有限公司 Delivering radiation through a column and generating a treatment plan therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3114043A (en) * 1960-01-28 1963-12-10 Westinghouse Electric Corp Radiation beam shaping device
US4140129A (en) * 1977-04-13 1979-02-20 Applied Radiation Corporation Beam defining system in an electron accelerator
US4221971A (en) * 1979-01-15 1980-09-09 William Burger Protective shield device
CA2014918A1 (en) * 1989-09-06 1991-03-06 James A. Mcfaul Scanning mammography system with improved skin line viewing
US5866914A (en) * 1997-01-15 1999-02-02 Northwest Medical Physics Equipment, Inc. Radiation beam shaping device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101426767B1 (en) * 2012-12-17 2014-08-06 연세대학교 산학협력단 Body fixing device comprising bolus

Also Published As

Publication number Publication date
US6080992A (en) 2000-06-27
JPH1147291A (en) 1999-02-23
BE1011948A3 (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP3532739B2 (en) Radiation field forming member fixing device
JP3685194B2 (en) Particle beam therapy device, range modulation rotation device, and method of attaching range modulation rotation device
JP4206414B2 (en) Charged particle beam extraction apparatus and charged particle beam extraction method
US7826593B2 (en) Collimator
Pedroni et al. Beam optics design of compact gantry for proton therapy
Chu et al. Instrumentation for treatment of cancer using proton and light‐ion beams
US8154001B2 (en) Ion radiation therapy system with variable beam resolution
USRE46383E1 (en) Deceleration of hadron beams in synchrotrons designed for acceleration
CN103222009B (en) Positron emitter irradiation system
WO2008106483A1 (en) Ion radiation therapy system with distal gradient tracking
US9006677B2 (en) Fan beam modulator for ion beams providing continuous intensity modulation
Futami et al. Broad-beam three-dimensional irradiation system for heavy-ion radiotherapy at HIMAC
US20120330086A1 (en) Rapid Range Stacking (RRS) for Particle Beam Therapy
Xu et al. Reshapable physical modulator for intensity modulated radiation therapy
US9656100B2 (en) Ion generating apparatus, and treating apparatus and treating method using the same
Keller et al. Experimental measurement of radiological penumbra associated with intermediate energy x‐rays and small radiosurgery field sizes
Lorin et al. Development of a compact proton scanning system in Uppsala with a moveable second magnet
Svensson et al. Beam characteristics and clinical possibilities of a new compact treatment unit design combining narrow pencil beam scanning and segmental multileaf collimation
Andreassen et al. Fast IMRT with narrow high energy scanned photon beams
Bortfeld Dose Conformation in Tumor Therapy with External Ionizing Radiation: Physical Possibilities and Limitations
Svensson et al. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions
Chiang Exploring Mevion S250i Compact Pencil Beam Scanning Proton Therapy System
Terzani et al. Luca Labate1Ε, Daniele Palla1, Daniele Panetta2, Federico Avella1, Federica Baffigi1, Fernando Brandi1, Fabio Di Martino3, Lorenzo Fulgentini1, Antonio Giulietti1, Petra Köster1
Yazici Design and development of a collimator mechanism that will be utilized in radiation therapy
Yousif Commissioning and optimization of a total skin electron therapy technique using a high rate electron facility

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees