Nothing Special   »   [go: up one dir, main page]

JP3521643B2 - Tube molding - Google Patents

Tube molding

Info

Publication number
JP3521643B2
JP3521643B2 JP24081596A JP24081596A JP3521643B2 JP 3521643 B2 JP3521643 B2 JP 3521643B2 JP 24081596 A JP24081596 A JP 24081596A JP 24081596 A JP24081596 A JP 24081596A JP 3521643 B2 JP3521643 B2 JP 3521643B2
Authority
JP
Japan
Prior art keywords
pfa
tube
vinyl ether
perfluoro
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24081596A
Other languages
Japanese (ja)
Other versions
JPH1086205A (en
Inventor
輝夫 高倉
篤 船木
直子 酒井
栄一 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17065110&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3521643(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP24081596A priority Critical patent/JP3521643B2/en
Publication of JPH1086205A publication Critical patent/JPH1086205A/en
Application granted granted Critical
Publication of JP3521643B2 publication Critical patent/JP3521643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、表面平滑性、耐ス
トレスクラック性に優れたテトラフルオロエチレン/パ
ーフルオロ(アルキルビニルエーテル)共重合体(以
下、PFAという)を溶融成形して得られるチューブに
関する。 【0002】 【従来の技術】PFAは、耐熱性、耐薬品性、耐溶剤性
等が優れ、しかも熱可塑性で容易に成形加工できる高分
子材料であることから、近年その特徴を生かしてウエハ
ーキャリアやきわめて高いクリーン度を要求される流体
移送のチューブ等の半導体製造装置の部品、容器の内面
コーティングの素材、電線被覆材等種々の用途に用いら
れている。 【0003】PFAは結晶性樹脂であり、溶融成形後の
冷却され固化する際に、PFAが再結晶することにより
溶融体内に多数の結晶核が生じ、この結晶核を中心に等
方向に結晶が生長するが、互いの結晶が境を接すること
により生長が止まり、いわゆる球晶が生成する。PFA
チューブの表面平滑性はこの球晶の大きさに依存するこ
とが知られている。 【0004】従来のPFAは、一般的に球晶が大きく成
長し、その結果として成形体の表面に多数の凹凸が発生
する。このようなPFAから成形されたチューブでは、
内周面に沿って流動する流体の流れが乱れ、このときの
輸送抵抗により流体の円滑な輸送が妨げられる。 【0005】例えば、流体の流速が遅いときには表面凹
凸部に流れの生じない箇所が発生し、超純水の場合には
該部分に流体が長く滞留することにより、バクテリア等
が発生して、流体のクリーン度が損なわれるという問題
があった。また、大きな球晶を生じたチューブはストレ
スクラックを生じやすく耐久性が低下するという問題も
あった。 【0006】球晶の大きさは溶融成形後の冷却速度に依
存することが知られており、急冷するほど微細な球晶が
生成する。しかし、成形方法によっては急冷が不可能な
場合がある。例えば、押出成形法により厚肉チューブを
得る場合、押出されたチューブを外面から冷却するとチ
ューブ内面は急冷されないため、大きな球晶が生成しチ
ューブ内面の平滑性が劣るという問題がある。 【0007】パーフルオロ(アルキルビニルエーテル)
に基づく重合単位が1.0〜3.0モル%であるPFA
にパーフルオロ(アルキルビニルエーテル)に基づく重
合単位が0.5モル%と少ないPFAを添加することが
特開平8−41267に提案されている。 【0008】また、パーフルオロ(アルキルビニルエー
テル)に基づく重合単位が1〜10重量%であるPFA
に低分子量のテトラフルオロエチレン重合体(以下、P
TFEという)を添加することが特開平7−70394
に提案されている。 【0009】添加することにより結晶化特性を改良し、
微細な結晶を得る方法は、添加物が結晶核となり、この
結晶核が多数存在するために結晶が大きく成長する前に
隣接の結晶と接するために生長が止まり、球晶サイズが
小さくなると考えられる。 【0010】しかし、この方法はPFAと添加物を混練
する操作条件により効果が変化し、混練が弱すぎると混
合性が悪くチューブに成形した場合に添加物が塊となっ
て、いわゆるフィッシュアイとなる。また混練が強すぎ
るとPFAと添加物が均一に混合し、添加物が結晶核の
役割をし得なくなり球晶サイズを小さくする効果が著し
く低下する。 【0011】 【発明が解決しようとする課題】本発明は、添加物を使
用せず球晶サイズの小さい結晶化特性を有し、表面平滑
性、耐ストレスクラック性に優れたPFAのチューブを
提供する。 【0012】 【課題を解決するための手段】本発明は、テトラフルオ
ロエチレン(以下、TFEという)とパーフルオロ(ア
ルキルビニルエーテル)[ただし、パーフルオロアルキ
ル基の炭素数は1〜7]との共重合体で、パーフルオロ
(アルキルビニルエーテル)に基づく重合単位の含有量
が2.5〜10モル%であり、容量流速が0.5〜10
0mm3 /秒である共重合体を成形して得られるチュー
ブを提供する。 【0013】 【発明の実施の形態】本発明において、PFAの容量流
速は0.5〜100mm3 /秒である。ただし、容量流
速は、高化式フローテスターを使用して、温度380
℃、荷重7kgで、直径2.1mm、長さ8mmのノズ
ルからPFAを溶融流出させ、単位時間に流出するPF
Aの容量である。 【0014】容量流速が小さすぎるとPFAの成形加工
性が充分でなく、また大きすぎるとPFAの強度が低下
する。より好ましいPFAの容量流速は、1〜50mm
3 /秒である。 【0015】PFAの容量流速は分子量が小さいと大き
くなることから、PFAの分子量を制御することにより
容量流速を調整できる。具体的には、TFEとパーフル
オロ(アルキルビニルエーテル)との共重合において、
分子量調節剤、例えばメチルアルコールなどのアルコー
ル類、n−ヘプタンなどの炭化水素類の添加量を変える
ことにより、PFAの容量流速を目標値にすることがで
きる。 【0016】パーフルオロ(アルキルビニルエーテル)
は、一般式CF2 =CFO(CF2n CF3 で表さ
れ、PFAの高温での機械的強度の点から、nは0〜6
であることが好ましい。nが2であるパーフルオロ(プ
ロピルビニルエーテル)が特に好ましい。 【0017】PFA中のパーフルオロ(アルキルビニル
エーテル)に基づく重合単位の含有量は2.5〜10モ
ル%である。2.5モル%未満では球晶サイズが大きく
表面平滑性が得られない。また、10モル%超ではPF
Aの融点が低下して、高温での物性が低下する。特に、
3〜5モル%であることが好ましい。 【0018】本発明におけるPFAに添加物を加えるこ
とができる。加える添加物としては、パーフルオロ(プ
ロピルビニルエーテル)に基づく重合単位が1.3〜
2.0モル%、容量流速が1.0〜15mm3 /秒であ
る通常市販されているPFA、TFE−ヘキサフルオロ
プロピレン共重合体、TFE系重合体、その他のフッ素
樹脂、熱可塑性樹脂、無機物あるいは有機物の充填剤な
どが挙げられる。これらの添加物を配合した組成物中の
本発明におけるPFAの含有量は50重量%以上である
ことが好ましい。 【0019】本発明におけるPFAを単軸または2軸押
出機により溶融成形して、内面粗度0.1μm以下の押
出成形チューブが得られる。また、本発明におけるPF
Aは、比較的遅い冷却速度でも微細な球晶を生成しやす
い結晶化特性を有するので、押出成形法により厚肉チュ
ーブを成形する場合にも、内面平滑性に優れたチューブ
が円滑有利に得られる。 【0020】PFAに上記の添加物を配合した組成物に
ついても同様に押出成形してチューブを得ることができ
る。 【0021】本発明において、内面粗度、および融点の
測定法は、以下のとおりである。 【0022】内面粗度:単軸押出機を用いて、組成物の
試料を380℃で内径8mm、外径10mmのチューブ
に押出成形し、続いてチューブの外側から水冷して試験
チューブを作成する。試験チューブの内面粗度を粗さ計
(小坂研究所製、商品名:サーフコーダSE−30H)
にて測定する。 【0023】融点:走査型示差熱量計(DSC)により
10℃/分で昇温したときの発熱ピークを求め、そのと
きの温度を融点とする。 【0024】 【実施例】 [実施例1]10リットルのオートクレーブを脱気し、
水470重量部、メタノール20重量部、トリクロロト
リフルオロエチレン292重量部、パーフルオロ(n−
プロピルビニルエーテル)72重量部、TFE80重量
部を仕込み、50℃に保持して、重合開始剤としてジ
(パーフルオロブチリル)パーオキシドの1%トリクロ
ロトリフルオロエチレン溶液を5重量部添加し、反応を
開始させた。 【0025】反応圧力を13.5kg/cm2 に保持
し、反応中に消費されたTFEに見合う量のTFEを反
応器に連続的に導入した。TFE120重量部を導入し
た時点で反応を止め、125重量部のポリマーを得た。
このポリマーの融点は275℃、容量流速は1.5mm
3 /秒、パーフルオロ(n−プロピルビニルエーテル)
に基づく重合単位の含有量は3.2モル%であった。こ
のポリマーを単軸の押出機で、シリンダの3区部(C
1、C2、C3)およびダイ部Hの温度C1/C2/C
3/H=300℃/350℃/380℃/380℃、フ
ィード量20kg/時間、スクリュ回転数50rpmの
条件でペレットを得た。 【0026】このペレットを単軸の押出成形機でシリン
ダ温度C1/C2/C3/H=300℃/350℃/3
80℃/380℃、フィード量20kg/時間、スクリ
ュ回転数50rpmの条件で成形したチューブ(内径8
mm、外径10mm)の内面粗度は0.06μmであっ
た。 【0027】[比較例]融点が305℃、容量流速が
1.5mm3 /秒、パーフルオロ(n−プロピルビニル
エーテル)に基づく重合単位の含有量が1.3モル%の
ポリマーを実施例1と同様の方法でチューブを成形し
た。内面粗度は0.22μmであった。 【0028】 【発明の効果】パーフルオロ(アルキルビニルエーテ
ル)に基づく重合単位の含有量が2.5〜10モル%
で、容量流速が0.5〜100mm3 /秒のPFAは、
球晶サイズの小さい結晶化特性を有し、成形加工性、機
械的強度に優れ、また、比較的遅い冷却速度でも微細な
球晶を生成しやすい結晶化特性を有する。このPFAを
溶融押出成形して得られるチューブは、内面平滑性に優
れ、また、内面平滑性に優れた厚肉チューブが円滑有利
に得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA) having excellent surface smoothness and stress crack resistance. ) Is a tube obtained by melt molding. 2. Description of the Related Art PFA is a polymer material which is excellent in heat resistance, chemical resistance, solvent resistance, etc., and is thermoplastic and can be easily formed and processed. It is used for various purposes such as parts for semiconductor manufacturing equipment such as tubes for fluid transfer requiring extremely high cleanliness, materials for coating the inner surface of containers, and materials for covering electric wires. [0003] PFA is a crystalline resin, and when cooled and solidified after melt molding, PFA is recrystallized to generate a large number of crystal nuclei in the melt, and crystals are formed in the same direction around the crystal nuclei. Although they grow, the growth stops when the crystals come into contact with each other, and so-called spherulites are generated. PFA
It is known that the surface smoothness of the tube depends on the size of the spherulite. In conventional PFA, spherulites generally grow large, and as a result, a large number of irregularities are generated on the surface of a molded body. In a tube molded from such PFA,
The flow of the fluid flowing along the inner peripheral surface is disturbed, and the transport resistance at this time prevents smooth transport of the fluid. For example, when the flow velocity of the fluid is low, a portion where the flow does not occur is generated in the uneven portion of the surface. In the case of ultrapure water, the fluid stays in the portion for a long time, and bacteria and the like are generated. There is a problem that the degree of cleanliness is impaired. In addition, there is a problem that a tube having a large spherulite easily causes stress cracks and decreases durability. It is known that the size of spherulites depends on the cooling rate after melt molding, and the more rapid cooling, the more fine spherulites are formed. However, rapid cooling may not be possible depending on the molding method. For example, when a thick-walled tube is obtained by an extrusion molding method, there is a problem that when the extruded tube is cooled from the outer surface, the inner surface of the tube is not rapidly cooled, so that large spherulites are generated and the inner surface of the tube is inferior in smoothness. [0007] Perfluoro (alkyl vinyl ether)
Having a polymerization unit of 1.0 to 3.0 mol% based on
JP-A-8-41267 proposes to add PFA containing as little as 0.5 mol% of polymer units based on perfluoro (alkyl vinyl ether). PFA containing 1 to 10% by weight of polymerized units based on perfluoro (alkyl vinyl ether)
Is a low molecular weight tetrafluoroethylene polymer (hereinafter referred to as P
TFE) is disclosed in JP-A-7-70394.
Has been proposed. The crystallization characteristics are improved by adding
In the method of obtaining fine crystals, it is considered that the additive becomes a crystal nucleus, and because the crystal nucleus is present in large numbers, the crystal stops growing because it comes into contact with an adjacent crystal before the crystal grows large, and the spherulite size decreases. . However, the effect of this method varies depending on the operation conditions for kneading the PFA and the additive, and if the kneading is too weak, the mixing property is poor and the additive becomes a lump when molded into a tube, so-called fish eye. Become. On the other hand, if the kneading is too strong, the PFA and the additive are uniformly mixed, and the additive cannot serve as a crystal nucleus. SUMMARY OF THE INVENTION The present invention provides a PFA tube which does not use any additives, has a small spherulite size, has excellent crystallization characteristics, and is excellent in surface smoothness and stress crack resistance. I do. SUMMARY OF THE INVENTION The present invention relates to a copolymer of tetrafluoroethylene (hereinafter referred to as TFE) and perfluoro (alkyl vinyl ether) [where the perfluoroalkyl group has 1 to 7 carbon atoms]. The polymer has a content of polymerized units based on perfluoro (alkyl vinyl ether) of 2.5 to 10 mol% and a volume flow rate of 0.5 to 10%.
A tube obtained by molding a copolymer having a diameter of 0 mm 3 / sec is provided. DETAILED DESCRIPTION OF THE INVENTION In the present invention, the volume flow rate of PFA is 0.5 to 100 mm 3 / sec. However, the volume flow rate was adjusted to 380 using a Koka type flow tester.
PF melted and discharged from a nozzle with a diameter of 2.1 mm and a length of 8 mm under a load of 7 kg under a temperature of 7 ° C.
A is the capacity of A. If the volume flow rate is too small, the molding processability of PFA is not sufficient, and if it is too large, the strength of PFA decreases. A more preferred volumetric flow rate of PFA is 1 to 50 mm
3 / sec. Since the volumetric flow rate of PFA increases when the molecular weight is small, the volumetric flow rate can be adjusted by controlling the molecular weight of PFA. Specifically, in the copolymerization of TFE and perfluoro (alkyl vinyl ether),
The volumetric flow rate of PFA can be set to a target value by changing the amount of a molecular weight regulator, for example, alcohols such as methyl alcohol, and hydrocarbons such as n-heptane. [0016] Perfluoro (alkyl vinyl ether)
Is represented by the general formula CF 2 CFCFO (CF 2 ) n CF 3 , and n is from 0 to 6 in view of the mechanical strength of PFA at a high temperature.
It is preferable that Perfluoro (propyl vinyl ether) wherein n is 2 is particularly preferred. The content of polymerized units based on perfluoro (alkyl vinyl ether) in PFA is 2.5 to 10 mol%. If it is less than 2.5 mol%, the spherulite size is large and surface smoothness cannot be obtained. If it exceeds 10 mol%, PF
The melting point of A decreases, and the physical properties at high temperatures decrease. In particular,
It is preferably 3 to 5 mol%. Additives can be added to the PFA of the present invention. As an additive to be added, a polymerized unit based on perfluoro (propyl vinyl ether) is 1.3 to 1.3.
PFA, TFE-hexafluoropropylene copolymer, TFE-based polymer, other fluororesins, thermoplastic resins, inorganic materials which are usually commercially available and have a 2.0 mol% and a volume flow rate of 1.0 to 15 mm 3 / sec. Alternatively, an organic filler may be used. The content of PFA in the present invention in the composition containing these additives is preferably 50% by weight or more. The PFA of the present invention is melt-molded by a single-screw or twin-screw extruder to obtain an extruded tube having an inner surface roughness of 0.1 μm or less. Further, the PF in the present invention
A has a crystallization characteristic that easily forms fine spherulites even at a relatively slow cooling rate, so that even when forming a thick-walled tube by an extrusion method, a tube having excellent inner surface smoothness can be obtained smoothly and advantageously. Can be The composition obtained by blending the above additives with PFA can be similarly extruded to obtain a tube. In the present invention, the methods for measuring the inner surface roughness and the melting point are as follows. Inner surface roughness: Using a single screw extruder, a sample of the composition is extruded at 380 ° C. into a tube having an inner diameter of 8 mm and an outer diameter of 10 mm, and then water-cooled from the outside of the tube to prepare a test tube. . Roughness tester (manufactured by Kosaka Laboratory, trade name: Surfcoder SE-30H)
Measure with. Melting point: The exothermic peak when the temperature is raised at 10 ° C./min is determined by a scanning differential calorimeter (DSC), and the temperature at that time is defined as the melting point. Example 1 A 10 liter autoclave was degassed,
470 parts by weight of water, 20 parts by weight of methanol, 292 parts by weight of trichlorotrifluoroethylene, perfluoro (n-
Propyl vinyl ether) and 80 parts by weight of TFE were charged and maintained at 50 ° C., and 5 parts by weight of a 1% solution of di (perfluorobutyryl) peroxide in trichlorotrifluoroethylene as a polymerization initiator was added to start the reaction. I let it. While maintaining the reaction pressure at 13.5 kg / cm 2 , an amount of TFE corresponding to the TFE consumed during the reaction was continuously introduced into the reactor. When 120 parts by weight of TFE were introduced, the reaction was stopped to obtain 125 parts by weight of a polymer.
The melting point of this polymer is 275 ° C. and the volume flow rate is 1.5 mm
3 / sec, perfluoro (n-propyl vinyl ether)
Was 3.2 mol% based on the polymerized units. This polymer was extruded by a single screw extruder into three sections (C
1, C2, C3) and temperature C1 / C2 / C of die part H
3 / H = 300 ° C./350° C./380° C./380° C., pellets were obtained under the conditions of a feed rate of 20 kg / hour and a screw rotation speed of 50 rpm. The pellets were subjected to cylinder temperature C1 / C2 / C3 / H = 300 ° C./350° C./3 using a single screw extruder.
A tube molded under the conditions of 80 ° C./380° C., feed rate 20 kg / hour, screw rotation speed 50 rpm (inner diameter 8
mm, outer diameter 10 mm) was 0.06 μm. Comparative Example A polymer having a melting point of 305 ° C., a volume flow rate of 1.5 mm 3 / sec and a content of polymerized units based on perfluoro (n-propylvinyl ether) of 1.3 mol% was obtained in the same manner as in Example 1. A tube was formed in the same manner. The inner surface roughness was 0.22 μm. According to the present invention, the content of the polymerized unit based on perfluoro (alkyl vinyl ether) is 2.5 to 10 mol%.
The PFA having a volume flow rate of 0.5 to 100 mm 3 / sec is
It has crystallization characteristics with a small spherulite size, is excellent in moldability and mechanical strength, and has crystallization characteristics that easily produce fine spherulites even at a relatively slow cooling rate. The tube obtained by melt-extrusion of this PFA is excellent in inner surface smoothness, and a thick tube excellent in inner surface smoothness can be obtained smoothly and advantageously.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−41267(JP,A) 特開 平6−143389(JP,A) 特開 平6−345824(JP,A) 特開 平6−340718(JP,A) 特開 平7−70394(JP,A) 特開 平6−340719(JP,A) 特開 平7−292200(JP,A) 特開 平7−70397(JP,A) 特開 平3−42223(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08F 214/00 - 214/28 B29C 47/00 - 47/96 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-8-41267 (JP, A) JP-A-6-143389 (JP, A) JP-A-6-345824 (JP, A) JP-A-6-345824 340718 (JP, A) JP-A-7-70394 (JP, A) JP-A-6-340719 (JP, A) JP-A-7-292200 (JP, A) JP-A-7-70397 (JP, A) JP-A-3-42223 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08F 214/00-214/28 B29C 47/00-47/96

Claims (1)

(57)【特許請求の範囲】 【請求項1】テトラフルオロエチレンとパーフルオロ
(アルキルビニルエーテル)[ただし、パーフルオロア
ルキル基の炭素数は1〜7]との共重合体で、パーフル
オロ(アルキルビニルエーテル)に基づく重合単位の含
有量が2.5〜10モル%であり、容量流速が0.5〜
100mm3 /秒である共重合体を成形して得られるチ
ューブ。ただし、容量流速は、高化式フローテスターを
使用して、温度380℃、荷重7kgで、直径2.1m
m、長さ8mmのノズルから共重合体を溶融流出させ、
単位時間(秒)に流出する共重合体の容量(mm3 )で
ある。
(57) [Claims 1] A copolymer of tetrafluoroethylene and perfluoro (alkyl vinyl ether) [provided that the number of carbon atoms of the perfluoroalkyl group is 1 to 7]. The content of the polymerized unit based on vinyl ether) is 2.5 to 10 mol%, and the volume flow rate is 0.5 to 10 mol%.
A tube obtained by molding a copolymer having a thickness of 100 mm 3 / sec. However, the volume flow rate was 2.1 m in diameter at a temperature of 380 ° C. under a load of 7 kg using a Koka type flow tester.
m, the copolymer is melted and discharged from a nozzle having a length of 8 mm,
It is the volume (mm 3 ) of the copolymer flowing out per unit time (second).
JP24081596A 1996-09-11 1996-09-11 Tube molding Expired - Lifetime JP3521643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24081596A JP3521643B2 (en) 1996-09-11 1996-09-11 Tube molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24081596A JP3521643B2 (en) 1996-09-11 1996-09-11 Tube molding

Publications (2)

Publication Number Publication Date
JPH1086205A JPH1086205A (en) 1998-04-07
JP3521643B2 true JP3521643B2 (en) 2004-04-19

Family

ID=17065110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24081596A Expired - Lifetime JP3521643B2 (en) 1996-09-11 1996-09-11 Tube molding

Country Status (1)

Country Link
JP (1) JP3521643B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062999A1 (en) * 1998-05-29 1999-12-09 Daikin Industries, Ltd. Spherulite-micronizing agent for crystalline fluororesin and crystalline fluororesin composition containing the micronizing agent
JP4834966B2 (en) * 2004-07-02 2011-12-14 旭硝子株式会社 Tetrafluoroethylene copolymer
JP4868272B2 (en) * 2004-08-30 2012-02-01 旭硝子株式会社 Heat resistant wire
JP2013071341A (en) 2011-09-28 2013-04-22 Du Pont Mitsui Fluorochem Co Ltd Fluororesin molded article
EP4019820A4 (en) * 2019-08-21 2024-01-03 Daikin Industries, Ltd. Tube, method for producing tube and method for storing tube

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698663B2 (en) * 1989-07-10 1994-12-07 旭硝子株式会社 Polytetrafluoroethylene resin molding method
JP3529396B2 (en) * 1992-10-30 2004-05-24 株式会社フジクラ Method for manufacturing fluororesin tube
JPH06340718A (en) * 1993-05-28 1994-12-13 Asahi Glass Co Ltd Production of fluorine-containing copolymer
JP3283338B2 (en) * 1993-05-28 2002-05-20 旭硝子株式会社 Method for producing tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer
JP3048292B2 (en) * 1993-06-11 2000-06-05 株式会社トクヤマ Method for producing fluorine-containing copolymer
JP3559062B2 (en) * 1993-06-30 2004-08-25 三井・デュポンフロロケミカル株式会社 Tetrafluoroethylene / fluoroalkoxytrifluoroethylene copolymer composition
JP3419038B2 (en) * 1993-09-07 2003-06-23 住友化学工業株式会社 Thermoplastic resin composition
JP3513556B2 (en) * 1994-03-03 2004-03-31 三井・デュポンフロロケミカル株式会社 Molded product for liquid transfer
JPH0841267A (en) * 1994-07-29 1996-02-13 Asahi Glass Co Ltd Tetrafluoroethylene/perfluoro(alkylvinylether) copolymer composition

Also Published As

Publication number Publication date
JPH1086205A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
JP3559062B2 (en) Tetrafluoroethylene / fluoroalkoxytrifluoroethylene copolymer composition
US6048939A (en) Process aid for melt processible polymers
EP1053284B1 (en) Mixtures of thermoplastic fluoropolymers
JPH027963B2 (en)
EP1803749B1 (en) Polyvinylidene fluoride resin powder for melt molding and process for producing molding from the resin powder
WO2003040232A1 (en) Process aid for melt processable polymers
WO1999062999A1 (en) Spherulite-micronizing agent for crystalline fluororesin and crystalline fluororesin composition containing the micronizing agent
JP4436753B2 (en) Extrudable thermoplastic composition
CA2426257A1 (en) Fluoropolymer blends
JP3521643B2 (en) Tube molding
CN114381078A (en) Processing aid for thermoplastic polymer and melt-processable composition containing same
JPH08239537A (en) Thermoplastic fluorine-based resin composition and molding produced therefrom
JP3458601B2 (en) Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer composition
JPH0841267A (en) Tetrafluoroethylene/perfluoro(alkylvinylether) copolymer composition
JP3480070B2 (en) Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, process for producing the same, and molded product thereof
JP2017119741A (en) Resin and film
JPH09316266A (en) Tetrafluoroethylene/perfluoro(alkyl vinyl ether) copolymer composition
JPH03505346A (en) Polymer formulation containing an extrusion processing aid consisting of a fluorocarbon elastomer and vinylidene fluoride
JPH0873689A (en) Production of perfluorocopolymer composition
WO2006015026A1 (en) Process aid for melt processable polymers that contain hindered amine light stabilizer
JP4876395B2 (en) Fluororesin composition, fluororesin composition manufacturing method, semiconductor manufacturing apparatus, and covered electric wire
JP5356048B2 (en) Thermoplastic halogenated polymer composition, process for its preparation and use thereof
JP2003119335A (en) Polymer composition for electric wire coating
JP3724257B2 (en) Polymer composition and molded body thereof
JP2000212365A (en) Fluorine-containing copolymer composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040202

RVTR Cancellation due to determination of trial for invalidation
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4