【0001】
【産業上の利用分野】
この発明はJIS−SUS630等のマルテンサイト系析出硬化型ステンレス鋼の高強度ボルト、及びねじの加工方法に関するものである。
【0002】
【従来の技術】
マルテンサイト系析出硬化型ステンレス鋼はマルテンサイト組織から微細な金属間化合物を析出させることにより高強度化を可能にした合金である。例えばこの種の代表的なJIS−SUS630は室温の状態で加工性の悪いマルテンサイト組織を有しているため、熱間加工あるいは切削加工でしか成形することができない。例えばこれを冷間鍛造した場合、ボルトのような単純な形状品で、しかも適切な金型材料を選定すれば荷重的には可能な範囲であるが、変形能が低いため割れが発生してしまう。
【0003】
また通常の溶体化処理をした後に時効硬化処理を行った場合の硬さは、JIS−H900処理で最大450Hv程度であり強度的には満足できるレベルではない。しかもこの状態でボルトやねじとして使用する場合、延性や遅れ破壊特性が低いため、実際の使用には信頼性に欠ける。従って現在のところマルテンサイト系析出硬化型ステンレス鋼で、冷間における変形能が高く、時効硬化処理後の強度、靭性、遅れ破壊特性に優れた高強度ボルト、ねじを製造する方法はない。
【0004】
【発明が解決しようとする課題】
本発明は、冷間鍛造が可能で、しかも強度、靭性、遅れ破壊特性に優れたマルテンサイト系析出硬化型ステンレス鋼の高強ボルト、及び高強度ねじの製造を可能にする加工方法を提案するものである。
【0005】
【課題を解決するための手段】
マルテンサイト系析出硬化型ステンレス鋼の溶体化処理後の組織は変形能に乏しいマルテンサイトである。またこの種の合金を通常の熱処理である溶体化処理と時効硬化処理によって得られる性質は、JIS−H900処理で硬さが450HV、引張り強さが140kgf/mm2程度が限界で、しかも靭性、遅れ破壊特性において必ずしも十分な満足できるものとはいえない。
【0006】
本発明は、マルテンサイト系析出硬化型ステンレス鋼を一旦750℃以上に加熱した後、冷却し200℃以上、700℃以下で塑性加工を施した後、さらに室温まで冷却させマルテンサイト変態させて作られた線材、あるいは棒材を冷間鍛造によりボルト、あるいはねじに成形し、その後390℃以上、550℃以下の温度範囲で時効硬化処理を行うことによって、冷間鍛造可能で、しかも時効硬化処理後の強度、硬さ、靭性、遅れ破壊特性が優れた高強度ボルト、及び高強度ねじの製造を可能とするものである。
【0007】
表1はJIS−SUS630の室温における限界圧縮率を示したものである。因みに、Aは1050℃×30分/油冷した後、機械加工により所定の寸法にしたもので、Bは1050℃に加熱した後直ちに500℃に空冷し、前方押しだしにより減面率60%の塑性加工を行った後に再び室温まで空冷したものを機械加工によって所定のにしたものである。
【0008】
表1の結果では通常の溶体化処理材では限界圧縮率は70%しかないが、本発明により製造された棒材の限界圧縮率は75%であり、明らかに室温における変形能は高くなっていることが確認できる。
【0009】
【表1】
【0010】
この結果は、炭素量が0.1wt%未満の合金を加工熱処理であるオースフォーミングした場合に得られる、組織の微細化と変形能の増加を利用したものである。つまり従来のオースフォーミングの認識では、炭素量が比較的高い合金を対象とし、しかも強度上昇や靭性の改善に関する研究しかなされておらず、このような炭素量の低い合金でしかもオースフォーミング後の鍛造性について言及した報告はない。
【0011】
従ってオースフォーミングを利用して製造された線材、あるいは棒材の冷間における変形能は、通常工程である溶体化処理によって納入するような製造方法と比較して高くなる。
【0012】
図1は時効硬化処理を370℃から550℃の範囲で行ったときの硬さを示す。因みにA1は溶体化処理(1050℃×30分/油冷)したもの、A2はA1を冷間鍛造(70%圧縮)したもの、B1は1050℃に加熱した後直ちに500℃に空冷し、前方押しだしにより減面率60%の塑性加工を行ったもの、B2はB1のものを冷間鍛造(70%圧縮)したものである。
【0013】
図1の結果より冷間加工を加えることにより時効後に得られる硬さは大幅に上昇する。しかも本発明により製造された棒材であるB2の硬さの方が、従来の方法によって製造された棒材であるA2よりも高くなることが確認でいる。
【0014】
これは組織が微細であるため十分な加工硬化が得られるためであり、従って高強度なボルト、及びねじが得られることになる。
【0015】
図2に390℃から550℃で時効硬化処理を施したシャルピー衝撃値を示す。因みにA1、A2、B1、B2の記号は図2と同条件のものである。
【0016】
図2の結果より、B1、B2の衝撃値はA1、A2のものよりも大幅に高く、このような高強度ステンレス鋼としては十分な靭性を有している。
【0017】
図3に遅れ破壊試験の結果を示す。因みに試験方法は、試験片にノッチを設け、この部分に0.1Nの塩酸を滴下する片持ち曲げ式の加速試験法である。またA1、A2、B1、B2の記号は図1、2と同条件のものである。
【0018】
図3の結果よりB1、B2の遅れ破壊特性はA1、A2のものよりも優れており、しかもボルトとして使用可能の基準となる、(破断曲げ応力/静曲げ応力)が0.7の時、破断時間が30時間以上という条件を十分にクリアしており、高強度ボルト、ねじとしての使用が可能となる。
【0019】
以上の結果にみられるように本発明によって室温における変形能、時効硬化処理後の硬さ、靭性、遅れ破壊特性に優れた性質を得ることが可能である。
【実施例】
【0020】
次に本発明を明確にすべく、以下にその実施例を詳述する。
JIS−SUS630を図4に示す工程でドリルねじの製造を行った。
【0021】
鍛造用のスラグは、1050℃に加熱した後直ちに500℃に空冷し、前方押しだしにより減面率60%の塑性加工を行った後に再び室温まで空冷したものを機械加工によって作成した。
【0022】
ドリルねじ製造した結果、頭部、ねじ部、ねじ先部のいずれにおいても割れは認められなかった。またこのドリルねじを時効硬化処理した後の硬さ分布を図5に示す。
【0023】
図5の結果より硬さの要求されるねじ先部、ねじ部の硬さか540HVで靭性の要求される中心部は490HV程度で硬さは抑えられている。
【0024】
これらの結果から、本発明により冷間鍛造が可能で、しかも硬さ、靭性、遅れ破壊特性の優れたマルテンサイト系析出硬化型ステンレス鋼の高強度ボルト、及び高強度ねじの製造が可能となる。
【0025】
以上本発明の実施例を詳述したがこれはあくまで一例であり、本発明はその主旨を逸脱しない範囲において、当業者の知識に基づき様々な変更を加えた態様で実施可能である。
【発明の効果】
以上に記述したように冷間鍛造によりボルト、及びねじの成形が可能となる。また鍛造後に溶体化処理をせずに、直接時効硬化処理を行うことによって硬さ、靭性、遅れ破壊特性の優れた高強度ボルト、高強度ねじが得られる。
【図面の簡単な説明】
【図1】JIS−SUS630の時効硬化処理温度と硬さの関係を示したものである。
【図2】JIS−SUS630の時効硬化処理温度とシャルピー衝撃値の関係を示したものである。
【図3】JIS−SUS630の遅れ破壊特性を示したものである。
【図4】実施例としてJIS−SUS630のドリルねじを製造した際の工程図を示すものである。
【図5】ドリルねじの時効硬化処理後の硬さ分布を示したものである。[0001]
[Industrial applications]
The present invention relates to a high-strength bolt of martensitic precipitation hardening stainless steel such as JIS-SUS630 or the like and a method of processing a screw.
[0002]
[Prior art]
Martensitic precipitation-hardening stainless steel is an alloy that enables high strength by precipitating fine intermetallic compounds from a martensite structure. For example, typical JIS-SUS630 of this type has a martensite structure with poor workability at room temperature, and can be formed only by hot working or cutting. For example, when this is cold forged, if it is a simple shaped product such as a bolt, and if the appropriate mold material is selected, it is within the range of load possible, but cracking occurs due to low deformability I will.
[0003]
Further, the hardness when the age hardening treatment is performed after the normal solution treatment is about 450 Hv at the maximum in the JIS-H900 treatment, which is not a satisfactory level in strength. In addition, when used as a bolt or screw in this state, the ductility and delayed fracture characteristics are low, and therefore, reliability is lacking in actual use. Therefore, at present, there is no method for producing high-strength bolts and screws which are martensitic precipitation-hardening stainless steels, have high cold deformability, and have excellent strength, toughness and delayed fracture characteristics after age hardening.
[0004]
[Problems to be solved by the invention]
The present invention proposes a processing method that enables the production of high-strength bolts and high-strength screws of martensitic precipitation-hardening stainless steel that can be cold forged and have excellent strength, toughness, and delayed fracture characteristics. It is.
[0005]
[Means for Solving the Problems]
The structure of the martensitic precipitation hardening stainless steel after solution treatment is martensite with poor deformability. The properties obtained by the solution treatment and age hardening treatment of this type of alloy is a typical heat treatment, JIS-H900 hardness in process 450 HV, tensile strength at a limit of about 140 kgf / mm 2, yet toughness, The delayed fracture characteristics are not always satisfactory.
[0006]
In the present invention, a martensitic precipitation hardening stainless steel is heated to 750 ° C. or higher, then cooled, subjected to plastic working at 200 ° C. to 700 ° C., and further cooled to room temperature to transform to martensite. The forged wire or rod is formed into bolts or screws by cold forging, and then subjected to age hardening at a temperature in the range of 390 ° C or more and 550 ° C or less, so that cold forging is possible and age hardening is possible. This makes it possible to manufacture high-strength bolts and high-strength screws having excellent strength, hardness, toughness, and delayed fracture characteristics afterwards.
[0007]
Table 1 shows the limit compression ratio of JIS-SUS630 at room temperature. Incidentally, A was obtained by cooling at 1050 ° C. × 30 minutes / oil and then to a predetermined size by machining, and B was heated to 1050 ° C., immediately cooled by air to 500 ° C., and extruded forward to achieve a surface reduction of 60%. After the plastic working, it is air-cooled again to room temperature, and is machined to a predetermined value.
[0008]
According to the results shown in Table 1, the critical compressibility of the ordinary solution-treated material is only 70%, but the critical compressibility of the bar manufactured according to the present invention is 75%, and the deformability at room temperature is clearly high. Can be confirmed.
[0009]
[Table 1]
[0010]
This result utilizes the refinement of the structure and the increase in the deformability obtained when an alloy having a carbon content of less than 0.1 wt% is subjected to ausforming as a working heat treatment. In other words, in the conventional recognition of ausforming, only alloys with a relatively high carbon content are targeted, and only studies on strength increase and improvement of toughness have been made. There are no reports referring to gender.
[0011]
Therefore, the deformability of a wire or a bar manufactured using ausforming in a cold state is higher than that of a manufacturing method in which the wire or the bar is delivered by a solution treatment which is a normal process.
[0012]
FIG. 1 shows the hardness when the age hardening treatment is performed in the range of 370 ° C. to 550 ° C. Incidentally, A1 is a solution heat-treated (1050 ° C. × 30 minutes / oil cooling), A2 is a cold forged A1 (70% compression), B1 is heated to 1050 ° C. and immediately air-cooled to 500 ° C. B2 is obtained by performing plastic working with a surface reduction rate of 60% by extrusion, and B2 is obtained by cold forging (70% compression) B1.
[0013]
From the results shown in FIG. 1, the hardness obtained after aging is greatly increased by adding cold working. Moreover, it has been confirmed that the hardness of the bar B2 manufactured according to the present invention is higher than that of the bar A2 manufactured by the conventional method.
[0014]
This is because sufficient work hardening can be obtained due to the fine structure, and thus high-strength bolts and screws can be obtained.
[0015]
FIG. 2 shows the Charpy impact value after the age hardening treatment at 390 ° C. to 550 ° C. Incidentally, the symbols of A1, A2, B1, and B2 are the same as those in FIG.
[0016]
From the results shown in FIG. 2, the impact values of B1 and B2 are significantly higher than those of A1 and A2, indicating that such a high-strength stainless steel has sufficient toughness.
[0017]
FIG. 3 shows the results of the delayed fracture test. Incidentally, the test method is a cantilever bending type accelerated test method in which a notch is provided on a test piece, and 0.1 N hydrochloric acid is dropped on this portion. The symbols A1, A2, B1, and B2 are the same as those in FIGS.
[0018]
According to the results of FIG. 3, the delayed fracture characteristics of B1 and B2 are superior to those of A1 and A2, and when (breaking bending stress / static bending stress) which is a reference for use as a bolt is 0.7, The condition that the rupture time is 30 hours or more is sufficiently satisfied, and it can be used as a high-strength bolt or screw.
[0019]
As can be seen from the above results, the present invention makes it possible to obtain properties excellent in deformability at room temperature, hardness after age hardening, toughness, and delayed fracture characteristics.
【Example】
[0020]
Next, in order to clarify the present invention, examples thereof will be described in detail below.
Drill screws were manufactured according to JIS-SUS630 in the process shown in FIG.
[0021]
The slag for forging was air-cooled to 500 ° C. immediately after being heated to 1050 ° C., subjected to plastic working with a surface reduction rate of 60% by forward extrusion, and then air-cooled to room temperature, and then produced by machining.
[0022]
As a result of manufacturing the drill screw, no crack was recognized in any of the head, the screw portion, and the screw tip portion. FIG. 5 shows the hardness distribution of the drill screw after the age hardening treatment.
[0023]
According to the results shown in FIG. 5, the hardness of the screw tip portion, which is required to be hard, or the center portion, which is required to be tough at 540 HV, is about 490 HV and the hardness is suppressed.
[0024]
From these results, according to the present invention, it is possible to produce a high-strength bolt and a high-strength screw of a martensitic precipitation-hardening stainless steel which can be cold forged and have excellent hardness, toughness, and delayed fracture characteristics. .
[0025]
Although the embodiment of the present invention has been described in detail, this is merely an example, and the present invention can be implemented in a form in which various modifications are made based on the knowledge of those skilled in the art without departing from the gist of the present invention.
【The invention's effect】
As described above, bolts and screws can be formed by cold forging. Further, by directly performing age hardening treatment without solution treatment after forging, high strength bolts and high strength screws having excellent hardness, toughness and delayed fracture characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 shows the relationship between aging hardening treatment temperature and hardness according to JIS-SUS630.
FIG. 2 shows the relationship between the age hardening treatment temperature of JIS-SUS630 and the Charpy impact value.
FIG. 3 shows a delayed fracture characteristic of JIS-SUS630.
FIG. 4 shows a process chart when manufacturing a JIS-SUS630 drill screw as an example.
FIG. 5 shows the hardness distribution of the drill screw after the age hardening treatment.