JP3582803B2 - Manufacturing method of heavy oil base - Google Patents
Manufacturing method of heavy oil base Download PDFInfo
- Publication number
- JP3582803B2 JP3582803B2 JP23319395A JP23319395A JP3582803B2 JP 3582803 B2 JP3582803 B2 JP 3582803B2 JP 23319395 A JP23319395 A JP 23319395A JP 23319395 A JP23319395 A JP 23319395A JP 3582803 B2 JP3582803 B2 JP 3582803B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- heavy oil
- oil base
- dry sludge
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ドライスラッジ含有量の低い重油基材の製造法に関し、詳しくはドライスラッジ含有量が0.05質量%を超える重油基材を特定された条件で水素化処理することにより、ドライスラッジ含有量が0.05質量%以下である重油基材を製造する方法に関する。
【0002】
【従来の技術】
従来、我国における重油は、▲1▼原油を常圧蒸留装置で処理しナフサ、灯油、軽油といった軽質炭化水素を除去することにより得られる常圧蒸留残査物や、この常圧蒸留残査物を更に減圧蒸留装置で処理して減圧軽油を除去することにより得られる減圧蒸留残査物など、ドライスラッジ含有量が0.05質量%以下の石油蒸留残査物、▲2▼これら石油蒸留残査物を高温高水素分圧下で水素化触媒と接触させ脱硫、脱窒素、分解反応を進めることにより得られる、ドライスラッジ含有量が0.05質量%以下の低硫黄でかつ低粘度の重油基材、▲3▼またはこれらの混合物、などを主な基材としてこれらを適宜混合するか、さらにこれらに必要に応じて粘度等の調整に灯油、軽油、減圧軽油等を混合することで製造されてきた。
なお、ドライスラッジとは、一般に1.0μm以上の径を持つアスファルテン分子を主体とした粒子である。
【0003】
しかしながら、原油の種類やその処理方法によっては、ドライスラッジ含有量が0.05質量%を超える常圧蒸留残査物や減圧蒸留残査物などが得られることがある。
また上記▲2▼でいう常圧または減圧蒸留残査物の水素化処理は、硫黄含有量の低い重油基材の増産、更に粘度調整用の灯油、軽油等の中間留分の増産といった観点から有意義なものであるが、脱硫率や分解率を高める目的で、反応温度を高くする等の苛酷度の高い運転条件で石油蒸留残査物を水素化処理すると、生成物中にドライスラッジが析出し、その含有量が0.05質量%を超えてしまうという問題が生じる。
【0004】
このようなドライスラッジ含有量が0.05質量%を超える基材を重油基材として使用すると、他の基材と混合時あるいは貯蔵期間中にそれらがさらに巨大スラッジに成長し、燃料油フィルターや遠心式油清浄機の閉塞、燃料油加熱器のファウリング、および燃焼機関の重油噴射ノズルの閉塞等のトラブルが発生する懸念がある。したがって、ドライスラッジ含有量が0.05質量%を超える基材は重油基材として不適当であり、これまで重油製造において使用することができなかった。
【0005】
【発明が解決しようとする課題】
本発明は、ドライスラッジ含有量が0.05質量%を超える重油基材を特定された条件で水素化処理することにより、ドライスラッジ含有量が0.05質量%以下である重油基材を製造する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らはドライスラッジ含有量が0.05質量%を超える重油基材を有効利用すべく研究を重ねた結果、特定された条件でこれら基材を水素化処理することにより、ドライスラッジ含有量の低い重油基材が得られることを見い出し、本発明を完成するに至った。
【0007】
本発明は、ドライスラッジ含有量が0.05質量%を超える重油基材を原料油とし、これを、温度200〜400℃、水素分圧1.0〜25.0MPa、液空間速度0.1〜10.0h−1かつ水素/油比50〜1700Nm3 /m3 の条件で水素化触媒と接触させ水素化処理を行うことを特徴とする、ドライスラッジ含有量が0.05質量%以下の重油基材の製造法を提供するものである。
以下、本発明の内容について詳細に説明する。
【0008】
【発明の実施の形態】
本発明における原料油は、ドライスラッジ含有量が0.05質量%を超える重油基材、好ましくはドライスラッジ含有量が0.05質量%を超え、5.0質量%以下、より好ましくはドライスラッジ含有量が0.05質量%を超え、1.0質量%以下である重油基材である。
原料油のドライスラッジ含有量が5.0質量%を超える場合は、通常、水素化処理工程における原料油供給系統でのストレーナーやバルブの閉塞、熱交換器や加熱炉のファウリングによる伝熱効率の低下等の問題を生じる恐れがあるため、あまり好ましくない。
【0009】
なお本発明におけるドライスラッジ含有量とは、ASTM D 4870−92に規定する”Standard Test Method for Determination of Total Sediment in Residual Fuels”に準拠して測定される全沈降物量を意味する。以降、本発明におけるドライスラッジ含有量とは、すべてこの方法により測定される値を意味する。
【0010】
原料油としては、ドライスラッジ含有量が0.05質量%を超える重油基材であれば良く、その他の性状は特に限定されるものでない。
しかしながら、通常、この原料油の硫黄含有量は、下限値が0.05質量%、好ましくは0.1質量%であり、一方、その上限値が10質量%、好ましくは6.0質量%の範囲のものを用いるのが望ましい。
【0011】
硫黄含有量が0.05質量%未満という数値は重油基材の硫黄含有量としては過剰性能である。しかもこのような低硫黄含有量の重油基材を得るためには、前述した常圧蒸留残査物や減圧蒸留残査物を非常に苛酷な条件で水素化処理する必要があり、エネルギーコストの点で不利である。
また硫黄含有量が10質量%を超える場合は、得られる重油基材の硫黄含有量が高くなり、ボイラー燃料として用いた場合に燃焼排ガス中の硫黄酸化物量の増大をもたらしてしまう。また得られる重油基材の硫黄含有量をより低下させるためには、反応塔や周辺機器等の建設費が急激に上昇して経済的に実用性が失われたり、多量のカッター材を必要とするため、それぞれあまり好ましくない。
【0012】
なお、本発明における硫黄含有量とは、JIS K 2541−1992 に規定する「原油及び石油製品−硫黄分試験方法」の「6.放射線式励起法」に準拠して測定される硫黄含有量を意味する。以降、本発明における硫黄含有量とは、すべて上記方法により測定される値を意味する。
【0013】
また、これら原料油としては、通常、その100℃における動粘度の下限値が5mm2/s、好ましくは15mm2/sであり、一方、100℃における動粘度の上限値が50000mm2/s、好ましくは5000mm2/sであるものを用いるのが望ましい。
【0014】
100℃における動粘度が5mm2/s未満のものを用いた場合は、原料油中のナフサ、灯油および軽油留分の含有比率が多くなり、水素化処理の不必要な留分まで水素化処理してしまうため、エネルギーコスト的に不利である。一方、100℃における動粘度が50000mm2/sを超えるものを用いた場合は、その粘度を低下させるために多量のカッター材を必要とするため、あまり好ましくない。
【0015】
なお、本発明でいう動粘度とは、JIS K 2283に規定する「原油及び石油製品の動粘度試験方法並びに石油製品粘度指数算出方法」に準拠して測定される動粘度を意味する。以降、本発明における動粘度とは、すべて上記方法により測定される値を意味する。
【0016】
また、原料油としてはさらに、蒸留温度300℃以上の留分を70質量%以上、好ましくは90質量%以上、更に好ましくは95質量%以上含む蒸留性状を有するものを用いるのが望ましい。蒸留温度300℃以上の留分の含有量が70質量%未満のものを用いた場合は、原料油中のナフサ、灯油および軽油留分の含有比率が多くなり、水素化処理の不必要な留分まで水素化処理してしまうため、エネルギーコスト的に不利である。
【0017】
なお、本発明でいう蒸留温度とは、JIS K 2254に規定する「石油製品−蒸留試験方法」の「6.減圧蒸留試験方法」に準拠して測定される温度を意味する。以降、本発明における蒸留温度とは、すべて上記方法により測定される値を意味する。
【0018】
より具体的には、原料油としては例えば、原油を常圧蒸留装置で処理してナフサ、灯油、軽油などの軽質炭化水素を除去して得られる常圧蒸留残査物;常圧蒸留残査物を更に減圧蒸留装置で処理し減圧軽油を除去して得られる減圧蒸留残査物;常圧蒸留残査物および/または減圧蒸留残査物を水素化処理して硫黄等を除去して得られる低硫黄重油基材;石油留分を接触分解する際に得られる留出油;あるいはこれらの混合物などが好ましく用いられる。さらに、粘度等を調整するため、それらに軽質石油蒸留物、灯油、軽油あるいは減圧軽油留分などを適宜混合したものも本発明の原料油として好適に用いられる。
【0019】
本発明においては、これら原料油に対して水素化処理を実行する。
この水素化処理における水素化処理温度は、下限値が200℃であり、一方、その上限値が400℃、好ましくは350℃の範囲で行うことができる。水素化処理温度が200℃未満の場合は触媒活性が十分に発揮されずスラッジ分の水素化反応が実用の領域まで進まず、一方、水素化処理温度が400℃を超える場合はスラッジ分の水素化が進まずに、逆にスラッジ分が生成してしまうため、それぞれ好ましくない。
【0020】
また、水素化処理の入口の水素分圧は、下限値が1.0MPaであり、一方、上限値が25.0MPa、好ましくは19.6MPaの範囲で行うことができる。入口の水素分圧が1.0MPa未満の場合は触媒活性が十分に発揮されずスラッジ分の水素化反応が実用の領域まで進まず、一方、水素分圧が25.0MPaを越えると反応塔や周辺機器等の建設費が急激に上昇するため経済的に実用性が失われるため、それぞれ好ましくない。
【0021】
また水素化処理における原料油の液空間速度(LHSV)は、下限値が0.1h−1、好ましくは0.2h−1であり、一方、上限値が10.0h−1、好ましくは4.0h−1の範囲で行うことができる。液空間速度(LHSV)が0.1h−1未満の場合は反応塔の建設費が莫大になり経済的に実用性が失われ、一方、液空間速度(LHSV)が10.0h−1を越える場合は触媒活性が十分に発揮されずスラッジ分の水素化反応が実用の領域まで進まないため、それぞれ好ましくない。
【0022】
また水素化処理における入口の水素/油比は、下限値が50Nm3 /m3 、好ましくは200Nm3 /m3 であり、一方、上限値が1700Nm3 /m3 、好ましくは1500Nm3 /m3 の範囲で行うことができる。水素/油比が50Nm3 /m3 未満の場合は水素化触媒の活性が十分に発揮されないためスラッジ分の水素化反応が不十分であり、一方、水素/油比が1700Nm3 /m3 を超え場合は反応塔や周辺機器等の建設費が急激に上昇し、また運転コストも増大して経済的に実用性が失われるため、それぞれ好ましくない。
【0023】
また水素化処理の操作は、油とガスを並行で下降流または上昇流で行うことができ、また、油とガスを向流で行うこともできる。また、水素化処理において触媒を充填して使用される反応塔は、単独の反応塔または連続した複数の反応塔のどちらで構成されていてもよい。更に反応塔内は、単独の触媒床または複数の触媒床のどちらで構成されていてもよい。
【0024】
またさらに、水素化処理における各反応塔の間や各触媒床の間に、後続の反応塔や触媒床の入口の反応温度を調節する目的で、気体、液体または液体と気体の混合物を注入することも可能である。
【0025】
ここでいう気体は、通常、水素;例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の炭素数1〜6のパラフィン系炭化水素およびこれらの混合物など、注入する温度、圧力で気体として存在できる炭化水素;または水素とこれら炭化水素との混合物;が好ましく用いられるが、例えば硫化水素、アンモニア、窒素など、注入する温度、圧力で気体として存在できる他の物質を含んでいてもよい。
【0026】
また、ここでいう液体は、通常、例えば、灯油、直留軽油、減圧軽油などの石油蒸留物;石油蒸留残査物;石油蒸留物や石油蒸留残査物などの水素化処理油;石油蒸留物や石油蒸留残査物などの熱分解油;石油蒸留物や石油蒸留残査物などの接触分解油;またはこれらの混合物;など、注入する温度、圧力で液体として存在できる炭化水素が好ましく用いられるが、水素化処理における出口油の一部をリサイクルして使用するのが更に好ましい。
【0027】
水素化処理において各反応塔の間や各触媒床の間に気体や液体を注入する場合、それらの注入量は任意であるが、通常、気体を注入する場合は注入量が気体/油比で1700Nm3 /m3 以下の範囲で行うことができ、液体を注入する場合は注入量が液体/油比で1m3 /m3 以下の範囲で行うことができる。
【0028】
なお、水素化処理において複数の反応塔または触媒床を使用する場合、本発明における水素化処理温度は、各反応塔の間や各触媒床の間への気体、液体または液体と気体の混合物の注入の有無にかかわらず、またさらに反応塔の数に関係なく、水素化処理のすべての触媒床を対象にして、各触媒床の入口温度と出口温度を平均した温度に各触媒床の触媒充填重量比率を乗じて加えた触媒重量平均温度(WABT)で定義される。
【0029】
また、水素化処理における水素化処理触媒としては、従来公知の任意の水素化処理触媒が使用可能である。具体的には例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、アルミナ−シリカ、アルミナ−ボリア、アルミナ−チタニア、アルミナ−ジルコニア、アルミナ−マグネシア、アルミナ−シリカ−ジルコニア、アルミナ−シリカ−チタニア、各種ゼオライト、セピオライト、モンモリロナイト等の各種粘土鉱物などの多孔性無機酸化物を担体とし、これに水素化活性金属を担持した物を好ましく用いることができる。
【0030】
該担持金属としては、通常、周期律表第VIA、VA、VB、およびVIII族の金属から選ばれる少なくとも1種の水素化活性金属種が好ましく用いられ、特にコバルト、モリブデン、ニッケルをそれぞれ単独で、または、コバルト、モリブデン、ニッケルを2種あるいは3種組み合わせて多孔性無機酸化物に担持した触媒がより好ましく用いられる。なお、本発明の水素化処理で用いる水素化処理触媒は、通常市販されている水素化処理触媒でも十分目的が達成可能であり、本発明は触媒の種類によって何ら制限されるものではない。
【0031】
また、本発明の水素化処理においては、通常、脱硫、脱窒素、または分解の反応は実質上行われない。
本発明においては、以上の水素化処理により、最終的にドライスラッジ含有量が0.05質量%以下、好ましくは0.04質量%以下である重油基材が得られる。
【0032】
得られる重油基材の硫黄含有量は任意であるが、通常、その下限値は0.05質量%、好ましくは0.1質量%であり、一方、その上限値は10質量%、好ましくは6.0質量%であるのが一般的である。
また得られる重油基材の窒素含有量も何ら規定されるものではないが、通常、その下限値は0.01質量%、好ましくは0.05質量%であり、一方、その上限値は1.5質量%、好ましくは1.0質量%であるのが一般的である。
【0033】
さらに、得られる重油基材の動粘度も何ら規定されるものではないが、通常、100℃におけるその下限値は5mm2/s、好ましくは15mm2/sであり、一方、その100℃におけるその上限値は10000mm2/s、好ましくは1000mm2/sであるのが一般的である。
【0034】
本発明により得られる重油基材は、単独でも製品重油として使用可能である。また、具体的には例えば、原油を常圧蒸留装置で処理しナフサ、灯油、軽油といった軽質炭化水素を除去することにより得られるドライスラッジ含有量が0.05質量%以下の常圧蒸留残査物;この常圧蒸留残査物を更に減圧蒸留装置で処理して減圧軽油を除去することにより得られるドライスラッジ含有量が0.05質量%以下の減圧蒸留残査物;これら常圧蒸留残査物や減圧蒸留残査物の水素化処理により得られる、硫黄分含有量が原料油より低められ、かつドライスラッジ含有量が0.05質量%以下の重油基材;粘度等の調整用の灯油、軽油、減圧軽油;など、他の任意の重油基材を適宜配合して、製品重油とすることもできる。
【0035】
【実施例】
次に実施例および比較例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
(実施例1)
アルミナ担体にNiO 3質量%とMoO3 11質量%を含有する市販脱硫触媒をステンレス製反応管に充填後、触媒を予備硫化した。次いで表1の性状を有する減圧蒸留残査油を原料油とし、この反応塔で表2に示す反応条件で水素化処理を行った。
反応塔出口より得られた水素化処理油の性状も表2に併記した。
【0036】
(実施例2)
実施例1と同一の原料油および水素化触媒を使用し、空間速度(LHSV)を2.5h−1、水素化処理温度を380℃の条件に変更した以外は実施例1と同一の反応条件で水素化処理を行い、その結果も表2に併記した。
【0037】
(実施例3)
実施例1と同一の原料油および水素化触媒を使用し、反応塔入口の水素分圧を16.7MPaに変更した以外は実施例1と同様の操作条件で水素化処理を行い、その結果も表2に併記した。
【0038】
(比較例1)
反応塔の低温処理効果を明確化するため、実施例1と同一の原料油および水素化触媒を使用し、水素化処理温度を430℃に変更した以外は実施例1と同様の操作条件で水素化処理を行い、その結果も表2に併記した。
【0039】
(比較例2)
反応温度を200℃以上にする必要性を明確化するため、実施例1と同一の原料油および水素化触媒を使用し、水素化処理温度を反応塔の温度を190℃に変更した以外は実施例1と同様の操作条件で水素化処理を行い、その結果も表2に併記した。
【0040】
【表1】
【0041】
【表2】
【0042】
表2の結果から明らかなとおり、本発明の方法によれば、ドライスラッジ含有量が0. 05質量%より多い原料油を比較的低温で水素化触媒と接触させることにより、ドライスラッジ含有量が0.05質量%以下の重油基材を得ることが可能である。
それに対して反応塔温度を430℃に設定した比較例1では、脱硫反応、脱窒素反応および分解反応が進むものの、ドライスラッジ含有量は0.63質量%と原料油より増加しており、重油基材として不適当なものである。また反応塔温度を190℃に設定した比較例2では、ドライスラッジ含有量のある程度の低下は見られるものの、その含有量は0.49質量%と実施例と比較して非常に高く、依然として重油基材としては不適当なものである。
【0043】
【発明の効果】
本発明の方法によれば、ドライスラッジ含有量が0.05質量%より多い原料油を比較的低温で水素化触媒と接触させることにより、ドライスラッジ含有量が0.05質量%以下の重油基材を得ることが可能である。このため、重油基材として不適当であるドライスラッジ含有量が0.05質量%を超える重油基材、例えばドライスラッジ含有量が0.05質量%を超える石油蒸留残査油などを重油基材として有効に利用できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a heavy oil base material having a low dry sludge content, and more particularly to a method for hydrotreating a heavy oil base material having a dry sludge content of more than 0.05% by mass under specified conditions to obtain dry sludge. The present invention relates to a method for producing a heavy oil base material having a content of 0.05% by mass or less.
[0002]
[Prior art]
Conventionally, heavy oil in Japan includes: (1) atmospheric distillation residue obtained by treating crude oil with an atmospheric distillation apparatus to remove light hydrocarbons such as naphtha, kerosene, and gas oil; Is further treated with a vacuum distillation apparatus to remove vacuum gas oil, such as vacuum distillation residue obtained from petroleum distillation with a dry sludge content of 0.05% by mass or less, and (2) these petroleum distillation residues. A low-sulfur, low-viscosity heavy oil base with a dry sludge content of 0.05% by mass or less obtained by bringing the specimen into contact with a hydrogenation catalyst under high temperature and high hydrogen partial pressure to promote desulfurization, denitrification, and decomposition reactions. It is manufactured by appropriately mixing these materials as the main base material, (3) or a mixture thereof, or further mixing kerosene, light oil, reduced pressure light oil, etc. to adjust viscosity and the like as necessary. Have been.
Note that dry sludge is a particle mainly composed of asphaltene molecules having a diameter of generally 1.0 μm or more.
[0003]
However, depending on the type of crude oil and its treatment method, atmospheric distillation residue or reduced-pressure distillation residue having a dry sludge content exceeding 0.05% by mass may be obtained.
In addition, the hydrogenation treatment of atmospheric or reduced pressure distillation residue referred to in the above (2) is intended to increase the production of heavy oil base materials with low sulfur content, and further increase the production of middle distillates such as kerosene and gas oil for viscosity adjustment. Significantly, if the petroleum distillation residue is hydrotreated under severe operating conditions such as raising the reaction temperature in order to increase the desulfurization rate and decomposition rate, dry sludge will precipitate in the product. However, there is a problem that the content exceeds 0.05% by mass.
[0004]
When such a base material having a dry sludge content exceeding 0.05% by mass is used as a heavy oil base material, when mixed with other base materials or during the storage period, they grow into a huge sludge, and the fuel oil filter or There is a concern that troubles such as blockage of the centrifugal oil purifier, fouling of the fuel oil heater, and blockage of the heavy oil injection nozzle of the combustion engine may occur. Therefore, a base material having a dry sludge content exceeding 0.05% by mass is unsuitable as a heavy oil base material and could not be used in heavy oil production.
[0005]
[Problems to be solved by the invention]
The present invention produces a heavy oil base material having a dry sludge content of 0.05% by mass or less by hydrotreating a heavy oil base material having a dry sludge content exceeding 0.05% by mass under specified conditions. It is intended to provide a method for doing so.
[0006]
[Means for Solving the Problems]
The present inventors have conducted studies to effectively utilize heavy oil base materials having a dry sludge content of more than 0.05% by mass, and as a result, by hydrotreating these base materials under specified conditions, the dry sludge content was increased. It has been found that a heavy oil base material having a low amount can be obtained, and the present invention has been completed.
[0007]
In the present invention, a heavy oil base material having a dry sludge content exceeding 0.05% by mass is used as a feedstock, and is used at a temperature of 200 to 400 ° C., a hydrogen partial pressure of 1.0 to 25.0 MPa, and a liquid hourly space velocity of 0.1. A dry sludge content of 0.05% by mass or less, wherein the dry sludge content is 0.05% by mass or less by contacting with a hydrogenation catalyst under conditions of 〜10.0 h -1 and a hydrogen / oil ratio of 50 to 1700 Nm 3 / m 3 . A method for producing a heavy oil base material is provided.
Hereinafter, the contents of the present invention will be described in detail.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The feedstock in the present invention is a heavy oil base having a dry sludge content of more than 0.05% by mass, preferably a dry sludge content of more than 0.05% by mass and 5.0% by mass or less, more preferably dry sludge. A heavy oil base material having a content of more than 0.05% by mass and not more than 1.0% by mass.
When the dry sludge content of the feedstock exceeds 5.0% by mass, usually, the strainer and valves are blocked in the feedstock feed system in the hydrotreating process, and the heat transfer efficiency due to fouling of the heat exchanger and the heating furnace is reduced. This is not preferred because it may cause a problem such as a decrease.
[0009]
In addition, the dry sludge content in the present invention means the total amount of sediment measured in accordance with "Standard Test Method for Determination of Total Sediment in Residual Fuels" specified in ASTM D 4870-92. Hereinafter, the dry sludge content in the present invention means a value measured by this method.
[0010]
The feedstock may be a heavy oil base material having a dry sludge content of more than 0.05% by mass, and other properties are not particularly limited.
However, usually, the lower limit of the sulfur content of this feedstock is 0.05% by mass, preferably 0.1% by mass, while the upper limit is 10% by mass, preferably 6.0% by mass. It is desirable to use those in the range.
[0011]
Numerical values that the sulfur content is less than 0.05% by mass are excessive performance as the sulfur content of the heavy oil base material. Moreover, in order to obtain such a heavy oil base material having a low sulfur content, it is necessary to hydrotreat the above-mentioned atmospheric distillation residue and reduced-pressure distillation residue under extremely severe conditions, which reduces energy costs. Disadvantage in point.
Further, when the sulfur content exceeds 10% by mass, the sulfur content of the obtained heavy oil base material increases, and when used as a boiler fuel, the amount of sulfur oxides in the combustion exhaust gas increases. In addition, in order to further reduce the sulfur content of the obtained heavy oil base material, the construction cost of the reaction tower and peripheral equipment rapidly rises, losing practicality economically, and requires a large amount of cutter material. Are not so preferred.
[0012]
The sulfur content in the present invention refers to the sulfur content measured in accordance with "6. Radiation excitation method" of "Crude oil and petroleum products-Sulfur content test method" specified in JIS K 2541-1992. means. Hereinafter, the term “sulfur content” in the present invention means a value measured by the above method.
[0013]
In addition, the lower limit of the kinematic viscosity at 100 ° C. is usually 5 mm 2 / s, preferably 15 mm 2 / s, while the upper limit of the kinematic viscosity at 100 ° C. is 50,000 mm 2 / s. It is desirable to use one having a thickness of 5000 mm 2 / s.
[0014]
When the kinematic viscosity at 100 ° C. is less than 5 mm 2 / s, the content ratio of naphtha, kerosene and gas oil fractions in the feed oil increases, and hydrotreating is performed to a fraction unnecessary for hydrotreatment. This is disadvantageous in terms of energy cost. On the other hand, when a material having a kinematic viscosity at 100 ° C. of more than 50,000 mm 2 / s is used, a large amount of a cutter material is required to reduce the viscosity, which is not preferable.
[0015]
The kinematic viscosity referred to in the present invention means a kinematic viscosity measured in accordance with "Kinematic viscosity test method for crude oil and petroleum products and method for calculating petroleum product viscosity index" specified in JIS K 2283. Hereinafter, the kinematic viscosity in the present invention all means a value measured by the above method.
[0016]
Further, it is desirable to use a feedstock oil having a distillation property containing a fraction having a distillation temperature of 300 ° C. or more at 70% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more. When a fraction having a distillation temperature of 300 ° C. or higher and having a content of less than 70% by mass is used, the content ratio of naphtha, kerosene, and gas oil fractions in the feedstock increases, and a fraction unnecessary for hydrotreating is used. This is disadvantageous in terms of energy cost because the hydrogen treatment is performed to the minute.
[0017]
The distillation temperature in the present invention means a temperature measured in accordance with “6. Vacuum distillation test method” of “Petroleum product-distillation test method” specified in JIS K 2254. Hereinafter, the distillation temperature in the present invention means a value measured by the above method.
[0018]
More specifically, as the feedstock, for example, an atmospheric distillation residue obtained by treating crude oil with an atmospheric distillation apparatus to remove light hydrocarbons such as naphtha, kerosene, and gas oil; The vacuum distillation residue obtained by further treating the product with a vacuum distillation apparatus to remove vacuum gas oil; obtained by hydrogenating the atmospheric distillation residue and / or the vacuum distillation residue to remove sulfur and the like. A low-sulfur heavy oil base material; a distillate obtained when a petroleum fraction is catalytically cracked; or a mixture thereof is preferably used. Further, in order to adjust the viscosity and the like, those obtained by appropriately mixing light petroleum distillate, kerosene, gas oil, or a reduced pressure gas oil fraction are suitably used as the feedstock oil of the present invention.
[0019]
In the present invention, hydroprocessing is performed on these feedstocks.
The lower limit of the hydrogenation temperature in this hydrogenation treatment is 200 ° C., while the upper limit thereof is 400 ° C., preferably 350 ° C. When the hydrotreating temperature is lower than 200 ° C., the catalytic activity is not sufficiently exhibited, and the sludge hydrotreating reaction does not proceed to a practical range. On the other hand, when the hydrotreating temperature exceeds 400 ° C., It is not preferable because sludge does not progress and sludge is generated.
[0020]
The lower limit of the hydrogen partial pressure at the inlet of the hydrotreatment can be 1.0 MPa, while the upper limit can be 25.0 MPa, preferably 19.6 MPa. When the hydrogen partial pressure at the inlet is less than 1.0 MPa, the catalytic activity is not sufficiently exhibited, and the hydrogenation reaction of the sludge does not proceed to a practical range. On the other hand, when the hydrogen partial pressure exceeds 25.0 MPa, the reaction tower and Since the construction cost of peripheral equipment and the like rapidly rises, the practical use is economically lost, and thus each is not preferable.
[0021]
The lower limit of the liquid hourly space velocity (LHSV) of the feedstock in the hydrotreatment is 0.1 h -1 , preferably 0.2 h -1 , while the upper limit is 10.0 h -1 , preferably 4. It can be performed in the range of 0h- 1 . When the liquid hourly space velocity (LHSV) is less than 0.1 h -1, the construction cost of the reaction tower becomes enormous and economically practicable, while the liquid hourly space velocity (LHSV) exceeds 10.0 h -1 . In such a case, the catalytic activity is not sufficiently exhibited, and the hydrogenation reaction of the sludge does not proceed to a practical range.
[0022]
The lower limit of the hydrogen / oil ratio at the inlet in the hydrotreating is 50 Nm 3 / m 3 , preferably 200 Nm 3 / m 3 , while the upper limit is 1700 Nm 3 / m 3 , preferably 1500 Nm 3 / m 3. Can be performed in the range of When the hydrogen / oil ratio is less than 50 Nm 3 / m 3 , the activity of the hydrogenation catalyst is not sufficiently exhibited, so that the hydrogenation reaction of the sludge is insufficient, while the hydrogen / oil ratio is 1700 Nm 3 / m 3 . If it exceeds, the construction cost of the reaction tower, peripheral equipment, etc., rises sharply, and the operating cost also increases, which makes economically practical use unpreferable.
[0023]
In addition, the operation of the hydrotreating can be performed in parallel with the oil and the gas in the downward flow or the upward flow, or the oil and the gas can be performed in the countercurrent. Further, the reaction tower used by filling the catalyst in the hydrogenation treatment may be composed of a single reaction tower or a plurality of continuous reaction towers. Further, the inside of the reaction tower may be constituted by either a single catalyst bed or a plurality of catalyst beds.
[0024]
Further, a gas, a liquid, or a mixture of a liquid and a gas may be injected between each reaction tower and each catalyst bed in the hydrotreating treatment for the purpose of adjusting the reaction temperature at the inlet of the subsequent reaction tower or catalyst bed. It is possible.
[0025]
The gas referred to here is usually hydrogen; for example, a paraffinic hydrocarbon having 1 to 6 carbon atoms such as methane, ethane, propane, butane, pentane, hexane and the like, and a mixture thereof can be present as a gas at an injection temperature and pressure. Hydrocarbons; or mixtures of hydrogen and these hydrocarbons; are preferably used, but may also contain other substances that can exist as gases at the temperature and pressure of the injection, such as hydrogen sulfide, ammonia, and nitrogen.
[0026]
In addition, the liquid referred to here is usually, for example, petroleum distillate such as kerosene, straight-run gas oil, or vacuum gas oil; petroleum distillation residue; hydrotreated oil such as petroleum distillate or petroleum distillation residue; Cracking oil such as oil or petroleum distillation residue; catalytic cracking oil such as petroleum distillate or petroleum distillation residue; or a mixture thereof; hydrocarbons which can exist as a liquid at the temperature and pressure to be injected are preferably used. However, it is more preferable to recycle and use a part of the outlet oil in the hydrotreatment.
[0027]
When gas or liquid is injected between the reaction towers or between the catalyst beds in the hydrogenation treatment, the injection amount thereof is arbitrary. Usually, when the gas is injected, the injection amount is 1700 Nm 3 in a gas / oil ratio. / M 3 or less, and when injecting a liquid, the injection amount can be in the range of 1 m 3 / m 3 or less in liquid / oil ratio.
[0028]
In the case where a plurality of reaction towers or catalyst beds are used in the hydrogenation treatment, the hydrogenation treatment temperature in the present invention is determined by injecting a gas, a liquid, or a mixture of a liquid and a gas between each reaction tower and each catalyst bed. Regardless of the presence or absence, and furthermore, regardless of the number of reaction towers, the catalyst packing weight ratio of each catalyst bed is calculated by averaging the inlet and outlet temperatures of each catalyst bed for all catalyst beds in the hydrotreatment. And the weight of the catalyst (WABT).
[0029]
As the hydrotreating catalyst in the hydrotreating, any conventionally known hydrotreating catalyst can be used. Specifically, for example, alumina, silica, titania, zirconia, magnesia, alumina-silica, alumina-boria, alumina-titania, alumina-zirconia, alumina-magnesia, alumina-silica-zirconia, alumina-silica-titania, various zeolites A porous inorganic oxide such as various clay minerals such as sepiolite and montmorillonite as a carrier, and a hydrogenation-active metal supported thereon can be preferably used.
[0030]
As the supported metal, usually, at least one hydrogenation-active metal species selected from metals of Groups VIA, VA, VB, and VIII of the Periodic Table is preferably used, and particularly, cobalt, molybdenum, and nickel are each used alone. Alternatively, a catalyst in which two or three kinds of cobalt, molybdenum, and nickel are supported on a porous inorganic oxide is more preferably used. The purpose of the hydrotreating catalyst used in the hydrotreating of the present invention can be sufficiently achieved with a commercially available hydrotreating catalyst, and the present invention is not limited by the type of the catalyst.
[0031]
In the hydrogenation treatment of the present invention, generally, desulfurization, denitrification, or decomposition reactions are not substantially performed.
In the present invention, a heavy oil base material having a dry sludge content of 0.05% by mass or less, preferably 0.04% by mass or less is finally obtained by the above hydrogenation treatment.
[0032]
Although the sulfur content of the obtained heavy oil base material is arbitrary, the lower limit is usually 0.05% by mass, preferably 0.1% by mass, while the upper limit is 10% by mass, preferably 6% by mass. It is generally 0.0% by mass.
Also, the nitrogen content of the obtained heavy oil base is not specified at all, but the lower limit is usually 0.01% by mass, preferably 0.05% by mass, while the upper limit is 1. It is generally 5% by weight, preferably 1.0% by weight.
[0033]
Furthermore, the kinematic viscosity of the obtained heavy oil base is not specified at all, but its lower limit at 100 ° C. is usually 5 mm 2 / s, preferably 15 mm 2 / s, while its lower limit at 100 ° C. The upper limit is generally 10000 mm 2 / s, preferably 1000 mm 2 / s.
[0034]
The heavy oil base obtained by the present invention can be used alone as a product heavy oil. More specifically, for example, an atmospheric distillation residue having a dry sludge content of 0.05% by mass or less obtained by treating crude oil with an atmospheric distillation apparatus and removing light hydrocarbons such as naphtha, kerosene, and gas oil. Vacuum distillation residue having a dry sludge content of 0.05% by mass or less obtained by further treating the atmospheric distillation residue with a vacuum distillation apparatus to remove vacuum gas oil; A heavy oil base material having a sulfur content lower than that of the base oil and a dry sludge content of 0.05% by mass or less, which is obtained by hydrotreating the refuse or vacuum distillation residue; Any other heavy oil base material such as kerosene, light oil, reduced pressure light oil and the like can be appropriately blended to obtain a product heavy oil.
[0035]
【Example】
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
(Example 1)
After filling a stainless steel reaction tube with a commercially available desulfurization catalyst containing 3 % by mass of NiO and 11% by mass of MoO 3 in an alumina carrier, the catalyst was preliminarily sulfurized. Next, a vacuum distillation residue having the properties shown in Table 1 was used as a feedstock, and hydrogenation was performed in this reaction tower under the reaction conditions shown in Table 2.
The properties of the hydrotreated oil obtained from the outlet of the reaction tower are also shown in Table 2.
[0036]
(Example 2)
The same reaction conditions as in Example 1 except that the same feed oil and hydrogenation catalyst as in Example 1 were used, the space velocity (LHSV) was changed to 2.5 h −1 , and the hydrotreating temperature was changed to 380 ° C. , And the results are also shown in Table 2.
[0037]
(Example 3)
The same feedstock and hydrogenation catalyst as in Example 1 were used, and the hydrogenation treatment was performed under the same operating conditions as in Example 1 except that the hydrogen partial pressure at the inlet of the reaction column was changed to 16.7 MPa. Also shown in Table 2.
[0038]
(Comparative Example 1)
In order to clarify the low-temperature treatment effect of the reaction tower, hydrogen was used under the same operating conditions as in Example 1 except that the same feedstock and hydrogenation catalyst as in Example 1 were used, and the hydrotreating temperature was changed to 430 ° C. The results were also shown in Table 2.
[0039]
(Comparative Example 2)
In order to clarify the necessity of raising the reaction temperature to 200 ° C. or more, the same feedstock and hydrogenation catalyst as in Example 1 were used, and the hydrotreating temperature was changed except that the temperature of the reaction tower was changed to 190 ° C. Hydrotreating was performed under the same operating conditions as in Example 1, and the results are also shown in Table 2.
[0040]
[Table 1]
[0041]
[Table 2]
[0042]
As is evident from the results in Table 2, according to the method of the present invention, the dry sludge content was 0.1%. By bringing more than 05% by mass of the feed oil into contact with the hydrogenation catalyst at a relatively low temperature, it is possible to obtain a heavy oil base material having a dry sludge content of 0.05% by mass or less.
On the other hand, in Comparative Example 1 in which the reaction tower temperature was set to 430 ° C., although the desulfurization reaction, the denitrification reaction, and the decomposition reaction proceeded, the dry sludge content was 0.63% by mass, which was higher than that of the feedstock oil. Unsuitable as a substrate. In Comparative Example 2 in which the temperature of the reaction tower was set at 190 ° C., although the dry sludge content was reduced to some extent, the content was 0.49 mass%, which was much higher than that of the Example, and was still heavy oil. It is unsuitable as a substrate.
[0043]
【The invention's effect】
According to the method of the present invention, by contacting a feedstock having a dry sludge content of more than 0.05% by mass with a hydrogenation catalyst at a relatively low temperature, a heavy oil base having a dry sludge content of 0.05% by mass or less is obtained. Material can be obtained. Therefore, a heavy oil base material having a dry sludge content exceeding 0.05% by mass, which is unsuitable as a heavy oil base material, such as a petroleum distillation residue oil having a dry sludge content exceeding 0.05% by mass, is used as a heavy oil base material. Can be used effectively.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23319395A JP3582803B2 (en) | 1995-08-21 | 1995-08-21 | Manufacturing method of heavy oil base |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23319395A JP3582803B2 (en) | 1995-08-21 | 1995-08-21 | Manufacturing method of heavy oil base |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0959651A JPH0959651A (en) | 1997-03-04 |
JP3582803B2 true JP3582803B2 (en) | 2004-10-27 |
Family
ID=16951211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23319395A Expired - Fee Related JP3582803B2 (en) | 1995-08-21 | 1995-08-21 | Manufacturing method of heavy oil base |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3582803B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4567877B2 (en) * | 2000-12-15 | 2010-10-20 | Jx日鉱日石エネルギー株式会社 | Heavy oil hydrotreating catalyst and method for producing heavy oil base |
US10144882B2 (en) | 2010-10-28 | 2018-12-04 | E I Du Pont De Nemours And Company | Hydroprocessing of heavy hydrocarbon feeds in liquid-full reactors |
-
1995
- 1995-08-21 JP JP23319395A patent/JP3582803B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0959651A (en) | 1997-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kressmann et al. | Recent developments in fixed-bed catalytic residue upgrading | |
Ancheyta | Modeling and simulation of catalytic reactors for petroleum refining | |
US9637694B2 (en) | Upgrading hydrocarbon pyrolysis products | |
AU784663B2 (en) | Graded catalyst bed for split-feed hydrocracking/hydrotreating | |
US5837130A (en) | Catalytic distillation refining | |
KR101939854B1 (en) | Hydroprocessing of heavy hydrocarbon feeds in liquid-full reactors | |
Ancheyta-Juárez et al. | Hydrotreating of straight run gas oil–light cycle oil blends | |
US5403470A (en) | Color removal with post-hydrotreating | |
AU757014B2 (en) | Improved catalyst activation method for selective cat naphtha hydrodesulfurization | |
JP2001207177A (en) | Method for reducing content of sulfur compound and polycyclic aromatic hydrocarbon in hydrocarbon feed | |
CN1079819C (en) | Hydroconversion process | |
CN108138057B (en) | Integrated ebullated bed hydroprocessing, fixed bed hydroprocessing and coking process for conversion of whole crude oil to hydrotreated distillates and petroleum green coke | |
Marroquı́n-Sánchez et al. | Catalytic hydrotreating of middle distillates blends in a fixed-bed pilot reactor | |
Robinson | Hydroconversion processes and technology for clean fuel and chemical production | |
JPH0959652A (en) | Production of fuel oil base | |
JP4567877B2 (en) | Heavy oil hydrotreating catalyst and method for producing heavy oil base | |
JP3582803B2 (en) | Manufacturing method of heavy oil base | |
US6589418B2 (en) | Method for selective cat naphtha hydrodesulfurization | |
JP3608095B2 (en) | Method for producing heavy oil base | |
JP2002146364A (en) | Method for producing heavy oil base | |
JP4216624B2 (en) | Method for producing deep desulfurized diesel oil | |
Trambouze | Engineering of hydrotreating processes | |
JP2004511579A (en) | Low sulfur / low aromatics distillate fuel | |
RU2173696C2 (en) | Hydroconversion process | |
JP2018131550A (en) | Method for treating pyrolyzed heavy gas oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040720 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040726 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080806 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090806 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |