Nothing Special   »   [go: up one dir, main page]

JP3582798B2 - Fluorination catalyst and fluorination method - Google Patents

Fluorination catalyst and fluorination method Download PDF

Info

Publication number
JP3582798B2
JP3582798B2 JP11174994A JP11174994A JP3582798B2 JP 3582798 B2 JP3582798 B2 JP 3582798B2 JP 11174994 A JP11174994 A JP 11174994A JP 11174994 A JP11174994 A JP 11174994A JP 3582798 B2 JP3582798 B2 JP 3582798B2
Authority
JP
Japan
Prior art keywords
fluorination
catalyst
reaction
halogenated hydrocarbon
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11174994A
Other languages
Japanese (ja)
Other versions
JPH0761944A (en
Inventor
勝行 辻
公孝 大城
哲夫 中條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11174994A priority Critical patent/JP3582798B2/en
Publication of JPH0761944A publication Critical patent/JPH0761944A/en
Application granted granted Critical
Publication of JP3582798B2 publication Critical patent/JP3582798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明はフッ素化触媒およびフッ素化方法に関するものであり、さらに詳しくは分子中に塩素を含まないことからオゾン層を破壊する恐れのないハイドロフルオロカーボン(以下、HFCと略す)、なかでもジフルオロメタン(以下、HFC−32と略す)、1,1,1,2−テトラフルオロエタン(以下、HFC−134aと略す)、ペンタフルオロエタン(以下、HFC−125と略す)の製造に際し、高い収率でHFCを生産するために改良されたフッ素化触媒および、該触媒を用いて気相でフッ化水素とハロゲン化炭化水素を接触させることにより生産性よくHFCを製造する方法に関するものである。
【0002】
【従来の技術】
工業的に行われている代表的なHFCの製造方法としては含水素ハロゲン化炭化水素をHFと接触させることによりF以外のハロゲンをFに交換する方法(不飽和ハロゲン化炭化水素を原料としてHFの付加とF以外のハロゲンをFに交換する反応を同時に実施するケースも多い)、ハロゲン化炭化水素をH と接触させることによりF以外のハロゲン(場合によってはFの一部)をHに交換する方法がある。このうち含水素ハロゲン化炭化水素のHFによるフッ素化反応は進みにくい場合が多く、HFCの生産量は用いる触媒に大きく依存する。
【0003】
最も反応が進みにくい代表として、1−クロロ−2,2,2−トリフルオロエタン(以下、HCFC−133aと略す)のフッ素化によるHFC−134aの合成反応が挙げられる。本反応は明らかに熱力学的に不利な吸熱反応である。したがって、一般にはHCFC−133aに対し化学量論以上のHFを共存させて、有意な転化率を与える反応条件(圧力、温度、空間速度)で反応を行う。
【0004】
一例を挙げると、特開昭55−27138号公報では、CrF ・3H Oを空気で処理した化合物を触媒として大気圧下、反応温度400℃、HCFC−133aに対するHFのモル比(以下、モル比と略す)8、空間速度(以下、SVと略す)550h−1という反応条件でHFC−134aを収率32%で得ている。
【0005】
特開平1−268651号公報ではCoCl /Al をフッ素化処理して得られる触媒を用いて、大気圧下、反応温度410℃、モル比10、接触時間30秒(SV120h−1)という反応条件でHFC−134a収率は32%である。このように低いSVでの反応は生産性が悪く、また、高温での反応は熱的エネルギーロスばかりでなく、選択率の低下を招き、さらに、本発明者らの知見によれば触媒寿命を短くする。
【0006】
従って、触媒の高活性化、長寿命化を目指した検討がこれまでにもなされてきた。すなわち、特開平2−172933号公報では、Al、Mg、Ca、Ba、Sr、Fe、Ni、CoおよびMnからなる群から選ばれる少なくとも一種の元素およびCrを含むハロゲン化物または酸化物からなる触媒が耐久性(寿命)に優れることを開示している。また、EP第502605号公報では、Znを担持したCr系触媒が高い活性を与えることを開示している。さらに、特開平4−346943号公報では、RuやPtを担持した部分的にフッ素化されたCr からなる触媒が寿命が長いことを開示している。
その他、Cr以外の成分を主成分とする触媒として、特開平2−95438号公報で本出願人が開示したIn化合物をアルミナなどの担体に担持し、HFで処理した触媒等があるが、活性はCrを主成分とする触媒に較べて低い。
【0007】
【発明が解決しようとする課題】
しかしながら、近年、特開平4−346943号公報の明細書中に記載されている様に、HFによるHCFC−133aのフッ素化反応を従来のCr系あるいはAl系触媒を用いて行った場合、反応圧力を高くすると反応速度が小さくなって生産性が低下するという本反応固有の新たな問題があることが明らかになってきた。
【0008】
すなわち、大気圧下では高い反応収率を示す触媒でも、反応圧力を上げる[例えば10kg/cm G(ゲージ圧)]とHFC−134aの選択率は若干向上するものの、HCFC−133a転化率が低下するために収率はかなり低下する[比較の際、他の条件(反応温度、モル比、標準状態に換算したSV)は同一にしている]。程度の差はあるものの本現象は他の含水素ハロゲン化炭化水素のフッ素化反応においても認められる。
【0009】
実際の製造設備において反応を1kg/cm G程度の大気圧付近で行うことは低圧化のための付帯設備を要するため、設備費の増加につながり、好ましくない。さらに、反応の選択率は加圧下の方が優れており、特に、毒性の高い不飽和化合物の副生量を抑えることができる。従って、反応圧力を上げても反応速度が低下しない触媒、さらに好ましくは、反応圧力を上げると反応速度が増加する触媒の開発が求められてる。
【0010】
もちろん従来の課題である触媒の高活性化、長寿命化も触媒コストや生産性に大きく寄与するため、本発明の重要な課題の一つである。
本発明の目的は、HFCの製造に際し、高い収率でHFCを生産するために改良されたフッ素化触媒を提供すること、および、該触媒を用いて気相でフッ化水素とハロゲン化炭化水素を接触させることにより生産性よくHFCを製造する方法、具体的には例えば、HFC−32、HFC−134a、HFC−125を生産性よく製造する方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者等は上記課題を解決すべく鋭意検討した結果、金属成分としてInとCrを組み合わせることにより反応速度に対する圧力のマイナス効果を改善することができることを見いだし本発明を成すに到った。
【0012】
本発明の請求項1の発明は、インジウム、クロム、酸素、フッ素を必須の構成元素として含み、クロムに対するインジウムの原子比が0.005〜0.6であるフッ素化触媒であって、該触媒の調製工程に還元性ガス中、350〜500℃で熱処理する工程を含むことを特徴とするフッ素化触媒である。
【0013】
本発明の請求項2の発明は、共沈法により調製することを特徴とする請求項1記載のフッ素化触媒である。
【0015】
本発明の請求項の発明は、長周期型周期表の11、12、13、14族元素からなる群から選ばれる少なくとも1種の元素を含有することを特徴とする請求項1または2に記載のフッ素化触媒である。
【0016】
本発明の請求項の発明は、請求項1から3のいずれかに記載のフッ素化触媒の存在下、気相でフッ化水素とハロゲン化炭化水素を接触させることを特徴とするハロゲン化炭化水素のフッ素化方法である。
【0017】
本発明の請求項の発明は、該ハロゲン化炭化水素が含水素ハロゲン化炭化水素であることを特徴とする請求項記載のフッ素化方法である。
【0018】
本発明の請求項の発明は、該含水素ハロゲン化炭化水素がジクロロメタン、クロロフルオロメタン、1−クロロ−2,2,2−トリフルオロエタン、1,1−ジクロロ−2,2,2−トリフルオロエタン、1−クロロ−1,2,2,2−テトラフルオロエタンからなる群から選ばれることを特徴とする請求項記載のフッ素化方法である。
【0019】
本発明の請求項の発明は、該含水素ハロゲン化炭化水素が1−クロロ−2,2,2−トリフルオロエタンであることを特徴とする請求項記載のフッ素化方法である。
【0020】
本発明においては、ハロゲン化炭化水素とHFとの接触により、ハロゲン化炭化水素をフッ素化する方法において、In、Cr、O、Fを必須の構成元素として含み、Crに対するInの原子比が0.005〜0.6、好ましくは0.01〜0.5、特に好ましくは0.01〜0.3である触媒を用いることを解決の手段とした。
【0021】
In、Cr、O、F以外の触媒の構成元素としてはアルカリ金属が大量に(例えば、重量で%オーダー)含まれることはあまり好ましくないが、その他の元素は重量で%オーダー以上含まれていてもよい。特に、助触媒として触媒の延命効果が期待できる長周期型周期表の11、12、13、14族の元素(新IUPAC命名法)からなる群から選ばれる少なくとも1種の元素、なかでも、Cu、Ag、Au、Zn、Cd、Hg、Al、Ga、Sn、PbなどはCrに対する原子比で0.001〜0.5、好ましくは0.003〜0.1の範囲で含まれていてもよい。
【0022】
本発明の触媒は、InおよびCrを含有する化合物(例えば酸化物や水酸化物)を触媒前駆体として、これをHFやF 、分子中にフッ素を有するハロゲン化炭化水素等によってフッ素化し、OやOHを部分的にフッ素に置き換えることによって調製することができる。InおよびCrを含有する化合物は担体に担持することも可能であり、適当な担体として活性炭、アルミナ、フッ化アルミニウム、フッ化カルシウム、フッ化マグネシウムなどが挙げられる。
【0023】
触媒前駆体の調製方法としては従来知られている混練法、含浸法、共沈法等のいかなる方法も用いることができ、また、触媒前駆体を調製するための原料としては工業規模で入手可能ならば、いかなる化合物を用いてもよい。上記の方法のうち、含浸法や共沈法がInとCrを均一に分布させ得るため好ましい。
【0024】
なかでも、共沈法は触媒のバルク組成まで均一に調整することが可能であるためさらに好ましい。従って、好ましい触媒前駆体の調製方法の例としては、InおよびCrの化合物が溶解した液を沈殿剤と反応させて沈殿をつくり、濾別、洗浄、乾燥、焼成する方法(共沈法の例)、酸化クロムや水酸化クロムにIn化合物の溶液を含浸し、乾燥、焼成する方法(含浸法の例)等があげられる。担体を用いる場合には例えばInおよびCrの化合物が溶解した液を担体に含浸し、乾燥、焼成することにより調製することができる。
【0025】
さらに好ましい調製方法の例としては、共沈法においてInおよびCrの化合物が溶解した液と沈殿剤とを反応容器の中の反応液のpHが6〜12、特に好ましくは6.5〜10の範囲内に在るようにコントロールしながら、双方同時に、あるいは交互に滴下して調製したスラリーを濾別、洗浄、乾燥し、焼成する方法があげられる。
【0026】
InおよびCrの化合物としては硝酸塩、塩化物、硫酸塩が好適に用いられる。なかでも共沈法においては硝酸塩が、含浸法においては塩化物が好ましい。沈殿剤の種類としてはアンモニア、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、炭酸アンモニウム、炭酸水素アンモニウムなどが好ましく、なかでもアンモニアが特に好ましい。
【0027】
触媒形状として成型物が望ましい場合には焼成前、または焼成後に打錠成型を行ったり、乾燥前に押し出し成型を実施することにより成型物とすることができる。
【0028】
乾燥方法としては80〜130℃、特には90〜120℃の温度範囲で、空気あるいはN などの不活性ガス雰囲気中で30分以上行うことが好ましいが、減圧乾燥などの他の乾燥方法で行うことも可能である。
焼成は300℃〜600℃、好ましくは350℃〜500℃の温度範囲で行うことが適当であるが、調製方法によって焼成の雰囲気を選ぶ必要がある。
【0029】
すなわち、水酸化クロム、酸化クロムなどのクロム化合物は約350℃以上の高温でO に触れると比表面積の大幅な低下を引き起こし、また、活性炭は燃焼して消失する。このため、担体を使用せずにクロム化合物を触媒前駆体の主成分とする場合や、活性炭を担体として用いる場合には350℃以上の温度で1000Pa(絶対圧力)以上のO を含む雰囲気に曝してはならず、N 、Arなどの不活性ガスもしくは還元性ガス雰囲気で焼成することが望ましい。
ここで言う還元性ガス雰囲気とはH 、CO、NOなどの還元力を有するガスを含有する雰囲気のことであり、その他に不活性ガスや水分も含有することができる。O などの酸化性ガスについても安全上問題とならない濃度であれば含まれていてもよいが、含まれていない方が望ましい。
【0030】
担体としてアルミナや各種金属フッ化物を用いる場合にはO 雰囲気下でも担体が比表面積の低下を防止する効果をもつため、O を含む雰囲気、代表的には空気中で焼成することも可能である。しかし、特開平5−92141号公報に記載されているように、焼成後に行う前駆体のフッ素化時に、Crが飛散するという問題が生じる。従って、上記担体を用いる場合にも不活性ガスもしくは還元性ガス雰囲気で焼成する、もしくは、O を含む雰囲気で焼成を行った後にさらに、還元性ガス雰囲気で焼成することが望ましい。
【0031】
さらに好ましい焼成方法としては、焼成工程の中に還元性ガス雰囲気で熱処理する工程を設ける方法があげられる。すなわち、クロム化合物を触媒前駆体の主成分とする場合や、活性炭を担体として用いる場合には、乾燥工程後に直接、還元性ガス雰囲気で焼成する、もしくは、一旦、不活性ガス中で焼成を行った後にさらに還元性ガス雰囲気で焼成することが好ましい。担体としてアルミナや各種金属フッ化物を用いる場合には、乾燥工程後に直接、還元性ガス雰囲気で焼成する、もしくは、一旦、不活性ガス中やO を含む雰囲気で焼成を行った後にさらに還元性ガス雰囲気で焼成することが好ましい。
【0032】
上記の還元性ガス雰囲気で熱処理することにより、反応前に行う前駆体のフッ素化の際に、飛散するCrの量を減少させる、触媒の活性を向上させる等の効果が期待できる。熱処理の温度としては350〜500℃が適当であり、好ましくは370〜460℃、特に370〜450℃がよい。
【0033】
用いる還元性ガスの種類としてはH 、CO、NO等があげられるが、取扱いの簡便さからH を用いるのが適当である。還元性ガスの濃度は0.1〜100vol%とすることができる。必要に応じてガス中に20vol%以下の水や99.9vol%以下の不活性ガスを同伴することも可能であるが、O 濃度は安全上の問題から0.1vol%以下に抑えるべきである。ガス流量はGHSV(標準状態換算)で10〜10000h−1が適当であり、圧力は大気圧〜10kg/cm Gが操作上簡便である。処理時間としては少なくも30分間、好ましくは1〜10時間熱処理する。
【0034】
還元性ガス雰囲気で熱処理した触媒前駆体はO を絶対圧力で1000Pa以上含む雰囲気で高温に曝すことは好ましくない。従って、還元性ガス雰囲気で焼成した後、さらに空気中などのO を含有する雰囲気で焼成を行うことは避けるべきである。また、還元性ガス雰囲気での焼成が終了して前駆体を取り出す際に大気解放する場合にも、200℃以上の温度でO が系内に導入されるような操作は避けねばならず、好ましくは150℃、さらに好ましくは120℃以下の温度で空気を系内に少しづつ導入し、徐々に系内のO 濃度を上げた後に大気解放すべきである。
【0035】
以上述べた方法およびその他公知のいかなる方法で触媒前駆体の調製を行ってもよいが、Crに対するInの原子比(以下、In/Cr比と略す)は0.005〜0.6、好ましくは0.01〜0.5、特に好ましくは0.01〜0.3という範囲にしなければならない。上記の範囲よりIn/Cr比が小さいと、反応圧力の増加により反応速度が低下する割合が大きく、また、In/Cr比が大き過ぎても反応速度が低下するため好ましくない。In/Cr比の調整は、混練法ならば混合する粉の割合、含浸法や共沈法ならばInおよび/またはCr化合物の溶液濃度や溶液組成をコントロールすることにより容易に達成される。
【0036】
本発明のフッ素化触媒ではさらにO、Fを必須の構成元素とする。O、Fの含量はIn/Cr比や触媒前駆体の調製方法によって適切な範囲が変化するが、何れの成分も触媒の全重量に対して0.3重量%以上は必要である。好ましいOの含量の範囲は1〜25重量%である。触媒中にOとFを含有させるには、上記のようにInおよびCrを含有する化合物をHFやF 、分子中にFを有するハロゲン化炭化水素等によってフッ素化することで達成できる。なかでもHFを用いるフッ素化がコスト上優れている。
【0037】
フッ素化の温度としては300〜500℃、特には300〜450℃が好ましい。HFなどのフッ素化剤の濃度としては、0.1〜100vol%で行い得るが、発熱による温度上昇(以下、△Tと略す)が最大でも50℃以下になるように、必要に応じてN などの不活性ガスでフッ素化剤を希釈して用いることが望ましい。ガス流量はGHSVで10〜10000h−1が適当であり、圧力は大気圧〜20kg/cm Gで行うことができる。
【0038】
好ましい触媒前駆体のフッ素化方法の一例をあげると、大気圧下300〜400℃で、HF濃度5〜30vol%になるようにHFとN を供給しフッ素化を開始する。ホットスポットが前駆体充填層を通過した後、発熱に注意しながらHF濃度を90vol%以上に、圧力を2〜10kg/cm Gになるまで上げていき、最終条件で少なくとも実質的に発熱が観測されなくなるまで処理を継続する。
以上述べた触媒前駆体の焼成およびフッ素化はインコネル、ハステロイ製のものであれば同一の反応器で行うことも可能であり、操作上簡便である。
【0039】
本発明のIn、Cr、O、Fを必須の構成元素として含むフッ素化触媒はハロゲン化炭化水素をHFによりフッ素化する際に適用できるが、含水素ハロゲン化炭化水素のフッ素化反応を加圧下において行う際には特に効果的である。
つまり、オキシフッ化クロムのような従来のフッ素化触媒を用いた場合に認められる、反応圧力を上げると反応速度が低下し、原料炭化水素の転化率が減少するという反応圧力のマイナス効果が改善できる。
【0040】
さらに詳細に説明すると、本発明のIn、Cr、O、Fを必須の構成元素として含む触媒は大気圧付近においてはオキシフッ化クロムのごとき従来のフッ素化触媒と同程度もしくは若干活性が高い程度であるが、反応圧力を高くしても反応速度(原料炭化水素の転化率)の低下はほとんどない。一方、オキシフッ化クロムのごとき従来のフッ素化触媒では、反応圧力を高くすると反応速度が低下していく。従って、反応圧力が高くなるにしたがって、本発明の触媒と従来のフッ素化触媒との転化率の差は大きくなっていく。
【0041】
すなわち本発明の触媒を用いることにより、従来のフッ素化触媒で認められた反応圧力のマイナス効果を改善することができ、さらに、反応を加圧下で行うことにより副生物の生成量も減少させることができるため、特に、加圧下の含水素ハロゲン化炭化水素のフッ素化反応において高い収率でHFCを得ることができる。
【0042】
本発明でいう含水素ハロゲン化炭化水素とは、主には炭素数1から4の分子中にHを含むハロゲン化炭化水素のことであり、一例をあげると、CHCl 、CH Cl 、CH FCl、CH Cl、C HCl 、C Cl 、C Cl、C HCl 、C HFCl 、C HF Cl 、C HF Cl 、C HF Cl、C Cl、C Cl 、C FCl 、C Cl、C Cl 、C FCl、C Cl、C Cl 、C HF Cl などがある。さらに、上記の炭化水素中のClの全部もしくは一部をBrやIに置換した化合物であってもよい。
【0043】
なかでも、最近オゾン層を破壊する恐れのない代替フロンとして注目されているHFC−32やHFC−134a、HFC−125を製造する際の合成ルートとして考えられるCH Cl 、CH FCl(HCFC−31)、CHCl=CCl (トリクロロエチレン)、CF CH Cl(HCFC−133a)、CCl =CCl (パークロロエチレン)、CF CHCl (HCFC−123)、CF CHFCl(HCFC−124)のフッ素化反応において有効であり、HCFC−133aのフッ素化によるHFC−134aの製造には特に効果的である。
【0044】
フッ素化反応は固定床、流動床、移動床等の反応方法をとり得るが、固定床が一般的である。反応条件は反応によって適切な条件が変化するが、一般的には、ハロゲン化炭化水素に対するHFのモル比:0.5〜20、温度:200〜400℃、圧力:大気圧〜20kg/cm G、SV:50〜100000h−1である。本発明のフッ素化触媒を用いれば加圧下でも生産性が低下しないため反応圧力は大気圧以上に上げてよく、好ましい反応圧力は1〜20kg/cm G、より好ましくは1.5〜20kg/cm Gである。
【0045】
【実施例】
以下、実施例および比較例を示して、本発明を具体的に説明するが、かかる説明によって本発明が限定されないことは勿論である。
【0046】
なお、説明中In/Cr比は化学分析から求めた触媒に含まれる各元素の原子比を表し、反応例中のモル比とはハロゲン化炭化水素に対するHFのモル比を表す。SVは標準状態に換算した値であり、圧力はゲージ圧である。
【0047】
(触媒調製例1)
純水600mlを入れた10lの容器に、Cr(NO ・9H O 452gとIn(NO ・nH O(nは約5) 42gを純水 1.2lに溶かした溶液と28重量%のアンモニア水 0.3lとを攪拌しながら、反応液のpHが7.5〜8.5の範囲内になるように2種の水溶液の流量をコントロールして約1時間かけて滴下した。得られた水酸化物のスラリーを濾別し、純水でよく洗浄した後、120℃で12時間乾燥した。得られた固体を粉砕、黒鉛と混合し、打錠成型機によってペレット化した。このペレットをN 気流下400℃で4時間焼成し触媒前駆体とした。触媒前駆体60mlをインコネル製反応管に充填し、大気圧においてN 希釈したHF気流下350℃で、続いてN 希釈しない100%のHF気流下350℃で、さらに100%のHF気流下で昇圧して4kg/cm Gでフッ素化処理を行った。処理後のペレットの組成を以下に示す。
In:10.8重量%、 Cr:49.0重量%O:15.1重量%、 F:23.9重量%
これらの値からIn/Cr比は0.1であった。
【0048】
(比較触媒調製例1)
In(NO ・nH Oを加えないこと以外は触媒調製例1と同様にしてInを含まない触媒前駆体を調製した。この触媒前駆体60mlをインコネル製反応管に充填し、触媒調製例1と同様にしてフッ素化処理を行った。処理後のペレットの組成を以下に示す。
Cr:56.9重量%、 O:16.3重量%、 F:23.8重量%
【0049】
(触媒調製例2)
比較触媒調製例1で作った乾燥品200gにInCl ・4H O 17gを純水に溶解して含浸し、再度120℃で乾燥した。以下の操作は触媒調製例1と同様にしてフッ素化処理まで行った。処理後のペレットの組成を以下に示す。
In: 3.7重量%、 Cr:53.6重量%、O:16.0重量%、 F:23.3重量%
これらの値からIn/Cr比は0.03であった。
【0050】
(触媒調製例3)
触媒調製例1で打錠成型したペレット100mlをガラス製焼成管に充填し、3vol%の水蒸気を含んだH 気流下400℃で4時間焼成して前駆体とした。以下の操作は触媒調製例1と同様にしてフッ素化処理まで行った。
【0051】
(触媒調製例4)
CrCl ・6H O 111g、InCl ・4H O 6gを純水78gに溶解し、高純度活性アルミナ100gを浸漬して溶液を全量吸収させた。これを120℃で10時間乾燥した後、ガラス製焼成管に充填し、空気気流下400℃で3時間、さらに、3vol%の水蒸気を含んだH 気流下400℃で4時間焼成して前駆体とした。以下の操作は触媒調製例1と同様にしてフッ素化処理まで行った。処理後の組成を以下に示す。
In:1.1重量%、 Cr:10.5重量%、 Al:49.0重量%、O:2.5重量%、 F:60.3重量%
【0052】
(触媒調製例5)
Cr(NO ・9H OとIn(NO ・nH Oの水溶液にCu(NO ・3H O 1gをさらに追加する以外は触媒調製例1の操作に従ってペレットを作成し、それ以降の操作は触媒調製例3に従ってフッ素化処理まで行った。
【0053】
(触媒調製例6)
Cr(NO ・9H OとIn(NO ・nH Oの水溶液にCd(NO ・4H O 1gをさらに追加する以外は触媒調製例1の操作に従ってペレットを作成し、それ以降の操作は触媒調製例3に従ってフッ素化処理まで行った。
【0054】
(触媒調製例7)
Cr(NO ・9H OとIn(NO ・nH Oの水溶液にPb(NO 1gをさらに追加する以外は触媒調製例1の操作に従ってペレットを作成し、それ以降の操作は触媒調製例3に従ってフッ素化処理まで行った。
【0055】
(触媒調製例8)
Cr(NO ・9H OとIn(NO ・nH Oの水溶液にAgNO 1gをさらに加えて溶解させる以外は触媒調製例1の操作に従ってペレットを作成し、それ以降の操作は触媒調製例3に従ってフッ素化処理まで行った。
【0056】
(フッ素化反応例1)
触媒調製例1で調製した触媒50mlをインコネル製反応管に充填し、以下の反応条件でHFによるHCFC−133aのフッ素化反応を行った。反応管の出口ガスをアルカリトラップに吹き込んで未反応のHFおよび生成したHClを除去し、ガスクロによりガス組成を分析した。反応開始後6〜8時間目の結果を表1に示す。
温度:320℃、圧力:大気圧、モル比:8、SV:1500h−1
【0057】
(フッ素化反応例2)
反応圧力を4kg/cm Gにする以外はフッ素化反応例1と同様にしてHCFC−133aのフッ素化反応を行った。結果を表1に示す。
【0058】
(比較フッ素化反応例1)
比較触媒調製例1で調製した触媒を用いる以外はフッ素化反応例1と同様にしてHCFC−133aのフッ素化反応を行った。結果を表1に示す。
【0059】
(比較フッ素化反応例2)
反応圧力を4kg/cm Gにする以外は比較フッ素化反応例1と同様にしてHCFC−133aのフッ素化反応を行った。結果を表1に示す。
【0060】
(フッ素化反応例3)
触媒調製例2で調製した触媒を用いる以外はフッ素化反応例1と同様にしてHCFC−133aのフッ素化反応を行った。結果を表1に示す。
【0061】
(フッ素化反応例4)
反応圧力を4kg/cm Gにする以外はフッ素化反応例3と同様にしてHCFC−133aのフッ素化反応を行った。結果を表1に示す。
【0062】
【表1】

Figure 0003582798
表中、134a収率、134a選択率はそれぞれ、HFC−134aの収率、HFC−134aの選択率を表す。
【0063】
表1の結果より、大気圧においてはInを添加しても、しなくてもHFC−134a収率に大差ないが、反応圧力が高くなる(4kg/cm G)とInを添加した触媒の方が高い収率を与えることがわかる。このことはInとCrを組み合わせることによりCr単独の触媒でみられる圧力のマイナス効果を改善できることを示している。
【0064】
(フッ素化反応例5〜10)
触媒調製例3〜8で調製した触媒を用いる以外はフッ素化反応例2と同様にしてHCFC−133aのフッ素化反応を行った。結果を表2に示す。
【0065】
【表2】
Figure 0003582798
表中、134a収率、134a選択率はそれぞれ、HFC−134aの収率、HFC−134aの選択率を表す。
【0066】
(フッ素化反応例11)
触媒調製例3で調製した触媒30mlをインコネル製反応管に充填し、以下の反応条件でHFによるジクロロメタンのフッ素化反応を行った。反応管の出口ガスを加温したアルカリトラップに吹き込んで未反応のHFおよび生成したHClを除去し、ガスクロによりガス組成を分析した。
温度:190℃、圧力:大気圧、モル比:6、SV:1500h−1
未反応ジクロロメタンは39%であり、主な生成物の収率は以下の通りであった。
HFC−32;52%、HCFC−31;8%
【0067】
(フッ素化反応例12)
触媒調製例3で調製した触媒30mlをインコネル製反応管に充填し、以下の反応条件でHFによるHCFC−123のフッ素化反応を行った。反応管の出口ガスをアルカリトラップに吹き込んで未反応のHFおよび生成したHClを除去し、ガスクロによりガス組成を分析した。
温度:325℃、圧力:4kg/cm G、モル比:6、SV:1000h−1
未反応のHCFC−123は10%であり、主な生成物の収率は以下の通りであった。
HFC−125;60.6%、HCFC−124;24.5%
【0068】
【発明の効果】
本発明は、インジウム、クロム、酸素、フッ素を必須の構成元素として含み、クロムに対するインジウムの原子比が0.005〜0.6である、高い収率でHFCを生産するために改良されたフッ素化触媒、および、該触媒を用いて生産性よくHFCを製造する方法を提供するものであり、該触媒を用いて気相でHFによるハロゲン化炭化水素のフッ素化反応を行えば、加圧下でも高収率でHFCを得ることができる。[0001]
[Industrial applications]
The present invention relates to a fluorination catalyst and a fluorination method. More specifically, the present invention relates to a hydrofluorocarbon (hereinafter abbreviated as HFC) which does not contain any chlorine in the molecule and thus has no risk of destruction of the ozone layer. Hereinafter, abbreviated as HFC-32), 1,1,1,2-tetrafluoroethane (hereinafter, abbreviated as HFC-134a), and pentafluoroethane (hereinafter, abbreviated as HFC-125) with high yield. The present invention relates to an improved fluorination catalyst for producing HFC, and a method for producing HFC with high productivity by contacting hydrogen fluoride and halogenated hydrocarbon in a gas phase using the catalyst.
[0002]
[Prior art]
A typical HFC production method industrially performed is a method of exchanging halogens other than F with F by contacting a hydrogen-containing halogenated hydrocarbon with HF (HF from an unsaturated halogenated hydrocarbon as a raw material). ) And the reaction of exchanging a halogen other than F for F) at the same time).2  There is a method of exchanging halogen other than F (in some cases, a part of F) with H by contact with H. Of these, the fluorination reaction of hydrogen-containing halogenated hydrocarbons with HF is often difficult to proceed, and the production amount of HFC largely depends on the catalyst used.
[0003]
A representative example of the reaction that is most difficult to proceed is a synthesis reaction of HFC-134a by fluorination of 1-chloro-2,2,2-trifluoroethane (hereinafter abbreviated as HCFC-133a). This reaction is clearly an endothermic reaction that is thermodynamically disadvantageous. Therefore, in general, the reaction is carried out under the reaction conditions (pressure, temperature, space velocity) that give a significant conversion rate in the presence of stoichiometric or more HF in HCFC-133a.
[0004]
As an example, JP-A-55-27138 discloses that CrF3  ・ 3H2  Using a compound obtained by treating O with air as a catalyst, at atmospheric pressure, at a reaction temperature of 400 ° C., a molar ratio of HF to HCFC-133a (hereinafter abbreviated as “molar ratio”) 8, and a space velocity (hereinafter abbreviated as “SV”) 550 h-1Under the reaction conditions described above, HFC-134a was obtained at a yield of 32%.
[0005]
Japanese Patent Application Laid-Open No. 1-268551 discloses CoCl.2  / Al2  O3  Using a catalyst obtained by fluorination treatment at atmospheric pressure, a reaction temperature of 410 ° C., a molar ratio of 10, and a contact time of 30 seconds (SV 120 h-1), The yield of HFC-134a is 32%. The reaction at such a low SV has a low productivity, and the reaction at a high temperature causes not only a thermal energy loss but also a decrease in selectivity. shorten.
[0006]
Therefore, studies have been made so far for the purpose of enhancing the activity and prolonging the life of the catalyst. That is, JP-A-2-172933 discloses a catalyst comprising a halide or oxide containing Cr and at least one element selected from the group consisting of Al, Mg, Ca, Ba, Sr, Fe, Ni, Co and Mn. Has excellent durability (life). Further, EP-502605 discloses that a Cr-based catalyst supporting Zn gives high activity. Further, Japanese Patent Application Laid-Open No. 4-346943 discloses a partially fluorinated Cr carrying Ru or Pt.2  O3  Discloses that the catalyst consisting of
In addition, as a catalyst containing a component other than Cr as a main component, there is a catalyst in which an In compound disclosed by the present applicant in JP-A-2-95438 is supported on a carrier such as alumina and treated with HF. Is lower than that of a catalyst containing Cr as a main component.
[0007]
[Problems to be solved by the invention]
However, in recent years, as described in the specification of JP-A-4-346943, when the fluorination reaction of HCFC-133a by HF is performed using a conventional Cr-based or Al-based catalyst, the reaction pressure is increased. It has been clarified that there is a new problem inherent in the present reaction that the reaction rate decreases and the productivity decreases when the value of is increased.
[0008]
That is, even if the catalyst shows a high reaction yield under atmospheric pressure, the reaction pressure is increased [for example, 10 kg / cm2  G (gauge pressure)] and the selectivity of HFC-134a are slightly improved, but the yield is considerably reduced due to the reduced conversion of HCFC-133a [for comparison, other conditions (reaction temperature, molar ratio, SV converted to the standard state is the same). Although varying in degree, this phenomenon is also observed in the fluorination reaction of other hydrogenated halogenated hydrocarbons.
[0009]
1 kg / cm reaction in actual production equipment2  It is not preferable to perform the process near the atmospheric pressure of about G, because an additional facility for reducing the pressure is required, which leads to an increase in facility cost. Further, the selectivity of the reaction is better under pressure, and in particular, the amount of by-products of highly toxic unsaturated compounds can be suppressed. Accordingly, there is a need for a catalyst that does not decrease the reaction rate even when the reaction pressure is increased, and more preferably a catalyst that increases the reaction rate when the reaction pressure is increased.
[0010]
Of course, high activation and long life of the catalyst, which are conventional problems, greatly contribute to the cost and productivity of the catalyst, and thus are one of the important problems of the present invention.
SUMMARY OF THE INVENTION It is an object of the present invention to provide an improved fluorination catalyst for producing HFC in a high yield in the production of HFC, and to use the catalyst to produce hydrogen fluoride and halogenated hydrocarbon in the gas phase. The method is to provide a method for producing HFC with high productivity by bringing into contact with, for example, a method for producing HFC-32, HFC-134a and HFC-125 with high productivity.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the combination of In and Cr as metal components can improve the negative effect of pressure on the reaction rate, and have accomplished the present invention.
[0012]
The invention of claim 1 of the present invention contains indium, chromium, oxygen, and fluorine as essential constituent elements, and the atomic ratio of indium to chromium is 0.005 to 0.6.A fluorination catalyst, wherein the step of preparing the catalyst includes a step of performing a heat treatment at 350 to 500 ° C. in a reducing gas.It is a fluorination catalyst characterized by the above-mentioned.
[0013]
The invention according to claim 2 of the present invention is the fluorination catalyst according to claim 1, which is prepared by a coprecipitation method.
[0015]
Claims of the invention3The invention according to claim 1, characterized in that it contains at least one element selected from the group consisting of elements of groups 11, 12, 13, and 14 of the long period type periodic table.Or 2The fluorination catalyst described in 1. above.
[0016]
Claims of the invention4The invention of claim 1Described in any of 3Wherein the hydrogen fluoride and the halogenated hydrocarbon are brought into contact with each other in the gas phase in the presence of the fluorination catalyst.
[0017]
Claims of the invention5The invention according to claim, wherein the halogenated hydrocarbon is a hydrogen-containing halogenated hydrocarbon.4It is a fluorination method described.
[0018]
Claims of the invention6The invention of the invention is that the hydrogenated halogenated hydrocarbon is dichloromethane, chlorofluoromethane, 1-chloro-2,2,2-trifluoroethane, 1,1-dichloro-2,2,2-trifluoroethane, The chloro-1,2,2,2-tetrafluoroethane is selected from the group consisting of:5It is a fluorination method described.
[0019]
Claims of the invention7The invention according to claim, wherein the hydrogen-containing halogenated hydrocarbon is 1-chloro-2,2,2-trifluoroethane.6It is a fluorination method described.
[0020]
In the present invention, in a method of fluorinating a halogenated hydrocarbon by contacting the halogenated hydrocarbon with HF, In, Cr, O, and F are included as essential constituent elements, and the atomic ratio of In to Cr is 0. The solution is to use a catalyst having a 0.005 to 0.6, preferably 0.01 to 0.5, particularly preferably 0.01 to 0.3.
[0021]
As a constituent element of the catalyst other than In, Cr, O, and F, it is not preferable that a large amount (for example,% order by weight) of an alkali metal is contained, but other elements are contained by% order or more by weight. Is also good. In particular, at least one element selected from the group consisting of elements of Groups 11, 12, 13, and 14 (new IUPAC nomenclature) of the long-periodic periodic table in which the catalyst can be expected to prolong the life of the catalyst, particularly Cu , Ag, Au, Zn, Cd, Hg, Al, Ga, Sn, Pb and the like may be contained in an atomic ratio to Cr of 0.001 to 0.5, preferably 0.003 to 0.1. Good.
[0022]
The catalyst of the present invention uses a compound containing In and Cr (for example, an oxide or a hydroxide) as a catalyst precursor and converts the compound into HF or F.2  It can be prepared by fluorinating with a halogenated hydrocarbon having fluorine in the molecule and partially replacing O and OH with fluorine. The compound containing In and Cr can be supported on a carrier, and suitable carriers include activated carbon, alumina, aluminum fluoride, calcium fluoride, and magnesium fluoride.
[0023]
As a method for preparing the catalyst precursor, any of the conventionally known methods such as a kneading method, an impregnation method, and a coprecipitation method can be used, and a raw material for preparing the catalyst precursor is available on an industrial scale. Then, any compound may be used. Of the above methods, the impregnation method or the coprecipitation method is preferable because In and Cr can be uniformly distributed.
[0024]
Of these, the coprecipitation method is more preferable because it can uniformly adjust the bulk composition of the catalyst. Therefore, as a preferred example of a method for preparing a catalyst precursor, a method in which a solution in which a compound of In and Cr is dissolved is reacted with a precipitant to form a precipitate, which is separated by filtration, washed, dried, and calcined (an example of a coprecipitation method) ), A method of impregnating chromium oxide or chromium hydroxide with a solution of an In compound, drying and firing (an example of the impregnation method). When a carrier is used, it can be prepared, for example, by impregnating the carrier with a liquid in which a compound of In and Cr is dissolved, drying and firing.
[0025]
As a more preferred example of the preparation method, a solution in which the compound of In and Cr is dissolved in the coprecipitation method and a precipitant are mixed so that the pH of the reaction solution in the reaction vessel is 6 to 12, particularly preferably 6.5 to 10. A method of filtering, washing, drying, and calcining a slurry prepared by simultaneously or alternately dripping both while controlling to be within the range, may be mentioned.
[0026]
As compounds of In and Cr, nitrates, chlorides and sulfates are preferably used. Of these, nitrates are preferred in the coprecipitation method and chlorides in the impregnation method. As the kind of the precipitant, ammonia, sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate and the like are preferable, and among them, ammonia is particularly preferable.
[0027]
When a molded product is desired as the catalyst shape, it can be formed into a molded product by performing tablet molding before or after firing, or by performing extrusion molding before drying.
[0028]
As a drying method, air or N is used in a temperature range of 80 to 130 ° C., particularly 90 to 120 ° C.2  Preferably, the drying is performed for 30 minutes or more in an inert gas atmosphere, but the drying can be performed by another drying method such as drying under reduced pressure.
The firing is suitably performed at a temperature in the range of 300 ° C. to 600 ° C., preferably 350 ° C. to 500 ° C., but the firing atmosphere needs to be selected depending on the preparation method.
[0029]
That is, chromium compounds such as chromium hydroxide, chromium oxide, etc.2  Touching causes a significant decrease in the specific surface area, and the activated carbon burns and disappears. For this reason, when a chromium compound is used as a main component of the catalyst precursor without using a carrier, or when activated carbon is used as a carrier, an O pressure of 1000 Pa (absolute pressure) or more at a temperature of 350 ° C. or more is used.2  Must not be exposed to an atmosphere containing2  It is preferable to perform firing in an atmosphere of an inert gas such as Ar, Ar or a reducing gas.
Here, the reducing gas atmosphere is H2  , CO, NO, and the like, and may also contain an inert gas or moisture. O2  Such an oxidizing gas may be contained as long as it does not pose a safety problem, but is preferably not contained.
[0030]
When alumina or various metal fluorides are used as the carrier, O2  Since the carrier has the effect of preventing the specific surface area from decreasing even in an atmosphere,2  It is also possible to bake in an atmosphere containing, typically, air. However, as described in JP-A-5-92141, there is a problem that Cr is scattered during fluorination of the precursor after firing. Therefore, even when the above carrier is used, calcination is performed in an inert gas or reducing gas atmosphere,2  After baking in an atmosphere containing, it is desirable to further bake in a reducing gas atmosphere.
[0031]
A more preferable firing method includes a method of providing a heat treatment in a reducing gas atmosphere during the firing step. In other words, when a chromium compound is used as the main component of the catalyst precursor or when activated carbon is used as a carrier, firing is performed directly in a reducing gas atmosphere after the drying step, or firing is performed once in an inert gas. After that, it is preferable to further bake in a reducing gas atmosphere. When alumina or various metal fluorides are used as the carrier, they are calcined directly in a reducing gas atmosphere after the drying step, or once in an inert gas or O 2.2  After baking in an atmosphere containing, it is preferable to further bake in a reducing gas atmosphere.
[0032]
By performing the heat treatment in the above reducing gas atmosphere, effects such as reducing the amount of scattered Cr and improving the activity of the catalyst at the time of fluorination of the precursor performed before the reaction can be expected. The temperature of the heat treatment is suitably from 350 to 500 ° C, preferably from 370 to 460 ° C, particularly preferably from 370 to 450 ° C.
[0033]
The type of reducing gas used is H2  , CO, NO, etc., but H2  It is appropriate to use The concentration of the reducing gas can be 0.1 to 100 vol%. If necessary, 20 vol% or less of water or 99.9 vol% or less of inert gas can be entrained in the gas.2  The concentration should be kept below 0.1 vol% due to safety concerns. Gas flow rate is 10 to 10000h in GHSV (standard state conversion)-1Is appropriate, and the pressure is atmospheric pressure to 10 kg / cm.2  G is easy to operate. The heat treatment is performed for at least 30 minutes, preferably 1 to 10 hours.
[0034]
The catalyst precursor heat-treated in a reducing gas atmosphere is O2  Exposure to high temperatures in an atmosphere containing 1000 Pa or more in absolute pressure is not preferred. Therefore, after firing in a reducing gas atmosphere, O2  Should be avoided in an atmosphere containing. Also, when the firing in the reducing gas atmosphere is completed and the precursor is released to the atmosphere at the time of taking out the precursor, the O 2 is heated at a temperature of 200 ° C. or more.2  It is necessary to avoid an operation in which air is gradually introduced into the system at a temperature of preferably 150 ° C., more preferably 120 ° C. or lower, and gradually introduce O into the system.2  It should be released to the atmosphere after raising the concentration.
[0035]
The catalyst precursor may be prepared by the method described above or any other known method, but the atomic ratio of In to Cr (hereinafter abbreviated as In / Cr ratio) is 0.005 to 0.6, preferably It must be in the range 0.01 to 0.5, particularly preferably 0.01 to 0.3. If the In / Cr ratio is smaller than the above range, the rate of decrease in the reaction rate due to an increase in the reaction pressure is large, and if the In / Cr ratio is too large, the reaction rate is undesirably decreased. The adjustment of the In / Cr ratio can be easily achieved by controlling the proportion of powder to be mixed in the kneading method, or by controlling the solution concentration or composition of the In and / or Cr compounds in the impregnation method or the coprecipitation method.
[0036]
In the fluorination catalyst of the present invention, O and F are further included as essential constituent elements. The appropriate range of the contents of O and F varies depending on the In / Cr ratio and the method of preparing the catalyst precursor, but each component requires 0.3% by weight or more based on the total weight of the catalyst. The preferred range of O content is 1 to 25% by weight. In order to include O and F in the catalyst, the compound containing In and Cr is converted to HF or F2  Can be achieved by fluorination with a halogenated hydrocarbon having F in the molecule. Among them, fluorination using HF is excellent in cost.
[0037]
The fluorination temperature is preferably 300 to 500C, particularly preferably 300 to 450C. The concentration of the fluorinating agent such as HF can be set at 0.1 to 100 vol%, but if necessary, N may be adjusted so that the temperature rise due to heat generation (hereinafter abbreviated as ΔT) will be 50 ° C or less at the maximum.2  It is desirable to dilute the fluorinating agent with an inert gas such as this. Gas flow rate is 10 to 10000h in GHSV-1Is suitable, and the pressure is from atmospheric pressure to 20 kg / cm.2  G can do it.
[0038]
As an example of a preferred method for fluorinating a catalyst precursor, HF and N are mixed at 300 to 400 ° C. under atmospheric pressure so that the HF concentration becomes 5 to 30 vol%.2  To start fluorination. After the hot spot has passed through the precursor packed layer, the HF concentration was increased to 90 vol% or more and the pressure was increased to 2 to 10 kg / cm while paying attention to heat generation.2  The temperature is increased to G, and the process is continued until at least substantially no heat generation is observed under the final conditions.
The calcination and fluorination of the catalyst precursor described above can be performed in the same reactor as long as they are made of Inconel or Hastelloy, which is convenient in operation.
[0039]
The fluorination catalyst of the present invention containing In, Cr, O, and F as essential constituent elements can be applied when fluorinating a halogenated hydrocarbon with HF. It is particularly effective when performing the above.
In other words, when a conventional fluorination catalyst such as chromium oxyfluoride is used, the negative effect of the reaction pressure that the reaction rate decreases when the reaction pressure is increased and the conversion of the raw material hydrocarbon decreases can be improved. .
[0040]
More specifically, the catalyst of the present invention containing In, Cr, O, and F as essential constituent elements has a similar or slightly higher activity than a conventional fluorination catalyst such as chromium oxyfluoride at about atmospheric pressure. However, even if the reaction pressure is increased, there is almost no decrease in the reaction rate (conversion of the raw material hydrocarbon). On the other hand, in the case of a conventional fluorination catalyst such as chromium oxyfluoride, when the reaction pressure is increased, the reaction rate decreases. Therefore, as the reaction pressure increases, the difference in the conversion between the catalyst of the present invention and the conventional fluorination catalyst increases.
[0041]
That is, by using the catalyst of the present invention, the negative effect of the reaction pressure observed with the conventional fluorination catalyst can be improved, and further, by performing the reaction under pressure, the amount of by-products can be reduced. In particular, HFC can be obtained in a high yield in a fluorination reaction of a hydrogen-containing halogenated hydrocarbon under pressure.
[0042]
The hydrogen-containing halogenated hydrocarbon referred to in the present invention is mainly a halogenated hydrocarbon containing H in a molecule having 1 to 4 carbon atoms.3  , CH2  Cl2  , CH2  FCl, CH3  Cl, C2  HCl3  , C2  H2  Cl2  , C2  H3  Cl, C2  HCl5  , C2  HFCl4  , C2  HF2  Cl3  , C2  HF3  Cl2  , C2  HF4  Cl, C2  H2  F3  Cl, C2  H3  Cl3  , C2  H3  FCl2  , C2  H3  F2  Cl, C2  H4  Cl2  , C2  H4  FCl, C2  H5  Cl, C3  H2  F4  Cl2  , C3  HF4  Cl3  and so on. Further, a compound in which all or part of Cl in the above hydrocarbon is substituted with Br or I may be used.
[0043]
Among them, CH which is considered as a synthetic route for producing HFC-32, HFC-134a, and HFC-125, which have recently attracted attention as alternative chlorofluorocarbons that do not have a risk of depleting the ozone layer.2  Cl2  , CH2  FCl (HCFC-31), CHCl = CCl2  (Trichloroethylene), CF3  CH2  Cl (HCFC-133a), CCl2  = CCl2  (Perchloroethylene), CF3  CHCl2  (HCFC-123), CF3  It is effective in the fluorination reaction of CHFCl (HCFC-124), and is particularly effective in the production of HFC-134a by fluorination of HCFC-133a.
[0044]
The fluorination reaction can take a reaction method such as a fixed bed, a fluidized bed, and a moving bed, but a fixed bed is generally used. Suitable reaction conditions vary depending on the reaction, but generally, the molar ratio of HF to the halogenated hydrocarbon is 0.5 to 20, the temperature is 200 to 400 ° C., and the pressure is atmospheric pressure to 20 kg / cm.2  G, SV: 50-100000h-1It is. If the fluorination catalyst of the present invention is used, the reaction pressure may be raised to atmospheric pressure or higher because the productivity does not decrease even under pressure, and the preferable reaction pressure is 1 to 20 kg / cm.2  G, more preferably 1.5 to 20 kg / cm2  G.
[0045]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but it is needless to say that the present invention is not limited by such descriptions.
[0046]
In the description, the In / Cr ratio indicates the atomic ratio of each element contained in the catalyst obtained from chemical analysis, and the molar ratio in the reaction examples indicates the molar ratio of HF to halogenated hydrocarbon. SV is a value converted into a standard state, and pressure is a gauge pressure.
[0047]
(Catalyst preparation example 1)
Cr (NO) is placed in a 10-liter container containing 600 ml of pure water.3  )3  ・ 9H2  O 452g and In (NO3  )3  ・ NH2  O (n is about 5) A solution prepared by dissolving 42 g of pure water in 1.2 liters and 0.3 liters of 28% by weight aqueous ammonia were stirred to adjust the pH of the reaction solution within the range of 7.5 to 8.5. The two aqueous solutions were added dropwise over about 1 hour while controlling the flow rates of the two aqueous solutions. The obtained hydroxide slurry was separated by filtration, washed well with pure water, and then dried at 120 ° C. for 12 hours. The obtained solid was pulverized, mixed with graphite, and pelletized by a tableting machine. This pellet is2  It was calcined at 400 ° C. for 4 hours in an air stream to obtain a catalyst precursor. 60 ml of the catalyst precursor was filled in a reaction tube made of Inconel, and N2  350 ° C. in a diluted HF stream followed by N 22  The pressure is increased to 4 kg / cm at 350 ° C. under a 100% HF gas stream which is not diluted, and further under a 100% HF gas stream.2  G was used for fluorination treatment. The composition of the pellet after the treatment is shown below.
In: 10.8% by weight, Cr: 49.0% by weight O: 15.1% by weight, F: 23.9% by weight
From these values, the In / Cr ratio was 0.1.
[0048]
(Comparative catalyst preparation example 1)
In (NO3  )3  ・ NH2  A catalyst precursor containing no In was prepared in the same manner as in Catalyst Preparation Example 1 except that O was not added. 60 ml of this catalyst precursor was filled in a reaction tube made of Inconel, and fluorination treatment was performed in the same manner as in Preparation Example 1 for the catalyst. The composition of the pellet after the treatment is shown below.
Cr: 56.9% by weight, O: 16.3% by weight, F: 23.8% by weight
[0049]
(Catalyst Preparation Example 2)
200 g of the dried product prepared in Comparative Catalyst Preparation Example 13  ・ 4H2  17 g of O was dissolved in pure water for impregnation, and dried at 120 ° C. again. The following operation was performed up to the fluorination treatment in the same manner as in Catalyst Preparation Example 1. The composition of the pellet after the treatment is shown below.
In: 3.7% by weight, Cr: 53.6% by weight, O: 16.0% by weight, F: 23.3% by weight
From these values, the In / Cr ratio was 0.03.
[0050]
(Catalyst Preparation Example 3)
100 ml of the pellets formed by tableting in Catalyst Preparation Example 1 were filled in a glass firing tube, and H containing 3 vol% of steam was added.2  The precursor was fired at 400 ° C. for 4 hours in an air stream to obtain a precursor. The following operation was performed up to the fluorination treatment in the same manner as in Catalyst Preparation Example 1.
[0051]
(Catalyst preparation example 4)
CrCl3  ・ 6H2  O 111g, InCl3  ・ 4H2  6 g of O was dissolved in 78 g of pure water, and 100 g of high-purity activated alumina was immersed to absorb the entire amount of the solution. This was dried at 120 ° C. for 10 hours, filled in a glass firing tube, and heated at 400 ° C. for 3 hours under an air stream, and further containing H at 3 vol%.2  The precursor was fired at 400 ° C. for 4 hours in an air stream to obtain a precursor. The following operation was performed up to the fluorination treatment in the same manner as in Catalyst Preparation Example 1. The composition after the treatment is shown below.
In: 1.1% by weight, Cr: 10.5% by weight, Al: 49.0% by weight, O: 2.5% by weight, F: 60.3% by weight
[0052]
(Catalyst Preparation Example 5)
Cr (NO3  )3  ・ 9H2  O and In (NO3  )3  ・ NH2  Cu (NO3  )2  ・ 3H2  Pellets were prepared according to the procedure of Catalyst Preparation Example 1 except that 1 g of O was further added, and subsequent operations were performed up to fluorination treatment according to Catalyst Preparation Example 3.
[0053]
(Catalyst Preparation Example 6)
Cr (NO3  )3  ・ 9H2  O and In (NO3  )3  ・ NH2  Cd (NO3  )2  ・ 4H2  Pellets were prepared according to the procedure of Catalyst Preparation Example 1 except that 1 g of O was further added, and subsequent operations were performed up to fluorination treatment according to Catalyst Preparation Example 3.
[0054]
(Catalyst Preparation Example 7)
Cr (NO3  )3  ・ 9H2  O and In (NO3  )3  ・ NH2  Pb (NO3  )2    Pellets were prepared according to the procedure of Catalyst Preparation Example 1 except that 1 g was further added, and the subsequent operations were performed up to the fluorination treatment according to Catalyst Preparation Example 3.
[0055]
(Catalyst Preparation Example 8)
Cr (NO3  )3  ・ 9H2  O and In (NO3  )3  ・ NH2  AgNO in aqueous solution of O3  Pellets were prepared according to the procedure of Catalyst Preparation Example 1 except that 1 g was further added and dissolved, and subsequent operations were performed up to fluorination treatment according to Catalyst Preparation Example 3.
[0056]
(Example 1 of fluorination reaction)
50 ml of the catalyst prepared in Catalyst Preparation Example 1 was filled in a reaction tube made of Inconel, and a fluorination reaction of HCFC-133a with HF was performed under the following reaction conditions. The outlet gas of the reaction tube was blown into an alkali trap to remove unreacted HF and generated HCl, and the gas composition was analyzed by gas chromatography. Table 1 shows the results 6 to 8 hours after the start of the reaction.
Temperature: 320 ° C, pressure: atmospheric pressure, molar ratio: 8, SV: 1500h-1
[0057]
(Example 2 of fluorination reaction)
Reaction pressure of 4 kg / cm2  A fluorination reaction of HCFC-133a was carried out in the same manner as in fluorination reaction example 1 except that G was used. Table 1 shows the results.
[0058]
(Comparative fluorination reaction example 1)
A fluorination reaction of HCFC-133a was carried out in the same manner as in fluorination reaction example 1 except that the catalyst prepared in comparative catalyst preparation example 1 was used. Table 1 shows the results.
[0059]
(Comparative fluorination reaction example 2)
Reaction pressure of 4 kg / cm2  A fluorination reaction of HCFC-133a was performed in the same manner as in Comparative Fluorination Reaction Example 1 except that G was used. Table 1 shows the results.
[0060]
(Example 3 of fluorination reaction)
A fluorination reaction of HCFC-133a was performed in the same manner as in fluorination reaction example 1 except that the catalyst prepared in catalyst preparation example 2 was used. Table 1 shows the results.
[0061]
(Example 4 of fluorination reaction)
Reaction pressure of 4 kg / cm2  A fluorination reaction of HCFC-133a was carried out in the same manner as in fluorination reaction example 3 except that G was used. Table 1 shows the results.
[0062]
[Table 1]
Figure 0003582798
In the table, 134a yield and 134a selectivity represent the yield of HFC-134a and the selectivity of HFC-134a, respectively.
[0063]
From the results shown in Table 1, at atmospheric pressure, the HFC-134a yield does not greatly differ with or without the addition of In, but the reaction pressure increases (4 kg / cm).2  It can be seen that the catalyst added with G) and In gives a higher yield. This indicates that the combination of In and Cr can improve the negative pressure effect seen with the Cr-only catalyst.
[0064]
(Fluorination reaction examples 5 to 10)
A fluorination reaction of HCFC-133a was carried out in the same manner as in fluorination reaction example 2 except that the catalysts prepared in catalyst preparation examples 3 to 8 were used. Table 2 shows the results.
[0065]
[Table 2]
Figure 0003582798
In the table, 134a yield and 134a selectivity represent the yield of HFC-134a and the selectivity of HFC-134a, respectively.
[0066]
(Example 11 of fluorination reaction)
30 ml of the catalyst prepared in Catalyst Preparation Example 3 was charged into a reaction tube made of Inconel, and a fluorination reaction of dichloromethane with HF was performed under the following reaction conditions. The outlet gas of the reaction tube was blown into a heated alkali trap to remove unreacted HF and generated HCl, and the gas composition was analyzed by gas chromatography.
Temperature: 190 ° C, pressure: atmospheric pressure, molar ratio: 6, SV: 1500h-1
The unreacted dichloromethane was 39%, and the yields of the main products were as follows.
HFC-32; 52%, HCFC-31; 8%
[0067]
(Example 12 of fluorination reaction)
30 ml of the catalyst prepared in Catalyst Preparation Example 3 was charged into a reaction tube made of Inconel, and a fluorination reaction of HCFC-123 with HF was performed under the following reaction conditions. The outlet gas of the reaction tube was blown into an alkali trap to remove unreacted HF and generated HCl, and the gas composition was analyzed by gas chromatography.
Temperature: 325 ° C, pressure: 4kg / cm2  G, molar ratio: 6, SV: 1000h-1
Unreacted HCFC-123 was 10%, and the yields of main products were as follows.
HFC-125: 60.6%, HCFC-124: 24.5%
[0068]
【The invention's effect】
The present invention comprises indium, chromium, oxygen, and fluorine as essential constituent elements, and has an atomic ratio of indium to chromium of 0.005 to 0.6. Catalyst, and a method for producing HFC with high productivity using the catalyst, and if the fluorination reaction of halogenated hydrocarbons with HF in the gas phase using the catalyst, even under pressure HFC can be obtained in high yield.

Claims (7)

インジウム、クロム、酸素、フッ素を必須の構成元素として含み、クロムに対するインジウムの原子比が0.005〜0.6であるフッ素化触媒であって、該触媒の調製工程に還元性ガス中、350〜500℃で熱処理する工程を含むことを特徴とするフッ素化触媒。A fluorination catalyst containing indium, chromium, oxygen, and fluorine as essential constituent elements, and having an atomic ratio of indium to chromium of 0.005 to 0.6. A fluorination catalyst comprising a step of heat-treating at a temperature of from 500 to 500 ° C. 共沈法により調製することを特徴とする請求項1記載のフッ素化触媒。The fluorination catalyst according to claim 1, which is prepared by a coprecipitation method. 長周期型周期表の11、12、13、14族元素からなる群から選ばれる少なくとも1種の元素を含有することを特徴とする請求項1または2に記載のフッ素化触媒。3. The fluorination catalyst according to claim 1, wherein the fluorination catalyst contains at least one element selected from the group consisting of elements of Groups 11, 12, 13, and 14 of the long-period periodic table. 請求項1から3のいずれかに記載のフッ素化触媒の存在下、気相でフッ化水素とハロゲン化炭化水素を接触させることを特徴とするハロゲン化炭化水素のフッ素化方法。A method for fluorinating a halogenated hydrocarbon, comprising bringing hydrogen fluoride and a halogenated hydrocarbon into contact with each other in the gas phase in the presence of the fluorination catalyst according to any one of claims 1 to 3. 該ハロゲン化炭化水素が含水素ハロゲン化炭化水素であることを特徴とする請求項4記載のフッ素化方法。The fluorination method according to claim 4, wherein the halogenated hydrocarbon is a hydrogen-containing halogenated hydrocarbon. 該含水素ハロゲン化炭化水素がジクロロメタン、クロロフルオロメタン、1−クロロ−2,2,2−トリフルオロエタン、1,1−ジクロロ−2,2,2−トリフルオロエタン、1−クロロ−1,2,2,2−テトラフルオロエタンからなる群から選ばれることを特徴とする請求項5記載のフッ素化方法。When the hydrogenated halogenated hydrocarbon is dichloromethane, chlorofluoromethane, 1-chloro-2,2,2-trifluoroethane, 1,1-dichloro-2,2,2-trifluoroethane, 1-chloro-1, The fluorination method according to claim 5, wherein the fluorination method is selected from the group consisting of 2,2,2-tetrafluoroethane. 該含水素ハロゲン化炭化水素が1−クロロ−2,2,2−トリフルオロエタンであることを特徴とする請求項6記載のフッ素化方法。The fluorination method according to claim 6, wherein the hydrogen-containing halogenated hydrocarbon is 1-chloro-2,2,2-trifluoroethane.
JP11174994A 1993-06-18 1994-04-28 Fluorination catalyst and fluorination method Expired - Lifetime JP3582798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11174994A JP3582798B2 (en) 1993-06-18 1994-04-28 Fluorination catalyst and fluorination method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-147897 1993-06-18
JP14789793 1993-06-18
JP11174994A JP3582798B2 (en) 1993-06-18 1994-04-28 Fluorination catalyst and fluorination method

Publications (2)

Publication Number Publication Date
JPH0761944A JPH0761944A (en) 1995-03-07
JP3582798B2 true JP3582798B2 (en) 2004-10-27

Family

ID=26451080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11174994A Expired - Lifetime JP3582798B2 (en) 1993-06-18 1994-04-28 Fluorination catalyst and fluorination method

Country Status (1)

Country Link
JP (1) JP3582798B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200516068A (en) * 2003-09-10 2005-05-16 Showa Denko Kk Process for production of hydrofluorocarbons, products thereof and use of the products
JP5013692B2 (en) * 2004-09-16 2012-08-29 昭和電工株式会社 Fluoromethane production method and product

Also Published As

Publication number Publication date
JPH0761944A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
US5494876A (en) Fluorination catalyst and fluorination process
EP0968161B1 (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
JP2557936B2 (en) Process for producing 1,1,1-trifluoro-2,2-dichloroethane by hydrofluorination in the presence of a catalyst
KR100351211B1 (en) Chromium-based fluorinated catalyst, preparation method of the catalyst and fluorination method using the catalyst
EP2417086B1 (en) Process for preparing 3,3,3-trifluoropropene
JPH0780796B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
EP0801980B1 (en) Catalyst for the fluorination of halogenated hydrocarbons
JPH04503215A (en) Production of 1,1,1,2-tetrafluoroethane
JPH04226927A (en) Process for producing 1,1,1,2-tetrafluorochloroethane and pentafluoroethane
EP0576600B1 (en) Process for the manufacture of 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane
JPH07504353A (en) Fluorination catalyst and fluorination method
JP4314391B2 (en) Fluorination catalyst, method for producing the same, and method for producing fluorine compounds using the catalysts
WO1992016479A1 (en) Process for the manufacture of 2,2-dichloro-1,1,1-trifluoroethane, 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane
AU663816B2 (en) Process for the manufacture of 1,1,1,2-tetrafluoro-2- chloroethane and of pentafluoroethane
JP3558385B2 (en) Chromium-based fluorination catalyst and fluorination method
JP2996598B2 (en) Chromium-based fluorination catalyst, its production method and fluorination method
JP3582798B2 (en) Fluorination catalyst and fluorination method
US5494877A (en) Chromium-based fluorination catalyst containing gallium and production method thereof
JPH06506232A (en) Method for producing 2-chloro-1,1,1-trifluoroethane
JP3374426B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
KR100377125B1 (en) Chromium-based fluorination catalyst, production method thereof, and fluorination method
JPH06211707A (en) Production of dilfuoromethane
JP2004209431A (en) Fluorination catalyst, and method for producing fluoro-compound
JPH06298682A (en) Production of 1,1,1,2-tetrafluoroethane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

EXPY Cancellation because of completion of term