Nothing Special   »   [go: up one dir, main page]

JP3579891B2 - Synchronous rectification circuit - Google Patents

Synchronous rectification circuit Download PDF

Info

Publication number
JP3579891B2
JP3579891B2 JP2001060942A JP2001060942A JP3579891B2 JP 3579891 B2 JP3579891 B2 JP 3579891B2 JP 2001060942 A JP2001060942 A JP 2001060942A JP 2001060942 A JP2001060942 A JP 2001060942A JP 3579891 B2 JP3579891 B2 JP 3579891B2
Authority
JP
Japan
Prior art keywords
winding
switch element
voltage
mosfet
control electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001060942A
Other languages
Japanese (ja)
Other versions
JP2002233147A (en
Inventor
守男 佐藤
Original Assignee
大平電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大平電子株式会社 filed Critical 大平電子株式会社
Priority to JP2001060942A priority Critical patent/JP3579891B2/en
Publication of JP2002233147A publication Critical patent/JP2002233147A/en
Application granted granted Critical
Publication of JP3579891B2 publication Critical patent/JP3579891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はスイッチング電源装置に関し、より具体的には、同期整流回路に関する。
【0002】
【従来の技術】
従来方式の1例として図5に示したカレントトランスを用いた同期整流回路がある。(特開平9−182416)
【0003】
図5において、カレントトランス17の1次巻線17aに電流が流れるとカレントトランス17の2次巻線17b両端に接続されている抵抗18に電圧が生じ、これをバッファアンプ19を通してMOSFET20のゲートに供給してMOSFET20をオン状態にして電流をMOSFET20に流す。MOSFET20のオン抵抗と電流の積がダイオード8の順方向電圧により小さくなるようにMOSFET20を選ぶことによって整流による電力損失を小さくすることができる。
【0004】
【発明が解決しようとする課題】
図5に示した従来方式の場合、励磁エネルギの放出による電流の波形が右肩下がりであるため、波形の始めの部分において、MOSFET20のゲートに対して、ゲートしきい値を十分越える電圧を供給できるが、波形の終わりの部分では電圧が下がるためにMOSFET20のオン抵抗が大きくなり、同期整流の効果が薄れる。
【0005】
そこで、本発明は励磁エネルギの放出による電流が流れる期間を通じてMOSFETに十分なゲート電圧を供給し、同期整流の効果をより高めることができる回路を提供するものである。
【0006】
【課題を解決するための手段】
請求項1記載の発明において、可飽和コアに巻かれた第2の巻線と同期整流に用いる第1のスイッチ素子からなる直列回路を整流ダイオードに並列に接続し、第1の巻線に電磁的に結合している第3の巻線を巻いてその一方の端子を第2の巻線の整流ダイオードに接続されている側の端子に、また、他方を第1のスイッチ素子の制御電極にそれぞれ接続する。
請求項2記載の発明において、第2の巻線両端の電圧によって駆動される第2のスイッチ素子を第1のスイッチ素子の制御電極に接続する。
請求項3記載の発明において、第2の巻線に電磁的に結合している第4の巻線を巻いて第3の巻線と第1のスイッチ素子の制御電極の間に直列に挿入する。
【0007】
【発明の実施の形態】
第1の巻線を流れる電流は励磁エネルギの放出による電流であり、右肩下がりで小さくなりゼロになる。ゼロになった後、第1のスイッチ素子を強制的にオフ状態にしないと、励磁エネルギの放出による電流を電気エネルギとして蓄積するコンデンサの電荷がオン状態の第1のスイッチ素子を逆流して第1の巻線に流れ続ける。この現象が起きる理由は、第1のスイッチ素子の制御電極に電圧を供給する第3の巻線の電圧が第1の巻線に流れる電流の変化率に比例するために、第1の巻線を流れる電流がゼロになってもその傾きが同じであれば同じ電圧を発生し、第1のスイッチ素子をオン状態に保つからである。すなわち電流の傾きに比例した電圧が第3の巻線に生じたままであるため第1のスイッチ素子はターン・オフしないのである。
【0008】
そこで、第1のスイッチ素子の電流が反転しようとした時に可飽和コアの巻線に生じる電圧を利用して第1のスイッチ素子を強制的にターン・オフさせる。
【0009】
可飽和コアに巻かれた巻線は、加えられるパルスに対して飽和するまでの間はインダクタとして交流に対して高いインピーダンスを持ち、飽和後はショート状態になる性質をもっている。この性質はパルスの正負両方向に対して対称的な特性を示し、ある方向で飽和した後で逆向きの電圧が加わると、逆向きに飽和するまでは高いインピーダンスを持つ。従って可飽和コアの巻線に交流パルスが加わると極性が反転するたびに瞬間的に高いインピーダンスを示す。このような性質の可飽和コアの巻線を第1のスイッチ素子に直列に接続しておけば電流が逆向きになった瞬間だけ大きなインピーダンスを持つ。
【0010】
請求項1記載の発明において、第1のスイッチ素子を流れる電流が反転しようとしたとき可飽和コアに巻かれた第2の巻線は高いインピーダンスに変わり、第3の巻線の電圧がこのインピーダンスによってはばまれて第1のスイッチ素子の制御電極に十分な電圧を供給できず第1のスイッチ素子はターン・オフする。
【0011】
請求項2記載の発明において、可飽和コアに巻かれた第2の巻線の電圧を利用して第2のスイッチ素子をターン・オンさせて、第1のスイッチ素子をターン・オフさせる。
【0012】
請求項3記載の発明において、第1のスイッチ素子を流れる電流が反転しようとしたとき、第2の巻線と第4の巻線によって直列合成されたインピーダンスが第3の巻線の電圧をはばみ第1のスイッチ素子はターン・オフする。第2の巻線には出力電流が流れるので線径を太くしなければならないが、第4の巻線は制御電極を駆動するだけのわずかな電流を流すだけで細くて構わない。そこで第2の巻線の巻数を減らしてその分線径を太くし、第4の巻線で補うようにすることで第2の巻線に出力電流が流れるときに生じる電力損失を小さくすることができる。
【0013】
【実施例】
図1は請求項1記載の発明をフライバックコンバータに実施した例を示す回路図である。
図1において、フライバックコンバータの1次側の主スイッチ素子7のオン・オフによってトランス6の1次巻線6aには断続した電流が流れる。オン期間にトランス6に蓄積された励磁エネルギは、オフ期間に第1の巻線6bによって負荷側に供給される。第3の巻線6cはオフ期間に第1のスイッチ素子であるMOSFET2をオン状態にする巻線である。MOSFET2は出力電流が流れたときにそのドロップ電圧がダイオード8の順方向電圧より小さくなるようにオン抵抗が選ばれている。
【0014】
主スイッチ素子7がターン・オフすると、励磁エネルギによって第1の巻線6bに生じる電流はダイオード8を通り負荷側に流れるが、第2の巻線の生じる電圧でMOSFET2がターン・オンすると、電流は電圧ドロップのより小さいMOSFET2を流れるようになる。このときの電流によって可飽和コア1は飽和し第2の巻線1aはショート状態になっている。
【0015】
励磁エネルギの放出が終わってもMOSFET2がオン状態であるため、コンデンサ11の電荷がオン状態のMOSFET2をドレインからソースに向かって流れようとするが、このとき、可飽和コア1は逆向きに対しては飽和していないため、第2の巻線1aは逆方向に加わる電圧に対し高いインピーダンスを示し、その結果、第3の巻線6cの電圧はMOSFET2のゲートに十分な電圧を供給できなくなりMOSFET2がターン・オフする。
【0016】
図2は請求項2記載の発明をフライバックコンバータに実施した例を示す回路図である。図において、MOSFET2を逆流しようとする電流は第2の巻線1aのインピーダンスが高いために抵抗5と第2のスイッチ素子であるトランジスタ3のベース・エミッタを抜けて流れトランジスタ3をオン状態にし、MOSFET2のゲート電荷を引き抜くのでMOSFET2はターン・オフし、結果的に逆流電流はほとんど流れない。
【0017】
図3は請求項3記載の発明をフライバックコンバータに実施した例を示す回路図である。図において、MOSFET2を逆流しようとする電流に対して、可飽和コア1は飽和していないため第2の巻線1aと第4の巻線1bはともに逆方向に加わる電圧に対して高いインピーダンスを示し、1つの巻線のときより高いインピーダンスを示す。すなわち、図1に示した実施例の第2の巻線1aと同じインピーダンスを2つの巻線で得るようにすれば良いことになるので第2の巻線1aの巻数をより少なくすることが可能になり、これによって、順方向電流がMOSFET2と第2の巻線1aを流れるときに第2の巻線1aによって生じる電力損失を小さくすることができる。
【0018】
図4は図1の各部の波形を示している。図の上段に示したように、第1の巻線6bの電圧が正になると第3の巻線6cの電圧も正になり、MOSFET2がターン・オンするので、MOSFET2には図の中段のような波形の電流が流れる。電流が流れ始める時刻は図の下段に示した第2の巻線1aの両端電圧がゼロになったときに一致している。すなわち、可飽和コア1が順方向で飽和するとMOSFET2に電流が流れる。また、順方向の電流がゼロに達した瞬間において、第1の巻線6bの電圧もまた第3の巻線6cの電圧もゼロにはなっていないので、電流はそのままの傾きを保って流れ続けようとするが、第2の巻線1aには逆向きの電圧が生じるので、これが第3の巻線6cによってMOSFET2のゲートに供給されている電圧をはばみ、MOSFET2がターン・オフする。
【0019】
図1と図2と図3は本発明をフライバックコンバータに応用した例であるが、フォワードコンバータや降圧チョッパを初めとする励磁エネルギの蓄積と放出をともなう全てのスイッチング電源装置に応用することができる。
【0020】
図1と図3において、第3の巻線6cとMOSFET2のゲートの間に抵抗4が挿入されているが、これがなくても動作する。また、コンデンサと抵抗の組み合わせを用いることもできる。また、図2において可飽和コア1と第2のスイッチ素子であるトランジスタ3のベースの間に抵抗5が挿入されているが、これがなくても動作する。また、コンデンサと抵抗の組み合わせを用いることができる。
図1と図2と図3のダイオード8は第1のスイッチ素子としてMOSFETを応用したときは省略することができる。
【0021】
【発明の効果】
簡単な回路で同期整流ができるので経済的効果が大きい。
【図面の簡単な説明】
【図1】請求項1記載の発明の実施例を示す回路図である。
【図2】請求項2記載の発明の実施例を示す回路図である。
【図3】請求項3記載の発明の実施例を示す回路図である。
【図4】図1の回路の波形図である。
【図5】従来の方式の1例を示す回路図である。
【符号の説明】
1 可飽和コア
1a 第2の巻線
1b 第4の巻線
2 第1のスイッチ素子であるMOSFET
3 第2のスイッチ素子であるトランジスタ
4、5 抵抗
6 トランス
6a 1次巻線
6b 第1の巻線
6c 第3の巻線
7 主スイッチ素子
8 ダイオード
9 直流電源
10 発振制御回路
11 コンデンサ
12 負荷
17 カレントトランス
17a 1次巻線
17b 2次巻線
18 抵抗
19 バッファアンプ
20 MOSFET
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a switching power supply, and more specifically, to a synchronous rectifier circuit.
[0002]
[Prior art]
As an example of the conventional system, there is a synchronous rectifier circuit using a current transformer shown in FIG. (JP-A-9-182416)
[0003]
In FIG. 5, when a current flows through the primary winding 17a of the current transformer 17, a voltage is generated at the resistor 18 connected to both ends of the secondary winding 17b of the current transformer 17, and this voltage is supplied to the gate of the MOSFET 20 through the buffer amplifier 19. The MOSFET 20 is supplied to turn on the MOSFET 20, and a current flows through the MOSFET 20. Power loss due to rectification can be reduced by selecting MOSFET 20 so that the product of the on-resistance of MOSFET 20 and the current is reduced by the forward voltage of diode 8.
[0004]
[Problems to be solved by the invention]
In the case of the conventional method shown in FIG. 5, since the waveform of the current due to the emission of the excitation energy is declining to the right, a voltage sufficiently exceeding the gate threshold is supplied to the gate of the MOSFET 20 at the beginning of the waveform. However, since the voltage drops at the end of the waveform, the on-resistance of the MOSFET 20 increases, and the effect of synchronous rectification decreases.
[0005]
Accordingly, the present invention provides a circuit that supplies a sufficient gate voltage to a MOSFET throughout a period in which a current due to the release of exciting energy flows, thereby further improving the effect of synchronous rectification.
[0006]
[Means for Solving the Problems]
In the invention according to claim 1, a series circuit comprising a second winding wound around a saturable core and a first switch element used for synchronous rectification is connected in parallel to a rectifier diode, and an electromagnetic wave is connected to the first winding. One terminal is connected to the terminal connected to the rectifier diode of the second winding, and the other terminal is connected to the control electrode of the first switch element. Connect each.
In the invention described in claim 2, a second switch element driven by a voltage across the second winding is connected to a control electrode of the first switch element.
According to the third aspect of the present invention, a fourth winding electromagnetically coupled to the second winding is wound and inserted in series between the third winding and the control electrode of the first switch element. .
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The current flowing through the first winding is a current due to the release of the excitation energy, and decreases to the right and becomes zero. If the first switch element is not forcibly turned off after the current becomes zero, the electric charge of the capacitor that accumulates the current due to the release of the excitation energy as electric energy flows back through the first switch element in the on state and the second switch element is turned off. Continue to flow through one winding. This phenomenon occurs because the voltage of the third winding, which supplies a voltage to the control electrode of the first switch element, is proportional to the rate of change of the current flowing through the first winding. This is because the same voltage is generated even if the current flowing through the switch becomes zero and the slope is the same, and the first switch element is kept on. That is, since the voltage proportional to the gradient of the current remains generated in the third winding, the first switch element does not turn off.
[0008]
Therefore, the first switch element is forcibly turned off using the voltage generated in the winding of the saturable core when the current of the first switch element is about to be reversed.
[0009]
The winding wound on the saturable core has a high impedance with respect to AC as an inductor until it is saturated with an applied pulse, and has a property of being short-circuited after saturation. This property is symmetrical in both the positive and negative directions of the pulse. When a voltage is applied in the opposite direction after being saturated in one direction, it has a high impedance until the voltage is saturated in the opposite direction. Therefore, when an AC pulse is applied to the winding of the saturable core, a high impedance is instantaneously exhibited each time the polarity is inverted. If the saturable core winding having such a property is connected in series to the first switch element, the saturable core has a large impedance only when the current is reversed.
[0010]
According to the first aspect of the present invention, when the current flowing through the first switch element is about to be reversed, the second winding wound around the saturable core changes to a high impedance, and the voltage of the third winding changes to this impedance. And the sufficient voltage cannot be supplied to the control electrode of the first switch element, and the first switch element is turned off.
[0011]
In the invention according to claim 2, the second switch element is turned on by using the voltage of the second winding wound on the saturable core, and the first switch element is turned off.
[0012]
According to the third aspect of the present invention, when the current flowing through the first switch element is about to be reversed, the impedance combined in series by the second winding and the fourth winding impedes the voltage of the third winding. The first switch element turns off. Since the output current flows through the second winding, the diameter of the wire must be increased. However, the fourth winding may be made thin by applying only a small current for driving the control electrode. Therefore, by reducing the number of turns of the second winding and increasing the diameter of the line, and supplementing with the fourth winding, the power loss caused when an output current flows through the second winding is reduced. Can be.
[0013]
【Example】
FIG. 1 is a circuit diagram showing an example in which the invention described in claim 1 is applied to a flyback converter.
In FIG. 1, an intermittent current flows through a primary winding 6a of a transformer 6 by turning on and off a main switch element 7 on a primary side of a flyback converter. Excitation energy stored in the transformer 6 during the ON period is supplied to the load side by the first winding 6b during the OFF period. The third winding 6c is a winding that turns on the MOSFET 2 as the first switch element during the off period. The on-resistance of the MOSFET 2 is selected so that the drop voltage becomes smaller than the forward voltage of the diode 8 when the output current flows.
[0014]
When the main switch element 7 is turned off, the current generated in the first winding 6b by the excitation energy flows to the load side through the diode 8, but when the MOSFET 2 is turned on by the voltage generated in the second winding, the current is turned on. Flows through the MOSFET 2 having a smaller voltage drop. The saturable core 1 is saturated by the current at this time, and the second winding 1a is in a short-circuit state.
[0015]
Since the MOSFET 2 is on even after the excitation energy is released, the charge of the capacitor 11 tries to flow from the drain to the source through the MOSFET 2 in the on state. At this time, the saturable core 1 Therefore, the second winding 1a has a high impedance with respect to a voltage applied in the reverse direction, and as a result, the voltage of the third winding 6c cannot supply a sufficient voltage to the gate of the MOSFET 2. MOSFET 2 turns off.
[0016]
FIG. 2 is a circuit diagram showing an example in which the invention described in claim 2 is applied to a flyback converter. In the figure, a current flowing backward through the MOSFET 2 flows through the resistor 5 and the base / emitter of the transistor 3 serving as the second switch element because the impedance of the second winding 1a is high, and the transistor 3 is turned on. Since the gate charge of the MOSFET 2 is extracted, the MOSFET 2 turns off, and as a result, almost no reverse current flows.
[0017]
FIG. 3 is a circuit diagram showing an example in which the invention described in claim 3 is applied to a flyback converter. In the figure, the saturable core 1 is not saturated with respect to the current flowing backward through the MOSFET 2, so that both the second winding 1a and the fourth winding 1b have a high impedance with respect to the voltage applied in the reverse direction. And shows a higher impedance than with one winding. That is, it is only necessary to obtain the same impedance as the second winding 1a of the embodiment shown in FIG. 1 with two windings, so that the number of turns of the second winding 1a can be further reduced. Accordingly, power loss caused by the second winding 1a when a forward current flows through the MOSFET 2 and the second winding 1a can be reduced.
[0018]
FIG. 4 shows waveforms at various parts in FIG. As shown in the upper part of the figure, when the voltage of the first winding 6b becomes positive, the voltage of the third winding 6c also becomes positive, and the MOSFET 2 is turned on. The current of a strange waveform flows. The time when the current starts to flow coincides when the voltage across the second winding 1a shown in the lower part of the figure becomes zero. That is, when the saturable core 1 is saturated in the forward direction, a current flows through the MOSFET 2. Further, at the moment when the forward current reaches zero, the voltage of the first winding 6b and the voltage of the third winding 6c are not zero, so that the current flows with the slope maintained as it is. Although an attempt is made to continue, a voltage in the opposite direction is generated in the second winding 1a. This reverses the voltage supplied to the gate of the MOSFET 2 by the third winding 6c, and the MOSFET 2 is turned off.
[0019]
FIGS. 1, 2 and 3 show examples in which the present invention is applied to a flyback converter. However, the present invention can be applied to all switching power supply devices having accumulation and release of excitation energy, such as a forward converter and a step-down chopper. it can.
[0020]
In FIG. 1 and FIG. 3, the resistor 4 is inserted between the third winding 6c and the gate of the MOSFET 2, but operation is possible without this. Also, a combination of a capacitor and a resistor can be used. Further, although the resistor 5 is inserted between the saturable core 1 and the base of the transistor 3 as the second switch element in FIG. 2, the device operates without this. Further, a combination of a capacitor and a resistor can be used.
1, 2, and 3 can be omitted when a MOSFET is applied as the first switch element.
[0021]
【The invention's effect】
Synchronous rectification can be performed with a simple circuit, which has a large economic effect.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
FIG. 2 is a circuit diagram showing an embodiment of the invention described in claim 2;
FIG. 3 is a circuit diagram showing an embodiment of the invention described in claim 3;
FIG. 4 is a waveform diagram of the circuit of FIG. 1;
FIG. 5 is a circuit diagram showing one example of a conventional system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Saturable core 1a 2nd winding 1b 4th winding 2 MOSFET which is 1st switch element
3 Transistor 4 as a second switch element 5, resistor 6 Transformer 6a Primary winding 6b First winding 6c Third winding 7 Main switch element 8 Diode 9 DC power supply 10 Oscillation control circuit 11 Capacitor 12 Load 17 Current transformer 17a Primary winding 17b Secondary winding 18 Resistance 19 Buffer amplifier 20 MOSFET

Claims (3)

励磁エネルギを電流として取り出す第1の巻線と前記第1の巻線に直列に接続された整流ダイオードを備えたスイッチング電源装置において、可飽和コアに巻かれた第2の巻線と第1のスイッチ素子からなる直列回路を前記整流ダイオードに並列に接続し、前記第1の巻線に電磁的に結合した第3の巻線を巻いてその一方の端子を前記第2の巻線の前記整流ダイオード側の端子に、また、他方の端子を前記第1のスイッチ素子の制御電極にそれぞれ接続したことを特徴とする同期整流回路。In a switching power supply device including a first winding for taking out excitation energy as a current and a rectifier diode connected in series to the first winding, a second winding wound around a saturable core and a first winding are connected to the first winding. A series circuit composed of switch elements is connected in parallel to the rectifier diode, and a third winding electromagnetically coupled to the first winding is wound, and one terminal is connected to the rectifier of the second winding. A synchronous rectifier circuit, wherein a terminal on the diode side and the other terminal are connected to a control electrode of the first switch element, respectively. 抵抗を前記第3の巻線と前記第1のスイッチ素子の制御電極の間に直列に挿入し、第2のスイッチ素子を前記第1のスイッチ素子の制御電極と前記第2の巻線の前記整流ダイオード側の端子の間に接続し、かつ前記第2のスイッチ素子の制御電極を前記第2の巻線の前記第1のスイッチ素子側の端子に接続したことを特徴とする請求項1記載の同期整流回路。 A resistor is inserted in series between the third winding and the control electrode of the first switch element, and a second switch element is connected between the control electrode of the first switch element and the control electrode of the second winding. 2. A connection between the terminals on the rectifier diode side, and a control electrode of the second switch element is connected to a terminal on the first switch element side of the second winding. Synchronous rectifier circuit. 前記第2の巻線に電磁的に結合した第4の巻線を巻いてその両端を前記第3の巻線と前記第1のスイッチ素子の制御電極の間に直列に挿入したことを特徴とする請求項1記載の同期整流回路。A fourth winding electromagnetically coupled to the second winding is wound, and both ends thereof are inserted in series between the third winding and a control electrode of the first switch element. The synchronous rectifier circuit according to claim 1, wherein
JP2001060942A 2001-01-29 2001-01-29 Synchronous rectification circuit Expired - Fee Related JP3579891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060942A JP3579891B2 (en) 2001-01-29 2001-01-29 Synchronous rectification circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060942A JP3579891B2 (en) 2001-01-29 2001-01-29 Synchronous rectification circuit

Publications (2)

Publication Number Publication Date
JP2002233147A JP2002233147A (en) 2002-08-16
JP3579891B2 true JP3579891B2 (en) 2004-10-20

Family

ID=18920305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060942A Expired - Fee Related JP3579891B2 (en) 2001-01-29 2001-01-29 Synchronous rectification circuit

Country Status (1)

Country Link
JP (1) JP3579891B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2887520A1 (en) * 2013-12-20 2015-06-24 Efore OYJ A synchronous rectifier and a method for controlling it

Also Published As

Publication number Publication date
JP2002233147A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
JP4262886B2 (en) Double-ended insulation C. -D. C. converter
US6278621B1 (en) Single ended forward DC-to-DC converter providing enhanced resetting for synchronous rectification
EP2730017B1 (en) Isolated boost flyback power converter
US7009850B2 (en) Soft switching converter using current shaping
JP2001025243A (en) Switching power source
WO2002025798A1 (en) Step-up switching power supply device
US6859372B2 (en) Bridge-buck converter with self-driven synchronous rectifiers
US6301139B1 (en) Self-driven synchronous rectifier circuit for non-optimal reset secondary voltage
JPS61142964A (en) Synchronous power rectifier
JP3579891B2 (en) Synchronous rectification circuit
JPH11187653A (en) Synchronous rectifying circuit and dc-to-dc converter using the same
JP4484006B2 (en) Switching power supply
JPH1118426A (en) Switching power supply circuit
JP4122496B2 (en) Synchronous rectifier circuit using saturable inductor
JP3579791B2 (en) Synchronous rectification circuit
JP4644950B2 (en) Switching power supply
JP4123508B2 (en) Switching power supply
JPH10136646A (en) Synchronous rectifier
JP3619116B2 (en) Synchronous rectifier drive circuit in flyback converter
JPH0622560A (en) Dc-ac converter
JP2003018827A (en) Switching power unit
JP2004166420A (en) Multi-output switching power supply
JP2837886B2 (en) Switching power supply circuit
JP4257625B2 (en) DC-DC converter
JP2004274904A (en) Switching power supply device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees