Nothing Special   »   [go: up one dir, main page]

JP3569129B2 - Flow detector - Google Patents

Flow detector Download PDF

Info

Publication number
JP3569129B2
JP3569129B2 JP15201098A JP15201098A JP3569129B2 JP 3569129 B2 JP3569129 B2 JP 3569129B2 JP 15201098 A JP15201098 A JP 15201098A JP 15201098 A JP15201098 A JP 15201098A JP 3569129 B2 JP3569129 B2 JP 3569129B2
Authority
JP
Japan
Prior art keywords
temperature
sensitive resistor
substrate
resistor
wiring region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15201098A
Other languages
Japanese (ja)
Other versions
JPH11326001A (en
Inventor
幸一 楠山
正夫 塚田
Original Assignee
株式会社日立ユニシアオートモティブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ユニシアオートモティブ filed Critical 株式会社日立ユニシアオートモティブ
Priority to JP15201098A priority Critical patent/JP3569129B2/en
Publication of JPH11326001A publication Critical patent/JPH11326001A/en
Application granted granted Critical
Publication of JP3569129B2 publication Critical patent/JP3569129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Pressure Sensors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車用エンジン等の吸入空気量を検出するのに用いて好適な流量検出装置に関し、特にエッチング処理等の半導体製造技術によって基板上に形成される流量検出装置に関する。
【0002】
【従来の技術】
一般に、自動車用エンジン等では、エンジン本体の燃料室内に噴射すべき燃料の量を演算するために、エンジンの吸気管内に設けた流量検出装置によって吸入空気の流量または流速(以下、流量という)を検出し、この検出結果に基づいてエンジンの吸入空気量を算出するようにしている。
【0003】
そして、この種の従来技術による流量検出装置は、基板と、該基板上に設けられた絶縁膜と、該絶縁膜上に設けられた感温抵抗体とから構成され、例えば特開昭62−44627号公報等に記載されている。
【0004】
この場合、従来技術では、シリコン材料等により形成された基板上に、例えば白金等の感温抵抗材料からなる感温抵抗体がエッチング処理により配線パターンとして形成されている。そして、該感温抵抗体は、その抵抗値を検出するために外部に付設された検出回路に接続されている。
【0005】
また、基板はエンジンの吸気管内に露出した状態で取付けられているから、この状態で基板上の感温抵抗体はエンジン本体側に向けて吸気管内を流れる吸入空気に接触する。そして、エンジンの運転中には、外部の検出回路から感温抵抗体に電流を供給して該感温抵抗体を発熱させ、該感温抵抗体は基板に沿って流れる流体の流量に応じて冷却される。
【0006】
これにより、感温抵抗体の抵抗値は吸入空気の流量に応じて変化するから、前記検出回路では、この抵抗値の変化を電圧信号として検出することにより、この検出結果に基づいてエンジンの吸入空気量を算出するものである。
【0007】
また、一般に、シリコン基板の表面には、酸化シリコン、窒化シリコン等によって絶縁膜が形成され、感温抵抗体の表面には、同じく酸化シリコン、窒化シリコン等によって保護膜が形成されている。そして、感温抵抗体は絶縁膜と保護膜によって挟持された状態で基板上に固定されている。
【0008】
さらに、絶縁膜と感温抵抗体、感温抵抗体と保護膜との接合強度を高めるために、絶縁膜と感温抵抗体との間、感温抵抗体と保護膜との間には、金属酸化物からなる密着層がそれぞれ設けられている。
【0009】
【発明が解決しようとする課題】
ところで、上述した従来技術による流量検出装置では、エッチング処理、CVD法、RIE法等を用いて基板表面上に、絶縁膜、感温抵抗体、保護膜の順に形成した後で、感温抵抗体の材料となる白金等の温度係数を調整するため、不活性ガス(例えば、アルゴン)、窒素ガス等の雰囲気中で800〜1000℃程度で熱処理を行っていた。
【0010】
しかし、この熱処理工程中に、感温抵抗体の上,下に形成された密着層が、感温抵抗体中に溶け込み、該感温抵抗体の組成が変化してしまうことがある。このため、この感温抵抗体を用いて流量を検出するときには、温度係数の変化から、検出信号がばらついてしまう。
【0011】
さらに、感温抵抗体の温度係数が製品毎に変化してしまい、歩留を悪化させ、生産性を悪化させると共に信頼性を低下させてしまうという問題がある。
【0012】
また、保護膜は白金等により感温抵抗体を基板上に形成した後、CVD法等により形成され、これら基板、感温抵抗体、保護膜等の温度は、400〜800℃程度に暖められている。そして、この高温度時では白金による感温抵抗体と形成された保護膜との間には応力が発生していない。しかし、基板、感温抵抗体、保護膜等を室温に戻すと、白金と保護膜とではその熱膨張率の差により、異なった収縮を起こす。このため、室温では、感温抵抗体と保護膜との間には応力が発生し、保護膜にひび割れ(以下、クラックという)が生じることがある。
【0013】
また、このクラックは、前述した熱処理工程によっても発生することがある。即ち、この熱処理工程では、基板、感温抵抗体、保護膜等は保護膜を形成するときの成形温度よりも高い温度に暖められ、この高温度時でも感温抵抗体と保護膜との間は応力が発生しないように緩和される。ところが、基板、感温抵抗体、保護膜等をこの高温状態から室温に戻したときには、感温抵抗体と保護膜との熱膨張率の差により、保護膜にクラックが発生してしまう。
【0014】
このように、発生したクラックは、感温抵抗体側への水分等の浸入、機械的損傷、異物の侵入を発生させ、保護膜が有する感温抵抗体の保護機能を低下させてしまうという問題がある。
【0015】
本発明は上述した従来技術の問題に鑑みなされたもので、本発明は感温抵抗体に絶縁膜等を接合するための密着層を廃止することにより、熱処理工程時に感温抵抗体の組成変化をなくすと共に、保護膜のひび割れを防止し、歩留を向上できるようにした流量検出装置を提供することを目的としている。
【0016】
【課題を解決するための手段】
上述した課題を解決するために、請求項1の発明では、基板と、該基板上に設けられた絶縁膜と、該絶縁膜上に設けられた感温抵抗体と、該感温抵抗体の表面を覆って設けられた保護膜とを備えてなる流量検出装置において、前記感温抵抗体は、配線領域と該配線領域に接続され流量を検出するための検出領域とによって構成し、前記感温抵抗体の配線領域には複数個の導通孔を設け、前記保護膜は該各導通孔を通過して前記基板側の絶縁膜と接続する構成としたことを特徴としている。
【0017】
このように構成することにより、保護膜は感温抵抗体に設けられた各導通孔を通過して絶縁膜まで導かれ、感温抵抗体を挟んで絶縁膜と保護膜とを密着性を高めた状態で接続でき、感温抵抗体を基板に固定することができる。
【0018】
しかも、保護膜と絶縁膜とは各導通孔を通して部分的に固定されているから、保護膜と感温抵抗体との熱膨張率の違いによる応力を緩和して保護膜にクラックの発生をなくすことができる。
また、各導通孔を、感温抵抗体のうち電気抵抗に影響しない配線領域に形成したから、保護膜は該各導通孔を通して絶縁膜まで導かれる。これにより、絶縁膜と保護膜との間で配線領域を挟持し、感温抵抗体を基板に固定することができる。
一方、基板に沿って流体が流れるとき、検出領域はこの流体によって冷やされて抵抗値が変化する。このため、検出領域はこの抵抗値の変化を検出信号として配線領域を用いて外部に出力するから、この検出信号によって流体の流量(流速)を検出することができる。しかも、検出領域には導通孔を形成していないから、検出領域を流れる流体の流れが乱れるのを低減し、検出精度を高めることができる。
【0019】
請求項2の発明では、感温抵抗体の配線領域は、基板上に設けられた正側配線領域と、該正側配線領域と隙間をもって前記基板に対向して配設された負側配線領域とからなり、感温抵抗体の検出領域はこれら正側配線領域と負側配線領域との長さ方向一端側に設け、前記各導通孔は前記正側配線領域と負側配線領域とにそれぞれ設けたことにある。
【0020】
このように構成することにより、各導通孔を、感温抵抗体のうち電気抵抗に影響しない正側配線領域と負側配線領域とに形成し、保護膜は該各導通孔を通して絶縁膜まで導かれ、正側配線領域と負側配線領域は絶縁膜と保護膜との間で挟持し、該感温抵抗体を基板に固定することができる。
【0021】
また、基板に沿って流体が流れるとき、検出領域はこの流体によって冷やされて抵抗値が変化し、この抵抗値の変化を検出信号として、各配線領域を用いて外部に出力し、この検出信号によって流体の流量(流速)を検出することができる。しかも、検出領域には導通孔を形成していないから、検出領域を流れる流体の流れが乱れるのを低減し、検出精度を高めることができる。
【0022】
請求項3の発明では、正側配線領域と負側配線領域を、検出領域と基板との接触面積よりも広い接触面積をもって形成したことにある。
【0023】
このように構成することにより、感温抵抗体のうち基板に対して広い接触面積を有する正側配線領域と負側配線領域とは、検出領域に比べて電気抵抗が小さくなっているから、配線領域に導通孔を形成しても電気抵抗に影響なく、各配線領域を通して検出領域と外部とを電気的に接続することができる。しかも、接触面積の広い各配線領域は、従来技術では感温抵抗体との密着性が低く、保護膜にクラックが発生し易い部分となる。そこで、この各配線領域に複数個の導通孔を形成し、該各導通孔を通して保護膜を絶縁膜まで導くことにより、正側配線領域と負側配線領域は絶縁膜と保護膜との間で挟持し、感温抵抗体を基板に固定することができる。
【0024】
請求項4の発明では、各導通孔を、正側配線領域と負側配線領域の長さ方向に2個以上、幅方向に2列以上配置して設ける構成としたことにある。
【0025】
このような構成とすることにより、基板から正側配線領域と負側配線領域とが剥離し易い部分を強化して接続することができ、基板に対する感温抵抗体の接合強度を高めることができる。
【0026】
請求項5の発明では、感温抵抗体は、基板上に設けられた第1の感温抵抗体、ヒータ抵抗体、第2の感温抵抗体からなり、ヒータ抵抗体を挟んで幅方向一側に第1の感温抵抗体、幅方向他側に第2の感温抵抗体を並列に配設する構成としたことにある。
【0027】
このように構成することにより、保護膜は各配線領域に設けられた各導通孔を通過して絶縁膜まで導かれ、各配線領域を挟んで絶縁膜と保護膜とを密着性を高めた状態で接続でき、基板に各抵抗体を固定することができる。
【0028】
また、ヒータ抵抗体を挟んで第1の感温抵抗体と第2の感温抵抗体を幅方向に並列に配設することにより、基板に沿って流体が幅方向一側から流れたとき、第1の感温抵抗体が冷やされ、第2の感温抵抗体はヒータ抵抗体の熱を受けて暖められる。そして、第1,第2の感温抵抗体の抵抗値の変化から、流体の流れ方向と流量(流速)を検出することができる。
【0029】
請求項6の発明では、絶縁膜と保護膜を窒化シリコン、酸化シリコンまたは窒化シリコンと酸化シリコンとの多層膜により形成し、感温抵抗体を白金膜により形成したことにある。
【0030】
このように構成することにより、例えば絶縁膜と保護膜とを同じ窒化シリコンによって形成した場合には、保護膜は感温抵抗体に設けられた各導通孔を通過して絶縁膜まで導かれ、感温抵抗体を挟んで絶縁膜と保護膜とを密着性を高めた状態で接続することができる。
【0031】
【発明の実施の形態】
以下、本発明に係る流量検出装置の実施の形態を、図1ないし図11を参照しつつ詳細に説明する。
【0032】
まず、図1ないし図9に基づいて、本発明による第1の実施の形態を述べる。1は被測流体が流れる流路となる筒体で、該筒体1はエンジンの吸気管(図示せず)の途中に接続されている。そして、エンジンの運転時には、前記吸気管を通して外部からエンジン本体の燃焼室内に吸入される吸入空気が筒体1内を矢示A方向に流通する。
【0033】
2は筒体1の外側面に設けられた回路ケーシングで、該回路ケーシング2内には後述する流量検出装置4から出力される検出信号から筒体1内を流れる吸入空気の流量を検出するための検出回路(図示せず)等が収容されている。
【0034】
3は流量検出装置4を支持するため筒体1に設けられた支持体で、該支持体3は基端側が回路ケーシング2に取付けられ、先端側が筒体1内に突出すると共に、この先端側には後述の基板5が取付けられている。また、支持体3には、基板5側と回路ケーシング2内の前記検出回路とを接続するための配線部(図示せず)等が設けられている。
【0035】
4は流量検出装置、5は該流量検出装置4の基台をなす基板で、該基板5は、シリコン板により例えば10×2.5×0.5〔mm〕の板状に形成されている。また、該基板5の表面には後述する絶縁膜6が形成されている。
【0036】
6は基板5の表面に形成された絶縁膜で、該絶縁膜6はシリコン板からなる基板5の表面に熱酸化法、CVD法等の手段により、酸化シリコン(SiO )、窒化シリコン(Si )によって1〔μm〕程度の膜厚をもって形成されている。
【0037】
7は基板5の裏面側からエッチング処理等を施すことにより形成された凹窪部で、該凹窪部7は裏面側から絶縁膜6の位置まで達し、該凹窪部6の底部に対応した基板5の表面側には、後述するヒータ抵抗体8のヒータ領域12、上流側抵抗体14の検出領域18、下流側抵抗体20の検出領域24がそれぞれ配設され、この部分の大きさは、例えば1〜2×0.5〔mm〕程度となっている。
【0038】
8は基板5の幅方向中間部に配置して設けられたヒータ抵抗体で、該ヒータ抵抗体8は、白金等の感温抵抗材料によって0.5〔μm〕程度の膜厚をもって形成されている。また、ヒータ抵抗体8は、図4に示すように、基板5上に設けられた台形状の正側配線領域9と、該正側配線領域9と隙間10をもって前記基板5に対向して配設された台形状の負側配線領域11と、これら正側配線領域9と負側配線領域11との長さ方向一端側に設けられた検出領域としてのヒータ領域12と、前記正側配線領域9,負側配線領域11の長さ方向他端側に設けられた端子領域13,13とによって構成されている。また、正側配線領域9と負側配線領域11は、検出領域12と基板5との接触面積よりも広い接触面積をもって形成されている。
【0039】
そして、各端子領域13は、図2、図3に示すように、後述する保護膜27を正方形状に開口することにより形成された電極パッドとして形成されている。そして、各端子領域13には、ボンディングワイヤが接続され、該ボンディングワイヤを用いて外部の検出回路(いずれも図示せず)に接続されている。
【0040】
14は基板5の幅方向一側に配置して設けられた第1の感温抵抗体としての上流側抵抗体で、該上流側抵抗体14は、ヒータ抵抗体8と同じ白金材料によって形成され、該上流側抵抗体14は、略台形状の正側配線領域15と、該正側配線領域15と隙間16をもって前記基板5に対向して配設された略台形状の負側配線領域17と、配線領域15,17の長さ方向一端側に設けられた略U字状の検出領域18と、前記配線領域15,17の長さ方向他端側に設けられた端子領域19,19とによって構成されている。そして、配線領域15,17は、検出領域18と基板5との接触面積よりも広い接触面積をもって形成されている。
【0041】
20は基板5の幅方向他側に配置して設けられた第2の感温抵抗体としての下流側抵抗体で、該下流側抵抗体20は、ヒータ抵抗体8、上流側抵抗体14と同じ白金材料によって形成され、該下流側抵抗体20は、略台形状の正側配線領域21と、該正側配線領域21と隙間22をもって前記基板5に対向して配設された略台形状の負側配線領域23と、配線領域21,23の長さ方向一端側に設けられた略U字状の検出領域24と、前記配線領域21,23の長さ方向他端側に設けられた端子領域25,25とによって構成されている。そして、配線領域21,23は、検出領域24と基板5との接触面積よりも広い接触面積をもって形成されている。
【0042】
また、ヒータ抵抗体8のうち基板5に対して広い接触面積を有する正側配線領域9と負側配線領域11は、ヒータ領域12に比べて電気抵抗は小さくなっているから、該配線領域9,11はヒータ領域12と外部とを接続するための接続部材として構成されている。さらに、上流側抵抗体14の配線領域15,17、下流側抵抗体20の配線領域21,23も、検出領域18,24に比べて電気抵抗が小さくなっているから、これら配線領域15,17,21,23は検出領域18,24と外部とを接続するための接続部材として構成されている。
【0043】
26,26,…は抵抗体8,14,20の厚さ方向に穿設された長方形状、楕円形状等の導通孔で、該各導通孔26は、図4に示すように、ヒータ抵抗体8の配線領域9,11、上流側抵抗体14の配線領域15,17、下流側抵抗体20の配線領域21,23に位置して穿設されている。また、該各導通孔26は、配線領域9,11,15,17,21,23に対してそれぞれ例えば長さ方向に4個、幅方向に3列配置して設けられている。
【0044】
27は抵抗体8,14,20と絶縁膜6の表面を覆うように設けられた保護膜で、該保護膜27は、絶縁膜6と同様にCVD法等により酸化シリコン(SiO )、窒化シリコン(Si )から形成され、該保護膜27は抵抗体8,14,20の保護を図るものである。なお、ヒータ抵抗体8の配線領域9,11、上流側抵抗体14の配線領域15,17、下流側抵抗体20の配線領域21,23の表面に形成された保護膜27には、各導通孔26に対応する部分が凹陥部27A,27A,…となっている。
【0045】
ここで、図6に示すように、各導通孔26によって、保護膜27を形成するとき、該保護膜27は各導通孔26を通過して基板5側の絶縁膜6に導かれ、保護膜27にはこの部分が凹陥部27Aとなる。また、各導通孔26を通して保護膜27を絶縁膜6に接続することにより、抵抗体8,14,20は保護膜27と絶縁膜6との間に密着性を高めて固定されている。
【0046】
本実施の形態による流量検出装置4は、上述の如き構成を有するもので、次に吸入空気の流量検出動作について説明する。
【0047】
ここで、基板5上には、上流側抵抗体14、ヒータ抵抗体8、下流側抵抗体20を並列に配設しているから、図1,図2に示すように、吸入空気が基板5に沿って矢示A方向から流通する場合には、基板5上の上流側に位置した上流側抵抗体14の検出領域18がこの空気によって冷やされ、下流側に位置した下流側抵抗体20の検出領域24はヒータ領域12からの熱を受ける。この結果、上流側抵抗体14と下流側抵抗体20から出力される検出信号に差が発生し、この差を回路ケーシング2内の検出回路に出力し、該検出回路では、吸入空気の流れ方向と流速を算出することができる。しかも、ヒータ領域12、検出領域18,24には導通孔26が形成されていないから、ヒータ領域12、検出領域18,24を流れる空気の流れが乱れるのを低減し、検出領域18,24での検出精度を高めることができる。
【0048】
次に、図7ないし図9を参照しつつ、本実施の形態による流量検出装置4を製造する製造工程について説明する。なお、図7ないし図9は、図6と同様の要部を拡大した断面を示しているから、下流側抵抗体20等は図示されていないが、他の上流側抵抗体14、ヒータ抵抗体8と同時に製造されているものとする。
【0049】
まず、図7に示す絶縁膜形成工程では、予め用意したシリコン材料からなる基板5上に熱酸化法、CVD法等の手段により、酸化シリコン、窒化シリコン等の絶縁膜6を形成する。
【0050】
次に、図8に示す感温抵抗体形成工程では、CVD法、スパッタリング法等を用いて絶縁膜6上にヒータ抵抗体8、上流側抵抗体14、下流側抵抗体20を製造する。このとき、ヒータ抵抗体8の配線領域9,11、上流側抵抗体14の配線領域15,17、下流側抵抗体20の配線領域21,23には、それぞれ複数個の導通孔26が形成される。
【0051】
さらに、図9に示す保護膜形成工程では、前記感温抵抗体形成工程で形成されえた抵抗体8,14,20の表面に、CVD法等によって酸化シリコン、窒化シリコン等の保護膜27を形成する。このとき、保護膜27のうち各導通孔26に対応した部分は、該導通孔26を通して絶縁膜6に接続され、配線領域9,11,15,17,21,23は保護膜27と絶縁膜6との間に密着性を高めた状態で接合される。この後、基板5を不活性ガス(例えば、アルゴン)、窒素ガス等の雰囲気中で800〜1000℃程度で熱処理を施す。
【0052】
かくして、本実施の形態による流量検出装置4では、抵抗体8,14,20の正側配線領域9,15,21と負側配線領域11,17,23に、それぞれ複数個の導通孔26を設け、保護膜27を該各導通孔26を通過させて基板5側の絶縁膜6に接続する構成としたから、従来、抵抗体と絶縁膜、抵抗体と保護膜とを接合するために必要であった金属酸化層からなる密着層を廃止することができる。これにより、熱処理工程時に密着層が感温抵抗体内に溶け込んで、感温抵抗体の組成を変えてしまう等の不具合をなくすことができる。この結果、ヒータ抵抗体8、上流側抵抗体14、下流側抵抗体20は、その温度係数によるばらつきをなくすことができ、流量検出装置4の検出感度を高めることができる。
【0053】
さらに、上述した如く、保護膜27を抵抗体8,14,20の表面に形成するとき、保護膜27を各導通孔26を通過させて絶縁膜6に接続するようにしたから、密着層を廃止しても、抵抗体8,14,20を基板5に対して固定することができる。そして、密着層を廃止することにより、製品毎に感温抵抗体の温度係数がばらつくのを規制し、流量検出装置の歩留りを高め、生産性を向上させることができる。
【0054】
一方、本実施の形態では、抵抗体8,14,20のうち、基板5との接触面積の広い配線領域9,11,15,17,21,23に複数個の導通孔26を形成しているから、該配線領域9,11,15,17,21,23を絶縁膜6と保護膜27との間に固定することにより、ヒータ領域12、検出領域18,24等も基板5に固定することができる。
【0055】
しかも、保護膜27は各導通孔26を通して絶縁膜6に部分的に固定されているから、保護膜27と抵抗体8,14,20との熱膨張率の違いによる応力を緩和することができ、従来、保護膜に発生していたクラックの発生を防止し、保護膜27による各抵抗体8,14,20の保護を確実に行うことができる。これにより、流量検出装置4は、その寿命を延ばし、信頼性を高めることができる。
【0056】
次に、本発明による第2の実施の形態を図10に基づいて説明するに、本実施の形態では、基板上に形成した感温抵抗体を1個とし、正側配線領域と負側配線領域に形成される導通孔は、正側配線領域と負側配線領域のうち外周側に形成したことにある。なお、本実施の形態では前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
【0057】
31は本実施の形態に用いられる流量検出装置、32は該流量検出装置31の基台をなすシリコン板により形成された基板で、該基板32の表面には絶縁膜33が酸化膜、窒化膜等よって形成されている。また、基板32の裏面側にはエッチング処理等によって凹窪部34が形成されている。
【0058】
35は基板32に設けられた感温抵抗体で、該感温抵抗体35は、白金等の感温抵抗材料によって膜状に形成され、略台形状の正側配線領域36と、該正側配線領域36と隙間37をもって前記基板32に対向して配設された略台形状の負側配線領域38と、配線領域36,38の長さ方向一端側に設けられた略U字状の検出領域39と、前記配線領域36,38の長さ方向他端側に設けられた端子領域40,40とによって構成されている。そして、配線領域36,38は、検出領域39と基板32との接触面積よりも広い接触面積で形成されている。
【0059】
41,41,…は感温抵抗体35の正側配線領域36と負側配線領域38に形成された長方形状、楕円形状等の導通孔で、該各導通孔41は配線領域36,38のうち、幅方向に2列にして形成されている。
【0060】
42は感温抵抗体35の表面を覆うように設けられた保護膜で、該保護膜42は、絶縁膜33と同様にCVD法等によって酸化膜、窒化膜等よって形成され、感温抵抗体35の保護を図るものである。ここで、保護膜42は該各導通孔41を通過して基板32側の絶縁膜33に導かれるところが、保護膜42の表面には凹陥部42Aとして形成されている。
【0061】
このように構成される本実施の形態でも、前述した第1の実施の形態と同様に、感温抵抗体35を挟んで絶縁膜33と保護膜42とを接続することにより、該感温抵抗体35を基板32に固定することができる。
【0062】
なお、前記各実施の形態では、正側配線領域9,15,21,36を吸入空気の流れに対して上流側に配設し、負側配線領域11,17,23,38を下流側に配設する構成としたが、本発明はこれに限らず、負側配線領域11,17,23,38を上流側に配設し、正側配線領域9,15,21,36を下流側に配設する構成としてもよい。
【0063】
また、第2の実施の形態では、各導通孔41を正側配線領域36と負側配線領域38の幅方向に2列にして形成した場合について述べたが、本発明はこれに限らず、図11の変形例に示すように、配線領域36,38の幅方向中間にも導通孔41′を形成してもよいことは勿論である。
【0064】
また、実施の形態では、流量検出装置を自動車用エンジン等の吸入空気量の計測に用いる場合を例に挙げて述べたが、これに限らず、任意の気体の流量または流速を検出する場合に適用していもよい。
【0065】
さらに、各実施の形態では、絶縁膜6(33)、保護膜27(42)を酸化シリコン、窒化シリコンによって形成した場合について述べたが、これに限らず、絶縁膜と保護膜に窒化シリコンと酸化シリコンとを交互に多層に形成した多層膜に代えて用いてもよい。
【0066】
【発明の効果】
以上詳述した如く、請求項1の本発明によれば、感温抵抗体の配線領域に複数個の導通孔を設け、保護膜を該各導通孔を通過させて基板側の絶縁膜と接続する構成としたから、感温抵抗体を挟んで絶縁膜と保護膜とを密着性を高めた状態で接続でき、感温抵抗体を基板に固定することができる。そして、従来必要であった密着層を廃止でき、熱処理工程時に感温抵抗体の組成変化をなくし、流量検出装置の検出感度を高めることができる。さらに、製品毎に感温抵抗体の温度係数がばらつくのを規制でき、製品の歩留りを高め、生産性を向上させることができる。
【0067】
しかも、保護膜は絶縁膜に各導通孔を通して部分的に固定されているから、熱膨張率の違いにより、保護膜と感温抵抗体との間に発生する応力を緩和し、保護膜にクラックが発生するのを防止し、保護膜の信頼性を高め、流量検出装置の寿命を延ばすことができる。
また、各導通孔を感温抵抗体のうち電気抵抗に影響しない配線領域に形成したから、該各導通孔を通して保護膜を絶縁膜に接続し、絶縁膜と保護膜との間で配線領域を挟持することができ、感温抵抗体を基板に固定することができる。一方、検出領域には導通孔を形成していないから、検出領域を流れる流体の流れが乱れるのを低減し、検出精度を高めることができる。
【0068】
請求項2の発明では、感温抵抗体の配線領域を、正側配線領域と、該正側配線領域に隙間をもって対向した負側配線領域とによって構成し、感温抵抗体の検出領域をこれら正側配線領域と負側配線領域との長さ方向一端側に設け、各導通孔を感温抵抗体のうち電気抵抗に影響しない正側配線領域と負側配線領域とに形成したから、保護膜は該各導通孔を通して絶縁膜まで導かれ、正側配線領域と負側配線領域は絶縁膜と保護膜との間に挟持され、該感温抵抗体を基板に固定することができる。
【0069】
また、基板に沿って流体が流れるとき、検出領域はこの流体によって冷やされて抵抗値が変化し、この抵抗値の変化を検出信号として、各配線領域を用いて外部に出力し、この検出信号によって流体の流量(流速)を検出することができる。
【0070】
請求項3の発明では、正側配線領域と負側配線領域を、検出領域と基板との接触面積よりも広い接触面積をもって形成し、接触面積の広い各配線領域は、従来技術では感温抵抗体との密着性が低く、保護膜にクラックが発生し易い部分となるから、この各配線領域に複数個の導通孔を形成し、該各導通孔を通して保護膜を絶縁膜に部分的に固定することができる。これにより、保護膜と絶縁膜との間に感温抵抗体を固定し、保護膜は絶縁膜に各導通孔を通して部分的に固定されているから、熱膨張率の違いにより、保護膜と感温抵抗体との間に発生する応力を緩和し、クラックの発生を防止し、保護膜の信頼性を高め、流量検出装置の寿命を延ばすことができる。
【0071】
請求項4の発明では、各導通孔を、正側配線領域と負側配線領域の長さ方向に2個以上、幅方向に2列以上配置して設ける構成としたから、基板から正側配線領域と負側配線領域とが剥離し易い部分を強化して接続することができ、基板に対する感温抵抗体の接合強度を高めることができる。
【0072】
請求項5の発明では、感温抵抗体は、基板上に設けられた第1の感温抵抗体、ヒータ抵抗体、第2の感温抵抗体からなり、ヒータ抵抗体を挟んで幅方向一側に第1の感温抵抗体、幅方向他側に第2の感温抵抗体を並列に配設する構成としたから、基板に沿って流体が幅方向一側から流れたとき、第1の感温抵抗体が冷やされ、第2の感温抵抗体はヒータ抵抗体の熱を受けて暖められる。そして、第1,第2の感温抵抗体の抵抗値の変化から、流体の流れ方向と流量(流速)を検出することができる。
【0073】
請求項6の発明では、絶縁膜と保護膜を窒化シリコン、酸化シリコンまたは窒化シリコンと酸化シリコンとの多層膜により形成し、感温抵抗体を白金により形成したから、例えば絶縁膜と保護膜とを同じ窒化シリコンによって形成した場合には、保護膜は白金によって形成された感温抵抗体に設けられた各導通孔を通過して絶縁膜まで導かれ、感温抵抗体を挟んで絶縁膜と保護膜とを密着性を高めた状態で接続することができる。しかも、感温抵抗体を白金により形成しているから、流体によって感温抵抗体が冷やされたときに抵抗値が変化する。
【図面の簡単な説明】
【図1】第1の実施の形態に用いる流量検出装置を筒体内に配設した状態を示す縦断面図である。
【図2】第1の実施の形態に係る流量検出装置を示す斜視図である。
【図3】第1の実施の形態に係る流量検出装置を示す平面図である。
【図4】基板上に形成した感温抵抗体を示す斜視図である。
【図5】図3中の矢示V−V方向からみた検出領域の要部拡大断面図である。
【図6】図3中の矢示VI−VI方向からみた抵抗体、絶縁膜、保護膜の接続状態を示す要部拡大断面図である。
【図7】基板の表面に絶縁膜を形成する絶縁膜形成工程を示す断面図である。
【図8】絶縁膜形成工程で形成した絶縁膜上に感温抵抗体を形成する感温抵抗体形成工程を示す断面図である。
【図9】感温抵抗体形成工程で形成した感温抵抗体上に保護膜を形成する保護膜形成工程を示す断面図である。
【図10】第2の実施の形態による流量検出装置を示す平面図である。
【図11】第2の実施の形態による流量検出装置の変形例を示す平面図である。
【符号の説明】
4,31 流量検出装置
5,32 基板
6,33 絶縁膜
8 ヒータ抵抗体
9,15,21,36 正側配線領域
10,16,22,37 隙間
11,17,23,38 負側配線領域
12 ヒータ領域(検出領域)
13,19,25,40 端子領域
14 上流側抵抗体(第1の感温抵抗体)
18,24,39 検出領域
20 下流側抵抗体(第2の感温抵抗体)
26,41,41′ 導通孔
27,42 保護膜
35 感温抵抗体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flow detection device suitable for detecting an intake air amount of, for example, an automobile engine, and more particularly to a flow detection device formed on a substrate by a semiconductor manufacturing technique such as an etching process.
[0002]
[Prior art]
Generally, in an automobile engine or the like, in order to calculate an amount of fuel to be injected into a fuel chamber of an engine body, a flow rate or a flow rate (hereinafter, referred to as a flow rate) of intake air is measured by a flow rate detection device provided in an intake pipe of the engine. The intake air amount of the engine is calculated based on the detection result.
[0003]
A flow detecting device of this type according to the related art includes a substrate, an insulating film provided on the substrate, and a temperature-sensitive resistor provided on the insulating film. No. 44627, and the like.
[0004]
In this case, in the related art, a temperature-sensitive resistor made of a temperature-sensitive resistance material such as platinum is formed as a wiring pattern on a substrate formed of a silicon material or the like by etching. The temperature-sensitive resistor is connected to a detection circuit provided externally for detecting the resistance value.
[0005]
Further, since the substrate is mounted in a state of being exposed in the intake pipe of the engine, the temperature-sensitive resistor on the substrate contacts the intake air flowing through the intake pipe toward the engine body in this state. During operation of the engine, an electric current is supplied from an external detection circuit to the temperature-sensitive resistor to cause the temperature-sensitive resistor to generate heat, and the temperature-sensitive resistor is generated according to the flow rate of the fluid flowing along the substrate. Cooled.
[0006]
As a result, the resistance value of the temperature-sensitive resistor changes in accordance with the flow rate of the intake air. Therefore, the detection circuit detects the change in the resistance value as a voltage signal, and based on the detection result, detects the intake of the engine. This is for calculating the amount of air.
[0007]
In general, an insulating film is formed of silicon oxide, silicon nitride, or the like on the surface of a silicon substrate, and a protective film is formed of silicon oxide, silicon nitride, or the like on the surface of the temperature-sensitive resistor. The temperature-sensitive resistor is fixed on the substrate while being sandwiched between the insulating film and the protective film.
[0008]
Furthermore, in order to increase the bonding strength between the insulating film and the temperature-sensitive resistor, and between the temperature-sensitive resistor and the protective film, between the insulating film and the temperature-sensitive resistor, and between the temperature-sensitive resistor and the protective film, Adhesion layers made of a metal oxide are provided.
[0009]
[Problems to be solved by the invention]
By the way, in the above-described conventional flow rate detecting device, after forming an insulating film, a temperature-sensitive resistor, and a protective film on a substrate surface by using an etching process, a CVD method, an RIE method, or the like, the temperature-sensitive resistor is formed. In order to adjust the temperature coefficient of platinum or the like which is a material of the above, heat treatment was performed at about 800 to 1000 ° C. in an atmosphere of an inert gas (for example, argon), a nitrogen gas or the like.
[0010]
However, during this heat treatment step, the adhesion layers formed above and below the temperature-sensitive resistor may melt into the temperature-sensitive resistor, and the composition of the temperature-sensitive resistor may change. For this reason, when the flow rate is detected using this temperature-sensitive resistor, the detection signal varies due to a change in the temperature coefficient.
[0011]
Furthermore, the temperature coefficient of the temperature-sensitive resistor changes for each product,RThis leads to a problem of worsening the productivity and deteriorating the reliability.
[0012]
The protective film is formed by forming a temperature-sensitive resistor on a substrate using platinum or the like, and then formed by a CVD method or the like. The temperature of the substrate, the temperature-sensitive resistor, the protective film, and the like is increased to about 400 to 800 ° C. ing. At this high temperature, no stress is generated between the temperature-sensitive resistor made of platinum and the formed protective film. However, when the substrate, the temperature-sensitive resistor, the protective film and the like are returned to room temperature, different contractions occur between platinum and the protective film due to the difference in the coefficient of thermal expansion. For this reason, at room temperature, stress is generated between the temperature-sensitive resistor and the protective film, and cracks (hereinafter, referred to as cracks) may occur in the protective film.
[0013]
In addition, this crack may also be generated by the above-described heat treatment step. That is, in this heat treatment step, the substrate, the temperature-sensitive resistor, the protective film, and the like are heated to a temperature higher than the molding temperature at the time of forming the protective film. Is relaxed so that no stress is generated. However, when the substrate, the temperature-sensitive resistor, the protective film, and the like are returned from this high temperature state to room temperature, cracks occur in the protective film due to the difference in the coefficient of thermal expansion between the temperature-sensitive resistor and the protective film.
[0014]
As described above, the generated cracks cause invasion of moisture and the like to the temperature-sensitive resistor side, cause mechanical damage, and invasion of foreign matter, thereby deteriorating the protection function of the temperature-sensitive resistor included in the protective film. is there.
[0015]
The present invention has been made in view of the above-described problems of the related art, and the present invention eliminates an adhesion layer for bonding an insulating film or the like to a temperature-sensitive resistor, thereby changing the composition of the temperature-sensitive resistor during a heat treatment process. It is an object of the present invention to provide a flow rate detection device that eliminates cracks, prevents cracks in a protective film, and improves the yield.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the invention of claim 1, a substrate, an insulating film provided on the substrate, a temperature-sensitive resistor provided on the insulating film, and a temperature-sensitive resistor In a flow rate detection device comprising a protective film provided over the surface,The temperature-sensitive resistor is configured by a wiring region and a detection region connected to the wiring region for detecting a flow rate,The temperature-sensitive resistorWiring areaIs provided with a plurality of conductive holes, and the protective film passes through each conductive hole and is connected to the insulating film on the substrate side.
[0017]
With this configuration, the protective film passes through each conduction hole provided in the temperature-sensitive resistor and is led to the insulating film, and enhances the adhesion between the insulating film and the protective film with the temperature-sensitive resistor interposed therebetween. And the temperature-sensitive resistor can be fixed to the substrate.
[0018]
In addition, since the protective film and the insulating film are partially fixed through the respective conduction holes, stress caused by the difference in the coefficient of thermal expansion between the protective film and the temperature-sensitive resistor is alleviated to eliminate cracks in the protective film. be able to.
In addition, since each conduction hole is formed in the wiring region of the temperature-sensitive resistor that does not affect the electric resistance, the protective film is guided to the insulating film through each conduction hole. Thus, the wiring region can be sandwiched between the insulating film and the protective film, and the temperature-sensitive resistor can be fixed to the substrate.
On the other hand, when a fluid flows along the substrate, the detection region is cooled by the fluid and the resistance value changes. For this reason, since the detection area outputs the change in the resistance value as a detection signal to the outside using the wiring area, the flow rate (flow velocity) of the fluid can be detected based on the detection signal. Moreover, since no conduction hole is formed in the detection region, disturbance of the flow of the fluid flowing through the detection region can be reduced, and detection accuracy can be improved.
[0019]
According to the invention of claim 2, the temperature-sensitive resistor is provided.The wiring area ofA positive-side wiring region provided on the substrate, and a negative-side wiring region disposed to face the substrate with a gap from the positive-side wiring region.And the detection area of the temperature sensitive resistor isIt is installed at one end in the length direction of the positive wiring area and the negative wiring area.Ke,The conductive holes are provided in the positive wiring region and the negative wiring region, respectively.
[0020]
With this configuration, each conductive hole is formed in the positive wiring region and the negative wiring region that do not affect the electrical resistance of the temperature-sensitive resistor, and the protective film is guided to the insulating film through each conductive hole. In other words, the positive wiring region and the negative wiring region can be sandwiched between the insulating film and the protective film, and the temperature-sensitive resistor can be fixed to the substrate.
[0021]
Also, when a fluid flows along the substrate, the detection area is cooled by the fluid and the resistance value changes, and the change in the resistance value is output to the outside using each wiring area as a detection signal. Thus, the flow rate (flow velocity) of the fluid can be detected. Moreover, since no conduction hole is formed in the detection region, disturbance of the flow of the fluid flowing through the detection region can be reduced, and detection accuracy can be improved.
[0022]
According to a third aspect of the present invention, the positive wiring region and the negative wiring region are formed with a contact area larger than a contact area between the detection region and the substrate.
[0023]
With this configuration, the positive-side wiring region and the negative-side wiring region having a large contact area with the substrate among the temperature-sensitive resistors have lower electrical resistance than the detection region. Even if a conduction hole is formed in the region, the detection region can be electrically connected to the outside through each wiring region without affecting the electric resistance. In addition, each wiring region having a large contact area has a low adhesion to the temperature-sensitive resistor in the related art, and is a portion where cracks easily occur in the protective film. Therefore, a plurality of conductive holes are formed in each wiring region, and the protective film is guided to the insulating film through each conductive hole, so that the positive wiring region and the negative wiring region are located between the insulating film and the protective film. Thus, the temperature-sensitive resistor can be fixed to the substrate.
[0024]
According to a fourth aspect of the present invention, two or more conductive holes are provided in the length direction of the positive wiring region and the negative wiring region and two or more rows are provided in the width direction.
[0025]
With such a configuration, a portion where the positive wiring region and the negative wiring region are easily separated from the substrate can be strengthened and connected, and the bonding strength of the temperature sensitive resistor to the substrate can be increased. .
[0026]
According to the fifth aspect of the present invention, the temperature-sensitive resistor includes a first temperature-sensitive resistor, a heater resistor, and a second temperature-sensitive resistor provided on the substrate, and is arranged in the width direction with the heater resistor interposed therebetween. The first temperature-sensitive resistor is arranged on the side and the second temperature-sensitive resistor is arranged in parallel on the other side in the width direction.
[0027]
With this configuration, the protective film is guided to the insulating film through each of the conduction holes provided in each wiring region, and the insulating film and the protective film are sandwiched between the wiring regions to improve the adhesion. And the resistors can be fixed to the substrate.
[0028]
Further, by disposing the first temperature-sensitive resistor and the second temperature-sensitive resistor in parallel in the width direction with the heater resistor interposed therebetween, when the fluid flows from one side in the width direction along the substrate, The first temperature-sensitive resistor is cooled, and the second temperature-sensitive resistor is heated by the heat of the heater resistor. Then, the flow direction and the flow rate (flow velocity) of the fluid can be detected from the change in the resistance value of the first and second temperature-sensitive resistors.
[0029]
According to a sixth aspect of the present invention, the insulating film and the protective film are formed of silicon nitride, silicon oxide, or a multilayer film of silicon nitride and silicon oxide, and the temperature-sensitive resistor is formed of a platinum film.
[0030]
With this configuration, for example, when the insulating film and the protective film are formed of the same silicon nitride, the protective film is guided to the insulating film through each through hole provided in the temperature-sensitive resistor, The insulating film and the protective film can be connected to each other with the temperature-sensitive resistor sandwiched therebetween while the adhesion is enhanced.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a flow detection device according to the present invention will be described in detail with reference to FIGS.
[0032]
First, a first embodiment according to the present invention will be described with reference to FIGS. Reference numeral 1 denotes a cylinder serving as a flow path through which a fluid to be measured flows, and the cylinder 1 is connected in the middle of an intake pipe (not shown) of the engine. During operation of the engine, intake air drawn into the combustion chamber of the engine body from the outside through the intake pipe flows in the cylinder 1 in the direction of arrow A.
[0033]
Reference numeral 2 denotes a circuit casing provided on the outer surface of the cylindrical body 1. The circuit casing 2 detects the flow rate of intake air flowing through the cylindrical body 1 from a detection signal output from a flow rate detection device 4 described later. (Not shown) and the like are accommodated.
[0034]
Reference numeral 3 denotes a support provided on the cylindrical body 1 for supporting the flow rate detecting device 4. The support 3 has a base end side attached to the circuit casing 2, a distal end side protruding into the cylindrical body 1, and a distal end side. Is mounted with a substrate 5 described later. Further, the support 3 is provided with a wiring portion (not shown) for connecting the substrate 5 side and the detection circuit in the circuit casing 2 and the like.
[0035]
Reference numeral 4 denotes a flow detection device, and reference numeral 5 denotes a substrate serving as a base of the flow detection device 4, and the substrate 5 is formed of a silicon plate into a plate shape of, for example, 10 × 2.5 × 0.5 [mm]. . In addition, an insulating film 6 described later is formed on the surface of the substrate 5.
[0036]
Reference numeral 6 denotes an insulating film formed on the surface of the substrate 5. The insulating film 6 is formed on the surface of the substrate 5 made of a silicon plate by means of a thermal oxidation method, a CVD method, or the like.2  ), Silicon nitride (Si3  O4  ) To have a thickness of about 1 μm.
[0037]
Reference numeral 7 denotes a concave portion formed by performing an etching process or the like from the rear surface side of the substrate 5. On the front side of the substrate 5, a heater region 12 of a heater resistor 8, a detection region 18 of an upstream resistor 14, and a detection region 24 of a downstream resistor 20, which will be described later, are provided, respectively. For example, it is about 1 to 2 × 0.5 [mm].
[0038]
Reference numeral 8 denotes a heater resistor provided at a middle portion of the substrate 5 in the width direction. The heater resistor 8 is formed of a temperature-sensitive resistance material such as platinum and has a thickness of about 0.5 μm. I have. As shown in FIG. 4, the heater resistor 8 is disposed on the substrate 5 such that the trapezoidal positive wiring region 9 is provided on the substrate 5, and the heater resistor 8 is opposed to the substrate 5 with a gap 10 from the positive wiring region 9. A trapezoidal negative wiring region 11 provided; a heater region 12 as a detection region provided at one end in the length direction of the positive wiring region 9 and the negative wiring region 11; 9, a terminal region 13 provided on the other end side in the length direction of the negative wiring region 11. Further, the positive wiring region 9 and the negative wiring region 11 are formed with a contact area larger than the contact area between the detection region 12 and the substrate 5.
[0039]
As shown in FIGS. 2 and 3, each terminal region 13 is formed as an electrode pad formed by opening a protective film 27 described later in a square shape. Each terminal region 13 is connected to a bonding wire, and is connected to an external detection circuit (neither is shown) using the bonding wire.
[0040]
Reference numeral 14 denotes an upstream resistor serving as a first temperature-sensitive resistor provided on one side in the width direction of the substrate 5. The upstream resistor 14 is formed of the same platinum material as the heater resistor 8. The upstream resistor 14 includes a substantially trapezoidal positive wiring region 15 and a substantially trapezoidal negative wiring region 17 disposed opposite the substrate 5 with a gap 16 from the positive wiring region 15. A substantially U-shaped detection region 18 provided at one end in the length direction of the wiring regions 15 and 17, and terminal regions 19 and 19 provided at the other end in the length direction of the wiring regions 15 and 17. It is constituted by. The wiring regions 15 and 17 are formed with a contact area larger than the contact area between the detection region 18 and the substrate 5.
[0041]
Reference numeral 20 denotes a downstream resistor as a second temperature-sensitive resistor provided on the other side in the width direction of the substrate 5. The downstream resistor 20 includes the heater resistor 8 and the upstream resistor 14. The downstream-side resistor 20 is formed of the same platinum material, and has a substantially trapezoidal positive wiring region 21 and a substantially trapezoidal shape that is disposed to face the substrate 5 with a gap 22 from the positive wiring region 21. , A substantially U-shaped detection region 24 provided at one end in the length direction of the wiring regions 21 and 23, and a detection region 24 provided at the other end in the length direction of the wiring regions 21 and 23. It is constituted by the terminal regions 25, 25. The wiring regions 21 and 23 are formed with a contact area larger than the contact area between the detection region 24 and the substrate 5.
[0042]
The electrical resistance of the positive wiring region 9 and the negative wiring region 11 having a large contact area with the substrate 5 of the heater resistor 8 is smaller than that of the heater region 12. , 11 are configured as connecting members for connecting the heater region 12 to the outside. Further, the wiring regions 15 and 17 of the upstream resistor 14 and the wiring regions 21 and 23 of the downstream resistor 20 also have lower electric resistances than the detection regions 18 and 24, so that these wiring regions 15 and 17 are used. , 21 and 23 are configured as connecting members for connecting the detection areas 18 and 24 to the outside.
[0043]
.. Are rectangular or elliptical conductive holes formed in the thickness direction of the resistors 8, 14, 20. Each of the conductive holes 26 is a heater resistor as shown in FIG. 8 are located in the wiring regions 9 and 11, the wiring regions 15 and 17 of the upstream resistor 14, and the wiring regions 21 and 23 of the downstream resistor 20. The conductive holes 26 are provided in the wiring regions 9, 11, 15, 17, 21, and 23, for example, four in the length direction and three in the width direction.
[0044]
27 is a protective film provided so as to cover the surfaces of the resistors 8, 14, 20 and the insulating film 6. The protective film 27 is made of silicon oxide (SiO.2  ), Silicon nitride (Si3  O4  ), And the protection film 27 is for protecting the resistors 8, 14, and 20. The protective films 27 formed on the surfaces of the wiring regions 9 and 11 of the heater resistor 8, the wiring regions 15 and 17 of the upstream resistor 14, and the wiring regions 21 and 23 of the downstream resistor 20 are connected to each other. Portions corresponding to the holes 26 are recesses 27A, 27A,.
[0045]
Here, as shown in FIG. 6, when the protective film 27 is formed by the conductive holes 26, the protective film 27 passes through the conductive holes 26 and is led to the insulating film 6 on the substrate 5 side. In FIG. 27, this portion becomes a concave portion 27A. Further, by connecting the protective film 27 to the insulating film 6 through each of the conduction holes 26, the resistors 8, 14, 20 are fixed between the protective film 27 and the insulating film 6 with increased adhesion.
[0046]
The flow rate detection device 4 according to the present embodiment has the above-described configuration. Next, the operation of detecting the flow rate of the intake air will be described.
[0047]
Here, since the upstream resistor 14, the heater resistor 8, and the downstream resistor 20 are arranged in parallel on the substrate 5, as shown in FIGS. When the air flows in the direction indicated by the arrow A along the arrow, the detection area 18 of the upstream resistor 14 located on the upstream side of the substrate 5 is cooled by the air, and the detection area 18 of the downstream resistor 20 located on the downstream side is cooled. Detection area 24 receives heat from heater area 12. As a result, a difference occurs between the detection signals output from the upstream resistor 14 and the downstream resistor 20, and the difference is output to a detection circuit in the circuit casing 2, and the detection circuit determines the flow direction of the intake air. And the flow velocity can be calculated. In addition, since the conduction holes 26 are not formed in the heater region 12 and the detection regions 18 and 24, disturbance of the flow of air flowing through the heater region 12 and the detection regions 18 and 24 is reduced. Detection accuracy can be improved.
[0048]
Next, a manufacturing process for manufacturing the flow rate detecting device 4 according to the present embodiment will be described with reference to FIGS. 7 to 9 show an enlarged cross section of the main part similar to that of FIG. 6, the downstream resistor 20 and the like are not shown, but the other upstream resistor 14 and the heater resistor are not shown. 8 and is manufactured at the same time.
[0049]
First, in the insulating film forming step shown in FIG. 7, an insulating film 6 of silicon oxide, silicon nitride, or the like is formed on a substrate 5 made of a silicon material prepared in advance by a method such as a thermal oxidation method or a CVD method.
[0050]
Next, in the temperature-sensitive resistor forming step shown in FIG. 8, the heater resistor 8, the upstream resistor 14, and the downstream resistor 20 are manufactured on the insulating film 6 by using a CVD method, a sputtering method, or the like. At this time, a plurality of conductive holes 26 are formed in the wiring regions 9 and 11 of the heater resistor 8, the wiring regions 15 and 17 of the upstream resistor 14, and the wiring regions 21 and 23 of the downstream resistor 20, respectively. You.
[0051]
Further, in the protective film forming step shown in FIG. 9, a protective film 27 of silicon oxide, silicon nitride or the like is formed on the surfaces of the resistors 8, 14, 20 formed in the temperature-sensitive resistor forming step by a CVD method or the like. I do. At this time, a portion of the protective film 27 corresponding to each conductive hole 26 is connected to the insulating film 6 through the conductive hole 26, and the wiring regions 9, 11, 15, 17, 21, and 23 are formed by the protective film 27 6 is joined in a state where the adhesion is enhanced. Thereafter, the substrate 5 is subjected to a heat treatment at about 800 to 1000 ° C. in an atmosphere of an inert gas (for example, argon), a nitrogen gas or the like.
[0052]
Thus, in the flow rate detection device 4 according to the present embodiment, a plurality of conduction holes 26 are respectively formed in the positive wiring regions 9, 15, 21 and the negative wiring regions 11, 17, 23 of the resistors 8, 14, 20. And the protective film 27 is connected to the insulating film 6 on the substrate 5 side by passing through each of the conductive holes 26. Therefore, conventionally, it is necessary to join the resistor to the insulating film and the resistor to the protective film. The adhesive layer made of the metal oxide layer can be eliminated. Accordingly, it is possible to eliminate such a problem that the adhesion layer is melted into the temperature-sensitive resistor during the heat treatment step and the composition of the temperature-sensitive resistor is changed. As a result, the heater resistor 8, the upstream resistor 14, and the downstream resistor 20 can eliminate the variation due to the temperature coefficient, and can increase the detection sensitivity of the flow detection device 4.
[0053]
Further, as described above, when forming the protective film 27 on the surfaces of the resistors 8, 14, and 20, the protective film 27 is connected to the insulating film 6 by passing through the respective conduction holes 26. Even if it is abolished, the resistors 8, 14, and 20 can be fixed to the substrate 5. By eliminating the adhesion layer, it is possible to restrict the temperature coefficient of the temperature-sensitive resistor from varying for each product, increase the yield of the flow rate detection device, and improve the productivity.
[0054]
On the other hand, in the present embodiment, a plurality of conductive holes 26 are formed in the wiring regions 9, 11, 15, 17, 21, 21 and 23 of the resistors 8, 14, and 20 having a large contact area with the substrate 5. Therefore, by fixing the wiring regions 9, 11, 15, 17, 21, and 23 between the insulating film 6 and the protective film 27, the heater region 12, the detection regions 18, 24, and the like are also fixed to the substrate 5. be able to.
[0055]
In addition, since the protective film 27 is partially fixed to the insulating film 6 through each of the conduction holes 26, stress due to a difference in the coefficient of thermal expansion between the protective film 27 and the resistors 8, 14, and 20 can be reduced. In addition, it is possible to prevent the occurrence of cracks that have conventionally occurred in the protective film, and to reliably protect the resistors 8, 14, and 20 by the protective film 27. Thereby, the life of the flow detecting device 4 can be extended and the reliability can be improved.
[0056]
Next, a second embodiment according to the present invention will be described with reference to FIG. 10. In this embodiment, a single temperature-sensitive resistor is formed on a substrate, and a positive wiring region and a negative wiring are formed. The conduction hole formed in the region is formed on the outer peripheral side of the positive wiring region and the negative wiring region. Note that, in the present embodiment, the same components as those in the above-described first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0057]
Reference numeral 31 denotes a flow rate detecting device used in the present embodiment, 32 denotes a substrate formed of a silicon plate serving as a base of the flow rate detecting device 31. On the surface of the substrate 32, an insulating film 33 has an oxide film and a nitride film. And so on. A concave portion 34 is formed on the back surface of the substrate 32 by etching or the like.
[0058]
Reference numeral 35 denotes a temperature-sensitive resistor provided on the substrate 32. The temperature-sensitive resistor 35 is formed in a film shape from a temperature-sensitive resistance material such as platinum, and has a substantially trapezoidal positive-side wiring region 36, A substantially trapezoidal negative wiring region 38 disposed opposite the substrate 32 with a wiring region 36 and a gap 37, and a substantially U-shaped detection provided at one longitudinal end of the wiring regions 36, 38 It comprises a region 39 and terminal regions 40, 40 provided on the other ends in the length direction of the wiring regions 36, 38. The wiring areas 36 and 38 are formed with a contact area larger than the contact area between the detection area 39 and the substrate 32.
[0059]
.. Are rectangular or elliptical conductive holes formed in the positive-side wiring region 36 and the negative-side wiring region 38 of the temperature-sensitive resistor 35. The respective conductive holes 41 are formed in the wiring regions 36, 38. Of these, they are formed in two rows in the width direction.
[0060]
Reference numeral 42 denotes a protective film provided to cover the surface of the temperature-sensitive resistor 35. The protective film 42 is formed of an oxide film, a nitride film, or the like by a CVD method or the like in the same manner as the insulating film 33. 35 is to be protected. Here, where the protective film 42 is guided to the insulating film 33 on the substrate 32 side through each of the conduction holes 41, a surface of the protective film 42 is formed as a recess 42 </ b> A.
[0061]
In the present embodiment thus configured, as in the first embodiment, by connecting the insulating film 33 and the protective film 42 with the temperature-sensitive resistor 35 interposed therebetween, the temperature-sensitive resistance can be reduced. The body 35 can be fixed to the substrate 32.
[0062]
In each of the above embodiments, the positive wiring regions 9, 15, 21, and 36 are disposed upstream with respect to the flow of the intake air, and the negative wiring regions 11, 17, 23, and 38 are disposed downstream. However, the present invention is not limited to this. The negative wiring regions 11, 17, 23, and 38 are disposed on the upstream side, and the positive wiring regions 9, 15, 21, and 36 are disposed on the downstream side. It may be configured to be provided.
[0063]
Further, in the second embodiment, the case where each conduction hole 41 is formed in two rows in the width direction of the positive wiring region 36 and the negative wiring region 38 has been described, but the present invention is not limited to this. As shown in the modification of FIG. 11, it is a matter of course that the conduction hole 41 'may be formed also in the middle of the wiring regions 36 and 38 in the width direction.
[0064]
Further, in the embodiment, the case where the flow rate detection device is used for measurement of the intake air amount of an automobile engine or the like has been described as an example.However, the present invention is not limited to this. May be applied.
[0065]
Furthermore, in each embodiment, the case where the insulating film 6 (33) and the protective film 27 (42) are formed of silicon oxide and silicon nitride has been described. However, the present invention is not limited to this. It may be used instead of a multilayer film in which silicon oxide is alternately formed in multiple layers.
[0066]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, a temperature-sensitive resistor is provided.Wiring areaA plurality of conductive holes are provided on the substrate, and the protective film is connected to the insulating film on the substrate side through the respective conductive holes. The connection can be made in an elevated state, and the temperature-sensitive resistor can be fixed to the substrate. Further, the conventionally required adhesion layer can be eliminated, the composition change of the temperature sensitive resistor can be eliminated during the heat treatment step, and the detection sensitivity of the flow rate detecting device can be increased. Further, it is possible to restrict the temperature coefficient of the temperature-sensitive resistor from varying for each product, thereby increasing the product yield and improving the productivity.
[0067]
In addition, since the protective film is partially fixed to the insulating film through the respective conduction holes, the stress generated between the protective film and the temperature-sensitive resistor is reduced due to the difference in coefficient of thermal expansion, and the protective film is cracked. Can be prevented, the reliability of the protective film can be increased, and the life of the flow rate detection device can be extended.
In addition, since each conduction hole is formed in the wiring region of the temperature-sensitive resistor that does not affect the electric resistance, the protective film is connected to the insulating film through each conduction hole, and the wiring region is formed between the insulating film and the protection film. It can be clamped, and the temperature-sensitive resistor can be fixed to the substrate. On the other hand, since no conduction hole is formed in the detection region, disturbance of the flow of the fluid flowing through the detection region can be reduced, and detection accuracy can be increased.
[0068]
According to the invention of claim 2, the temperature-sensitive resistor is provided.Wiring areaA positive wiring region and a negative wiring region opposed to the positive wiring region with a gap.And the detection area of the temperature sensitive resistorIt is installed at one end in the length direction of the positive wiring area and the negative wiring area.Ke,Since each conduction hole is formed in the positive wiring region and the negative wiring region that do not affect the electrical resistance of the temperature-sensitive resistor, the protective film is guided to the insulating film through each conduction hole, and the positive wiring region is connected to the negative wiring region. The side wiring region is sandwiched between the insulating film and the protective film, and the temperature sensitive resistor can be fixed to the substrate.
[0069]
Also, when a fluid flows along the substrate, the detection area is cooled by the fluid and the resistance value changes, and the change in the resistance value is output to the outside using each wiring area as a detection signal. Thus, the flow rate (flow velocity) of the fluid can be detected.
[0070]
According to the third aspect of the present invention, the positive-side wiring region and the negative-side wiring region are formed with a contact area larger than the contact area between the detection region and the substrate. Since the adhesiveness to the body is low and cracks are likely to occur in the protective film, a plurality of conductive holes are formed in each wiring area, and the protective film is partially fixed to the insulating film through each conductive hole. can do. As a result, the temperature sensitive resistor is fixed between the protective film and the insulating film, and the protective film is partially fixed to the insulating film through the respective through holes. The stress generated between the thermal resistor and the thermal resistor can be reduced, cracks can be prevented, the reliability of the protective film can be increased, and the life of the flow rate detector can be extended.
[0071]
According to the fourth aspect of the present invention, since at least two conductive holes are provided in the length direction of the positive wiring region and the negative wiring region and two or more rows are provided in the width direction, the conductive holes are provided from the substrate. The region where the region and the negative wiring region are easily separated can be strengthened and connected, and the bonding strength of the temperature-sensitive resistor to the substrate can be increased.
[0072]
According to the fifth aspect of the present invention, the temperature-sensitive resistor includes a first temperature-sensitive resistor, a heater resistor, and a second temperature-sensitive resistor provided on the substrate, and is arranged in the width direction with the heater resistor interposed therebetween. The first temperature-sensitive resistor is arranged in parallel on the side and the second temperature-sensitive resistor is arranged in parallel on the other side in the width direction, so that when a fluid flows from one side in the width direction along the substrate, Is cooled, and the second temperature-sensitive resistor is heated by the heat of the heater resistor. Then, the flow direction and the flow rate (flow velocity) of the fluid can be detected from the change in the resistance value of the first and second temperature-sensitive resistors.
[0073]
In the invention of claim 6, the insulating film and the protective film are formed of silicon nitride, silicon oxide or a multilayer film of silicon nitride and silicon oxide, and the temperature-sensitive resistor is formed of platinum. Is formed of the same silicon nitride, the protective film is guided to the insulating film through each of the conduction holes provided in the temperature-sensitive resistor formed of platinum, and is interposed between the insulating film and the temperature-sensitive resistor. The protective film can be connected to the protective film in a state where the adhesion is enhanced. Moreover, since the temperature-sensitive resistor is made of platinum, the resistance value changes when the temperature-sensitive resistor is cooled by a fluid.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a state in which a flow rate detecting device used in a first embodiment is disposed in a cylinder.
FIG. 2 is a perspective view showing a flow rate detection device according to the first embodiment.
FIG. 3 is a plan view showing the flow rate detection device according to the first embodiment.
FIG. 4 is a perspective view showing a temperature-sensitive resistor formed on a substrate.
FIG. 5 is an enlarged sectional view of a main part of a detection area viewed from a direction indicated by arrows VV in FIG.
6 is an essential part enlarged cross-sectional view showing a connection state of a resistor, an insulating film, and a protective film as viewed from a direction indicated by arrows VI-VI in FIG. 3;
FIG. 7 is a cross-sectional view showing an insulating film forming step of forming an insulating film on a surface of a substrate.
FIG. 8 is a cross-sectional view showing a temperature-sensitive resistor forming step of forming a temperature-sensitive resistor on the insulating film formed in the insulating film forming step.
FIG. 9 is a cross-sectional view showing a protective film forming step of forming a protective film on the temperature-sensitive resistor formed in the temperature-sensitive resistor forming step.
FIG. 10 is a plan view showing a flow detection device according to a second embodiment.
FIG. 11 is a plan view showing a modified example of the flow rate detection device according to the second embodiment.
[Explanation of symbols]
4,31 Flow rate detector
5,32 substrates
6,33 insulating film
8 Heater resistor
9,15,21,36 Positive wiring area
10, 16, 22, 37 gap
11, 17, 23, 38 Negative wiring area
12 heater area (detection area)
13,19,25,40 terminal area
14. Upstream resistor (first temperature-sensitive resistor)
18, 24, 39 Detection area
20 Downstream resistor (second temperature-sensitive resistor)
26, 41, 41 'conduction hole
27, 42 Protective film
35 Temperature Sensitive Resistor

Claims (6)

基板と、該基板上に設けられた絶縁膜と、該絶縁膜上に設けられた感温抵抗体と、該感温抵抗体の表面を覆って設けられた保護膜とを備えてなる流量検出装置において、
前記感温抵抗体は、配線領域と該配線領域に接続され流量を検出するための検出領域とによって構成し、
前記感温抵抗体の配線領域には複数個の導通孔を設け、前記保護膜は該各導通孔を通過して前記基板側の絶縁膜と接続する構成としたことを特徴とする流量検出装置。
Flow rate detection comprising a substrate, an insulating film provided on the substrate, a temperature-sensitive resistor provided on the insulating film, and a protective film provided on a surface of the temperature-sensitive resistor. In the device,
The temperature-sensitive resistor is configured by a wiring region and a detection region connected to the wiring region for detecting a flow rate,
A flow rate detecting device, wherein a plurality of conductive holes are provided in a wiring region of the temperature-sensitive resistor, and the protective film is connected to the insulating film on the substrate side through each of the conductive holes. .
前記感温抵抗体の配線領域は、前記基板上に設けられた正側配線領域と、該正側配線領域と隙間をもって前記基板に対向して配設された負側配線領域とからなり、前記感温抵抗体の検出領域はこれら正側配線領域と負側配線領域との長さ方向一端側に設け、前記各導通孔は前記正側配線領域と負側配線領域とにそれぞれ設けてなる請求項1記載の流量検出装置。 The wiring region of the temperature-sensitive resistor includes a positive wiring region provided on the substrate, and a negative wiring region disposed to face the substrate with a gap from the positive wiring region , only set the length one side of the detection region of the temperature sensitive resistor to these positive-side wiring region and a negative side wiring region, wherein each through hole is respectively provided in said primary wiring region and the negative side wiring region The flow detection device according to claim 1. 前記正側配線領域と負側配線領域は、検出領域と基板との接触面積よりも広い接触面積をもって形成してなる請求項2記載の流量検出装置。3. The flow rate detecting device according to claim 2, wherein the positive wiring region and the negative wiring region are formed with a contact area larger than a contact area between the detection region and the substrate. 前記各導通孔は、正側配線領域と負側配線領域の長さ方向に2個以上、幅方向に2列以上配置して設ける構成としてなる請求項2または3記載の流量検出装置。The flow rate detecting device according to claim 2, wherein each of the conduction holes is provided by arranging at least two in a length direction of a positive wiring region and a length of a negative wiring region and two or more rows in a width direction. 前記感温抵抗体は、基板上に設けられた第1の感温抵抗体、ヒータ抵抗体、第2の感温抵抗体からなり、ヒータ抵抗体を挟んで幅方向一側に第1の感温抵抗体を配設し、幅方向他側に第2の感温抵抗体を配設する構成としてなる請求項2,3または4記載の流量検出装置。The temperature-sensitive resistor includes a first temperature-sensitive resistor, a heater resistor, and a second temperature-sensitive resistor provided on a substrate, and the first temperature-sensitive resistor is located on one side in the width direction across the heater resistor. 5. The flow detecting device according to claim 2, wherein a temperature resistor is provided, and a second temperature sensitive resistor is provided on the other side in the width direction. 前記絶縁膜と保護膜は、窒化シリコン、酸化シリコンまたは窒化シリコンと酸化シリコンとの多層膜により形成し、前記感温抵抗体は、白金により形成してなる請求項1,2,3,4または5記載の流量検出装置。5. The insulating film and the protective film are formed of silicon nitride, silicon oxide or a multilayer film of silicon nitride and silicon oxide, and the temperature-sensitive resistor is formed of platinum. 5. The flow detection device according to 5.
JP15201098A 1998-05-15 1998-05-15 Flow detector Expired - Lifetime JP3569129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15201098A JP3569129B2 (en) 1998-05-15 1998-05-15 Flow detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15201098A JP3569129B2 (en) 1998-05-15 1998-05-15 Flow detector

Publications (2)

Publication Number Publication Date
JPH11326001A JPH11326001A (en) 1999-11-26
JP3569129B2 true JP3569129B2 (en) 2004-09-22

Family

ID=15531099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15201098A Expired - Lifetime JP3569129B2 (en) 1998-05-15 1998-05-15 Flow detector

Country Status (1)

Country Link
JP (1) JP3569129B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871537B1 (en) * 2003-11-15 2005-03-29 Honeywell International Inc. Liquid flow sensor thermal interface methods and systems
JP5272801B2 (en) * 2009-02-27 2013-08-28 株式会社デンソー Air flow measurement device

Also Published As

Publication number Publication date
JPH11326001A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP3366818B2 (en) Thermal air flow meter
US6236110B1 (en) Power semiconductor module
US6314807B1 (en) Thermal-type flow sensor
EP1310774B1 (en) Device for measuring physical quantity, method of manufacture thereof, and vehicle control system using device for measuring physical quantity
US6470742B1 (en) Flow sensor
JPH08313320A (en) Measuring element for thermal air flow meter and thermal air flowmeter with it
JPH1123338A (en) Thermosensitive flow-rate detecting element and flow-rate sensor using the same
US6626037B1 (en) Thermal flow sensor having improved sensing range
JP3404300B2 (en) Thermal flow sensor
JP4474771B2 (en) Flow measuring device
EP1298420A1 (en) Thermal mass flow sensor
JP3839052B2 (en) Flow sensor
US7721599B2 (en) Reduced resistance thermal flow measurement device
US6684693B2 (en) Heat generation type flow sensor
JP2004037302A (en) Measuring element of gas flow rate and temperature
JP3569129B2 (en) Flow detector
JPH10197304A (en) Measuring element for air flowmeter and air flowmeter provided with the same
JP3510803B2 (en) Flow rate detecting device and manufacturing method thereof
JP3668921B2 (en) Flow detection element
JPH102773A (en) Thermal air flowmeter
JPH11354302A (en) Thin-film resistor element
JP4258084B2 (en) Flow sensor and manufacturing method thereof
JP2022139173A (en) flow sensor chip
JPH11118571A (en) Mass flow rate sensor
JPH09304147A (en) Measuring element for thermal air flowmeter and thermal air flowmeter containing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

EXPY Cancellation because of completion of term