JP3567523B2 - Polystyrene film for capacitors - Google Patents
Polystyrene film for capacitors Download PDFInfo
- Publication number
- JP3567523B2 JP3567523B2 JP8525195A JP8525195A JP3567523B2 JP 3567523 B2 JP3567523 B2 JP 3567523B2 JP 8525195 A JP8525195 A JP 8525195A JP 8525195 A JP8525195 A JP 8525195A JP 3567523 B2 JP3567523 B2 JP 3567523B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- thickness
- stretching
- polystyrene
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003990 capacitor Substances 0.000 title claims description 21
- 239000004793 Polystyrene Substances 0.000 title claims description 20
- 229920002223 polystyrene Polymers 0.000 title claims description 20
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 24
- 229920000642 polymer Polymers 0.000 claims description 20
- 239000010408 film Substances 0.000 description 69
- 239000002245 particle Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 13
- 230000015556 catabolic process Effects 0.000 description 12
- 238000009998 heat setting Methods 0.000 description 10
- 239000010419 fine particle Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- OXHSYXPNALRSME-UHFFFAOYSA-N (4-ethenylphenyl)-trimethylsilane Chemical compound C[Si](C)(C)C1=CC=C(C=C)C=C1 OXHSYXPNALRSME-UHFFFAOYSA-N 0.000 description 1
- KKLSEIIDJBCSRK-UHFFFAOYSA-N 1-(chloromethyl)-2-ethenylbenzene Chemical compound ClCC1=CC=CC=C1C=C KKLSEIIDJBCSRK-UHFFFAOYSA-N 0.000 description 1
- SSZOCHFYWWVSAI-UHFFFAOYSA-N 1-bromo-2-ethenylbenzene Chemical compound BrC1=CC=CC=C1C=C SSZOCHFYWWVSAI-UHFFFAOYSA-N 0.000 description 1
- KQJQPCJDKBKSLV-UHFFFAOYSA-N 1-bromo-3-ethenylbenzene Chemical compound BrC1=CC=CC(C=C)=C1 KQJQPCJDKBKSLV-UHFFFAOYSA-N 0.000 description 1
- BOVQCIDBZXNFEJ-UHFFFAOYSA-N 1-chloro-3-ethenylbenzene Chemical compound ClC1=CC=CC(C=C)=C1 BOVQCIDBZXNFEJ-UHFFFAOYSA-N 0.000 description 1
- FIPBXQBXPNTQAA-UHFFFAOYSA-N 1-ethenyl-2-ethoxybenzene Chemical compound CCOC1=CC=CC=C1C=C FIPBXQBXPNTQAA-UHFFFAOYSA-N 0.000 description 1
- YNQXOOPPJWSXMW-UHFFFAOYSA-N 1-ethenyl-2-fluorobenzene Chemical compound FC1=CC=CC=C1C=C YNQXOOPPJWSXMW-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- XKMDZVINHIFHLY-UHFFFAOYSA-N 1-ethenyl-3,5-dimethylbenzene Chemical compound CC1=CC(C)=CC(C=C)=C1 XKMDZVINHIFHLY-UHFFFAOYSA-N 0.000 description 1
- ZJSKEGAHBAHFON-UHFFFAOYSA-N 1-ethenyl-3-fluorobenzene Chemical compound FC1=CC=CC(C=C)=C1 ZJSKEGAHBAHFON-UHFFFAOYSA-N 0.000 description 1
- PECUPOXPPBBFLU-UHFFFAOYSA-N 1-ethenyl-3-methoxybenzene Chemical compound COC1=CC=CC(C=C)=C1 PECUPOXPPBBFLU-UHFFFAOYSA-N 0.000 description 1
- ATWSNVQTZGZQRL-UHFFFAOYSA-N 1-ethenyl-4-[4-[4-(4-ethenylphenyl)butoxy]butyl]benzene Chemical compound C1=CC(C=C)=CC=C1CCCCOCCCCC1=CC=C(C=C)C=C1 ATWSNVQTZGZQRL-UHFFFAOYSA-N 0.000 description 1
- KEZDVVCDQRDBDN-UHFFFAOYSA-N 1-ethenyl-4-fluoro-2-methylbenzene Chemical compound CC1=CC(F)=CC=C1C=C KEZDVVCDQRDBDN-UHFFFAOYSA-N 0.000 description 1
- QEDJMOONZLUIMC-UHFFFAOYSA-N 1-tert-butyl-4-ethenylbenzene Chemical compound CC(C)(C)C1=CC=C(C=C)C=C1 QEDJMOONZLUIMC-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- MMIOSYPJSGTWEM-UHFFFAOYSA-N 2-(2-ethenylphenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC=C1C=C MMIOSYPJSGTWEM-UHFFFAOYSA-N 0.000 description 1
- ISRGONDNXBCDBM-UHFFFAOYSA-N 2-chlorostyrene Chemical compound ClC1=CC=CC=C1C=C ISRGONDNXBCDBM-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000001225 nuclear magnetic resonance method Methods 0.000 description 1
- SFBTTWXNCQVIEC-UHFFFAOYSA-N o-Vinylanisole Chemical compound COC1=CC=CC=C1C=C SFBTTWXNCQVIEC-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、コンデンサ用シンジオタクチックポリスチレン系フィルムに関する。より詳細には、電気特性及び耐熱性が良好で、且つ絶縁破壊電圧に優れ、更に厚み均一性に優れたコンデンサ用ポリスチレン系フィルムに関する。
【0002】
【従来の技術】
シンジオタクチックスチレン系重合体を主成分とする樹脂組成物を、二軸延伸、熱固定した二軸延伸フィルムは、電気特性、耐熱性等に優れ、フィルムコンデンサの誘電体に展開されている(特開平2−143851号公報、特開平3−124750号公報、特開平5−200858号公報)。
【0003】
【発明が解決しようとする課題】
しかし、これら従来のシンジオタクチックポリスチレン系フィルムにおいては、絶縁破壊電圧が不良であったり、フィルムの厚みむら増大に基づく絶縁破壊電圧のばらつきやコンデンサに用いたときの容量(静電容量)のばらつきが発生することが分かった。
また、絶縁破壊電圧が不良となった場合、フィルムを厚くする必要が生じ、その結果コンデンサの体積が大きくなるという問題があった。更に、絶縁破壊電圧や容量のばらつきが大きい場合、コンデンサの信頼性が得られないという問題があった。
【0004】
本発明の目的は、電気特性及び耐熱性が良好で、且つ絶縁破壊電圧に優れ、更に厚み均一性に優れたコンデンサ用ポリスチレン系フィルムを提供することである。
【0005】
【課題を解決するための手段】
本発明者らが鋭意検討した結果、本発明により上記目的が達成されることを見出した。
即ち、本発明は、シンジオタクチック構造を有するスチレン系重合体からなり、複屈折の最大値と最小値の差{Δ(Δn)}が0.01以下、平均屈折率が1.582〜1.590、且つ150℃における熱収縮率が3%以下であることを特徴とするコンデンサ用ポリスチレン系フィルムに関する。
また、本発明は、シンジオタクチック構造を有するスチレン系重合体からなり、複屈折の最大値と最小値の差{Δ(Δn)}が0.008以下、平均屈折率が1.584〜1.589、且つ150℃における熱収縮率が2.5%以下であることを特徴とする上記コンデンサ用ポリスチレン系フィルムに関する。
【0006】
本発明で用いる立体規則性としてシンジオタクチック構造を有するスチレン系重合体は、側鎖であるフェニル基又は置換フェニル基によるタクティシティが、ダイアッド(構成単位が2個)で85%以上、ペンタッド(構成単位が5個)で50%以上のシンジオタクチック構造を有することが望ましい。なお、タクティシティは核磁気共鳴法等により定量される。
【0007】
本発明で用いるスチレン系重合体としては、シンジオタクチック構造を有するものであれば特に限定されず、例えば、ポリスチレン;ポリ(p−、m−又はo−メチルスチレン)、ポリ(2,4−、2,5−、3,4−又は3,5−ジメチルスチレン)、ポリ(p−ターシャリーブチルスチレン)等のポリ(アルキルスチレン);ポリ(p−、m−又はo−クロロスチレン)、ポリ(p−、m−又はo−ブロモスチレン)、ポリ(p−、m−又はo−フルオロスチレン)、ポリ(o−メチル−p−フルオロスチレン)等のポリ(ハロゲン化スチレン);ポリ(p−、m−又はo−クロロメチルスチレン)等のポリ(ハロゲン置換アルキルスチレン);ポリ(p−、m−又はo−メトキシスチレン)、ポリ(p−、m−又はo−エトキシスチレン)等のポリ(アルコキシスチレン);ポリ(p−、m−又はo−カルボキシメチルスチレン)等のポリ(カルボキシアルキルスチレン);ポリ(p−ビニルベンジルプロピルエーテル)等のポリ(アルキルエーテルスチレン);ポリ(p−トリメチルシリルスチレン)等のポリ(アルキルシリルスチレン);ポリ(ビニルベンジルジメトキシホスファイド)等が挙げられ、好ましくはポリスチレンである。
【0008】
これらは、1種でも2種以上でも用いることができ、シンジオタクティシティが前記範囲内であれば、アタクチック構造やアイソタクチック構造のスチレン系重合体との混合物や共重合体、及びそれらの混合物等でもよい。
【0009】
当該スチレン系重合体は、重量平均分子量が好ましくは10,000以上、より好ましくは50,000以上である。重量平均分子量が10,000未満のものでは、強伸度特性や耐熱性に優れたフィルムが得にくくなる傾向がある。重量平均分子量の上限については特に限定されるものではないが、1,500,000 を越えると、フィルムにしたとき、延伸張力の増加に伴う破断等が発生し易くなる傾向がある。
【0010】
当該シンジオタクチックスチレン系重合体には、必要に応じて、公知の酸化防止剤、帯電防止剤、滑り性を付与するための微粒子等の添加剤を適量配合することができる。また、これらは1種でも2種以上でも用いることができる。
【0011】
酸化防止剤としては、例えば、リン系酸化防止剤、フェノール系酸化防止剤等が挙げられる。
【0012】
滑り性を付与するための微粒子としては、例えば、シリカ、二酸化チタン、タルク、カオリナイト、ゼオライト等の金属酸化物;炭酸カルシウム、リン酸カルシウム、硫酸バリウム等の金属塩;シリコーン樹脂、架橋ポリスチレン等の有機重合体等からなる微粒子が例示される。また、当該微粒子は、上記のいずれか1種を単独で用いてもよいし、2種以上を併用してもよい。
【0013】
当該微粒子の平均粒子径は、好ましくは0.01μm〜2.0μm、より好ましくは0.05μm〜1.5μmである。粒子径のばらつき度(標準偏差と平均粒子径との比率)は、好ましくは25%以下、より好ましくは23%以下である。
【0014】
当該各添加剤の配合量(合計)は、シンジオタクチックスチレン系重合体100重量部に対して、好ましくは10重量部以下である。10重量部を越えると、フィルムにしたとき、延伸時に破断を起こし易くなり、生産安定性不良となり易い傾向がある。
なかでも、微粒子の配合量は、シンジオタクチックスチレン系重合体100重量部に対して、好ましくは0.005〜2.0重量部、より好ましくは0.01〜1.0重量部である。
【0015】
本発明のポリスチレン系フィルムの製造方法は、得られたフィルムの複屈折の最大値と最小値の差{Δ(Δn)}、平均屈折率、熱収縮率が上記所定範囲内となる方法であれば、特に限定されない。
例えば、公知の方法により製造された上記スチレン系重合体を用い、必要に応じて添加剤を混合し、公知の方法によりフィルムとし、さらに延伸等を行うことにより、当該ポリスチレン系フィルムを製造できる。
【0016】
フィルムの延伸方法としては、公知の延伸方法(例えば縦延伸及び横延伸を順に行う逐次二軸延伸法、横・縦・縦延伸法、縦・横・縦延伸法、縦・縦・横延伸法等)等が挙げられる。なお、上記延伸方法は、要求される強度や寸法安定性等の諸特性に応じて選択される。
延伸は、例えば、速度差を持ったロール間で行ったり、クリップに把持して拡げて行うことができる。延伸温度は、好ましくは90〜150℃、より好ましくは100〜145℃であり、延伸倍率は、好ましくは1.2〜6.0倍、より好ましくは2.0〜5.0倍である。
【0017】
更に、熱固定処理、弛緩処理等を施すこともできる。
熱固定処理は、延伸終了後に行うことができる。熱固定処理温度は、好ましくは170〜270℃、より好ましくは200〜270℃、さらに好ましくは220〜270℃である。
弛緩処理は、縦及び/又は横方向に加熱することにより行うことができる。弛緩処理温度は、好ましくは100〜270℃、より好ましくは120〜270℃である。当該弛緩処理により、弛緩処理前のフィルムの長さに対して、好ましくは0.5〜10.0%、より好ましくは0.5〜8.0%程度収縮させることができる。
【0018】
本発明のポリスチレン系フィルムの複屈折の最大値と最小値の差{Δ(Δn)}は0.01以下であることが必要であり、好ましくは0.008以下、より好ましくは0.007以下である。Δ(Δn)が0.01より大きいと、フィルムの厚みむらが大きくなるため、フィルムの絶縁破壊電圧の絶対値の変動が大きくなり、且つコンデンサに用いたとき、その容量変化が増大するため、コンデンサとしての信頼性が低くなる。
当該複屈折の最大値と最小値の差{Δ(Δn)}は、延伸方法、延伸条件(温度、延伸倍率等)等により調整できる。
【0019】
本発明のポリスチレン系フィルムの平均屈折率は1.582〜1.590であることが必要であり、好ましくは1.584〜1.589、より好ましくは1.584〜1.588である。平均屈折率が1.582未満ではフィルムの絶縁破壊電圧が不良となる。平均屈折率が1.590より大きいとフィルムの厚みむらが大きくなるため、フィルムの絶縁破壊電圧の絶対値の変動が大きくなり、且つコンデンサに用いたとき、その容量変化が増大するため、コンデンサとしての信頼性が低くなる。
当該平均屈折率は、フィルムの製膜条件(延伸温度、延伸倍率、熱固定温度)等により調整できる。
【0020】
本発明のポリスチレン系フィルムの150℃における熱収縮率は3%以下であることが必要であり、好ましくは2.5%以下、より好ましくは2%以下である。熱収縮率が3%より大きいと、コンデンサの製造工程でフィルムの収縮や平面性の乱れが生じ、製品(コンデンサ)の不良につながる。
【0021】
当該熱収縮率を下げる方法としては、例えば、延伸処理後に弛緩処理を行うことや、熱固定処理において熱固定処理温度及び時間を一定範囲に保つこと、更に必要に応じて熱固定処理後に弛緩処理すること等が好ましい。
ここで、延伸後の弛緩処理は、延伸温度以上スチレン系重合体の冷結晶化温度以下(100〜270℃)で行うことが好ましい。また、熱固定処理は、220℃以上スチレン系重合体の融点未満の温度で、30秒間以内、好ましくは20秒間以内で行うことが好ましい。更に、弛緩処理は、熱固定処理の最高温度以下で、平面性が乱れない程度に行うことが好ましい。
【0022】
なお、本明細書において、平均屈折率は、アッベ屈折計4T(アタゴ光学社製)を用い、フィルムの長手方向に10cm間隔にある10箇所において、長手方向、幅方向及び厚み方向の屈折率を測定し、それら3方向の屈折率を平均して求めたものである。
また、複屈折の最大値と最小値の差{Δ(Δn)}は、上記10箇所で測定した、幅方向の屈折率と長手方向の屈折率の差の絶対値を算出し、それらの最大のものと最小のものの差により求めたものである。
更に、150℃における熱収縮率は、150℃の雰囲気下、無張力の状態で30分間放置した後のフィルムの長さを測定し、当該処理前のフィルムの長さを100%としたときの、当該処理後のフィルムの長さの減少割合(%)として求めたものである。
【0023】
また、当該ポリスチレン系フィルムの厚さは、特に限定されないが、好ましくは0.5〜25μm、より好ましくは1〜15μmである。
【0024】
当該ポリスチレン系フィルムは、コンデンサ用フィルムとして、特にコンデンサの誘導体として有用である。
【0025】
なお、当該フィルムを用いてコンデンサとするとき、フィルム表面に蒸着層等を設ける。この場合、フィルムと蒸着層との接着特性等を向上させるために、フィルム表面に、インラインコートやオフラインコート等により接着層を設けたり、コロナ処理や火炎プラズマ処理等を行うことができる。
【0026】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
【0027】
実施例1
滑剤としての平均粒子径0.5μm、ばらつき度20%、面積形状係数80%のシリカを、シンジオタクチックポリスチレン(重量平均分子量 300,000、タクティシティ≒100%)100重量部に対して0.5重量部添加したポリマーチップと、滑剤の添加されていないポリマーチップを、重量比で1対9の割合で混合した後、乾燥した。次いで、これを290℃で溶融し、800μmのリップギャップのTダイから押し出し、50℃の冷却ロールに静電印荷法により密着・冷却固化させ、厚み60μmの無定形シートを得た。
当該無定形シートを、まず金属ロールにより95℃に予熱し、表面温度142℃のセラミックロールを用いて縦方向に3倍延伸した後、冷却し、更に115℃の金属ロールを用いて縦方向に1.2倍延伸した。次いで、テンターでフィルムを115℃に予熱し、横方向に延伸温度120℃で2倍延伸し、更に横方向に150℃で1.6倍延伸した。更に、255℃で12秒間、熱固定処理した後、220℃で3%横弛緩処理し、ポリスチレン系フィルム(厚み5.3μm)を得た。得られたフィルムは、走行性、ハンドリング性が良好であった。
【0028】
実施例2
縦延伸を、141℃のセラミックロールを用いて縦方向に2.4倍延伸した後、一度冷却し、更に115℃の金属ロールで縦方向に1.5倍延伸した以外は、実施例1と同様にしてフィルム(厚み5.3μm)を得た。
【0029】
実施例3
横延伸を、テンターでフィルムを125℃に予熱し、横方向に延伸温度125℃で2倍延伸し、更に横方向に150℃で1.6倍延伸した以外は、実施例1と同様にしてフィルム(厚み5.3μm)を得た。
【0030】
比較例1
縦延伸を、141℃のセラミックロールを用いて縦方向に2.4倍延伸した後、冷却せずに、更に120℃の金属ロールで縦方向に1.5倍延伸した以外は、実施例1と同様にしてフィルム(厚み5.3μm)を得た。
【0031】
比較例2
滑剤としての平均粒子径0.5μm、ばらつき度20%、面積形状係数80%のシリカを、シンジオタクチックポリスチレン(重量平均分子量 300,000、タクティシティ≒100%)100重量部に対して0.5重量部添加したポリマーチップと、滑剤の添加されていないポリマーチップを、重量比で1対9の割合で混合した後、乾燥した。次いで、これを290℃で溶融し、800μmのリップギャップのTダイから押し出し、50℃の冷却ロールに静電印荷法により密着・冷却固化させ、厚み48μmの無定形シートを得た。
当該無定形シートを、まず金属ロールにより95℃に予熱し、表面温度141℃のセラミックロールを用いて縦方向に3倍延伸した。次いで、テンターでフィルムを120℃に予熱し、横方向に延伸温度120℃で2倍延伸し、更に横方向に150℃で1.5倍延伸した。更に、255℃で12秒間、熱固定処理した後、225℃で3%横弛緩処理し、ポリスチレン系フィルム(厚み5.3μm)を得た。
【0032】
比較例3
熱固定処理を215℃で20秒間実施した以外は、実施例1と同様にしてフィルム(厚み5.3μm)を得た。
【0033】
比較例4
横延伸を、テンターでフィルムを130℃に予熱し、横方向に延伸温度125℃で2倍延伸し、更に横方向に150℃で1.6倍延伸した以外は、実施例1と同様にしてフィルム(厚み5.3μm)を得た。
【0034】
上記実施例及び比較例における各物性は、以下のようにして測定した。
▲1▼平均粒子径、粒子径のばらつき度
微粒子をS−510型走査型電子顕微鏡(日立製作所社製)で観察し、写真撮影したものを拡大して複写し、微粒子の外形をトレースし、任意に200個の粒子を黒く塗りつぶした。この像をルーゼックス500型画像解析装置(ニコレ社製)を用いて、それぞれの粒子の水平方向のフェレ径を測定し、その平均値を平均粒子径とした。
また、粒子径のばらつき度を下式により算出した。
ばらつき度=(粒子径の標準偏差/平均粒子径)×100(%)
▲2▼面積形状係数
平均粒子径の測定に用いたトレース像から任意に20個の粒子を選び、▲1▼で用いた画像解析装置を用いて、それぞれの投影断面積を求めた。また、それらの粒子に外接する円の面積を算出し、下式により算出した。
面積形状係数=(粒子の投影断面積/粒子に外接する円の面積)×100 (%)
【0035】
▲3▼重量平均分子量
ゲルパーミエーションクロマトグラフィー(1,2,4−トリクロロベンゼン中、130℃)により測定した。
▲4▼タクティシティ
13C−NMRによる芳香環のC1 炭素シグナルにより測定した。
【0036】
また、上記実施例及び比較例で得られたポリスチレン系フィルムについて、各物性を以下のようにして測定した。その結果を表1に示す。
(1)平均屈折率、Δ(Δn)
アッベ屈折計4T(アタゴ光学社製)を用い、フィルムの長手方向に10cm間隔にある10箇所において、長手方向、幅方向及び厚み方向の屈折率を測定し、それら3方向の屈折率を平均し、平均屈折率を求めた。
また、上記10箇所で測定した、幅方向の屈折率と長手方向の屈折率の差の絶対値を算出し、それらの最大のものと最小のものの差を、複屈折の最大値と最小値の差{Δ(Δn)}とした。
【0037】
(2)150℃における熱収縮率
150℃の雰囲気下、無張力の状態で30分間放置した後のフィルムの長さを測定し、当該処理前のフィルムの長さを100%としたときの、当該処理後のフィルムの長さの減少割合を求め、これを熱収縮率(%)とした。
【0038】
(3)絶縁破壊電圧
JIS C−2318に準じて行った。10kV直流耐電圧試験機を用い、23℃、50%RHの雰囲気下において、100V/sec の昇圧速度で、フィルムが破壊し短絡したときの電圧を読み取った。
【0039】
(4)厚みむら
連続厚さ測定器(ミクロン計測器社製)により、フィルムの幅方向の中央部の厚みを長手方向に沿って測定し、次式により厚みむらを算出した。
厚みむら=〔(最大厚さ−最小厚さ)/平均厚さ〕×100(%)
1級:厚みむら10%以上
2級:厚みむら8〜10%未満
3級:厚みむら6〜8%未満
4級:厚みむら4〜6%未満
5級:厚みむら4%未満
【0040】
更に、上記実施例及び比較例で得られたポリスチレン系フィルムの両面に、アルミニウム薄膜を蒸着により積層させ(アルミニウム薄膜の厚み600Å)、これの平面性を目視で観察した。その結果を表1に示す。
【0041】
【表1】
【0042】
上記結果より、実施例1〜3で得られたフィルムは、電気特性、耐熱性に優れ、絶縁破壊電圧に優れており、またフィルム厚みの変動が小さいためコンデンサ用フィルムとして優れたものであることが分かる。
【0043】
【発明の効果】
本発明のコンデンサ用ポリスチレン系フィルムは、電気特性及び耐熱性が良好で、且つ絶縁破壊電圧に優れ、更に厚み均一性に優れている。[0001]
[Industrial applications]
The present invention relates to a syndiotactic polystyrene film for a capacitor. More specifically, the present invention relates to a polystyrene film for capacitors having good electric characteristics and heat resistance, excellent dielectric breakdown voltage, and excellent thickness uniformity.
[0002]
[Prior art]
A biaxially stretched film obtained by biaxially stretching and heat setting a resin composition containing a syndiotactic styrene-based polymer as a main component has excellent electrical properties, heat resistance, and the like, and is being developed as a dielectric for a film capacitor ( JP-A-2-143851, JP-A-3-124750, and JP-A-5-200858).
[0003]
[Problems to be solved by the invention]
However, in these conventional syndiotactic polystyrene films, the breakdown voltage is poor, the breakdown voltage varies due to an increase in film thickness unevenness, and the capacitance (capacitance) varies when used in a capacitor. Was found to occur.
Further, when the dielectric breakdown voltage becomes defective, it is necessary to increase the thickness of the film, resulting in a problem that the volume of the capacitor becomes large. Furthermore, there is a problem that the reliability of the capacitor cannot be obtained when there is a large variation in the dielectric breakdown voltage and the capacitance.
[0004]
An object of the present invention is to provide a polystyrene-based film for a capacitor which has good electric characteristics and heat resistance, has excellent dielectric breakdown voltage, and has excellent thickness uniformity.
[0005]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, it has been found that the above objects can be achieved by the present invention.
That is, the present invention comprises a styrenic polymer having a syndiotactic structure, the difference {Δ (Δn)} between the maximum value and the minimum value of birefringence is 0.01 or less, and the average refractive index is 1.582 to 1 The present invention relates to a polystyrene-based film for a capacitor, which has a heat shrinkage of 3590 or less at 150 ° C.
Further, the present invention comprises a styrenic polymer having a syndiotactic structure, the difference {Δ (Δn)} between the maximum value and the minimum value of birefringence is 0.008 or less, and the average refractive index is 1.584 to 1 .589 and a heat shrinkage at 150 ° C. of 2.5% or less.
[0006]
The styrenic polymer having a syndiotactic structure as a stereoregularity used in the present invention has a tacticity of 85% or more in a dyad (two structural units) and a pentad ( (5 structural units) and preferably has a syndiotactic structure of 50% or more. In addition, tacticity is quantified by a nuclear magnetic resonance method or the like.
[0007]
The styrenic polymer used in the present invention is not particularly limited as long as it has a syndiotactic structure. For example, polystyrene; poly (p-, m- or o-methylstyrene), poly (2,4- , 2,5-, 3,4- or 3,5-dimethylstyrene), poly (alkylstyrene) such as poly (p-tert-butylstyrene); poly (p-, m- or o-chlorostyrene), Poly (halogenated styrene) such as poly (p-, m- or o-bromostyrene), poly (p-, m- or o-fluorostyrene), poly (o-methyl-p-fluorostyrene); poly (halogen-substituted alkylstyrene) such as p-, m- or o-chloromethylstyrene; poly (p-, m- or o-methoxystyrene), poly (p-, m- or o-ethoxystyrene) )); Poly (carboxyalkylstyrene) such as poly (p-, m- or o-carboxymethylstyrene); poly (alkylether styrene) such as poly (p-vinylbenzylpropyl ether); Poly (alkylsilylstyrene) such as poly (p-trimethylsilylstyrene); poly (vinylbenzyldimethoxyphosphide) and the like are preferable, and polystyrene is preferable.
[0008]
These may be used alone or in combination of two or more. If the syndiotacticity is within the above range, a mixture or a copolymer with a styrene polymer having an atactic structure or an isotactic structure, and a mixture thereof. It may be a mixture or the like.
[0009]
The styrene-based polymer has a weight average molecular weight of preferably 10,000 or more, more preferably 50,000 or more. If the weight average molecular weight is less than 10,000, it tends to be difficult to obtain a film having excellent elongation characteristics and heat resistance. The upper limit of the weight average molecular weight is not particularly limited, but if it exceeds 1,500,000, the film tends to be easily broken due to an increase in stretching tension when formed into a film.
[0010]
The syndiotactic styrene-based polymer may optionally contain a known amount of an additive such as an antioxidant, an antistatic agent, or fine particles for imparting lubricity. These may be used alone or in combination of two or more.
[0011]
Examples of the antioxidant include a phosphorus-based antioxidant and a phenol-based antioxidant.
[0012]
Examples of the fine particles for imparting lubrication include metal oxides such as silica, titanium dioxide, talc, kaolinite, and zeolite; metal salts such as calcium carbonate, calcium phosphate, and barium sulfate; Fine particles made of a polymer or the like are exemplified. In addition, as the fine particles, any one of the above may be used alone, or two or more may be used in combination.
[0013]
The average particle diameter of the fine particles is preferably 0.01 μm to 2.0 μm, more preferably 0.05 μm to 1.5 μm. The degree of dispersion of the particle diameter (the ratio between the standard deviation and the average particle diameter) is preferably 25% or less, more preferably 23% or less.
[0014]
The amount (total) of the additives is preferably 10 parts by weight or less based on 100 parts by weight of the syndiotactic styrene-based polymer. If the amount exceeds 10 parts by weight, when formed into a film, the film tends to be broken during stretching, and the production stability tends to be poor.
In particular, the amount of the fine particles is preferably 0.005 to 2.0 parts by weight, more preferably 0.01 to 1.0 part by weight, based on 100 parts by weight of the syndiotactic styrene-based polymer.
[0015]
The method for producing a polystyrene-based film of the present invention is a method in which the difference {Δ (Δn)} between the maximum value and the minimum value of the birefringence of the obtained film, the average refractive index, and the heat shrinkage are within the above-mentioned predetermined ranges. There is no particular limitation.
For example, the polystyrene-based film can be manufactured by using the above-mentioned styrene-based polymer manufactured by a known method, mixing additives as necessary, forming a film by a known method, and further stretching the film.
[0016]
As the stretching method of the film, known stretching methods (for example, a sequential biaxial stretching method in which longitudinal stretching and transverse stretching are performed in order, a transverse / longitudinal / longitudinal stretching method, a longitudinal / horizontal / longitudinal stretching method, a longitudinal / longitudinal / lateral stretching method) Etc.). The stretching method is selected according to various properties such as required strength and dimensional stability.
Stretching can be performed, for example, between rolls having a difference in speed, or can be performed by gripping and expanding the clips. The stretching temperature is preferably from 90 to 150 ° C, more preferably from 100 to 145 ° C, and the stretching ratio is preferably from 1.2 to 6.0 times, more preferably from 2.0 to 5.0 times.
[0017]
Further, a heat setting treatment, a relaxation treatment and the like can be performed.
The heat setting can be performed after the completion of the stretching. The heat setting temperature is preferably 170 to 270 ° C, more preferably 200 to 270 ° C, and further preferably 220 to 270 ° C.
The relaxation treatment can be performed by heating in a vertical and / or horizontal direction. The relaxation treatment temperature is preferably 100 to 270 ° C, more preferably 120 to 270 ° C. By the relaxation treatment, the film can be contracted preferably by about 0.5 to 10.0%, more preferably by about 0.5 to 8.0% with respect to the length of the film before the relaxation treatment.
[0018]
The difference {Δ (Δn)} between the maximum value and the minimum value of the birefringence of the polystyrene film of the present invention needs to be 0.01 or less, preferably 0.008 or less, more preferably 0.007 or less. It is. If Δ (Δn) is larger than 0.01, the thickness unevenness of the film becomes large, the variation of the absolute value of the dielectric breakdown voltage of the film becomes large, and the capacitance change when used for a capacitor increases. The reliability as a capacitor decreases.
The difference {Δ (Δn)} between the maximum value and the minimum value of the birefringence can be adjusted by the stretching method, stretching conditions (temperature, stretching ratio, etc.) and the like.
[0019]
The average refractive index of the polystyrene film of the present invention needs to be 1.582 to 1.590, preferably 1.584 to 1.589, and more preferably 1.584 to 1.588. When the average refractive index is less than 1.582, the dielectric breakdown voltage of the film becomes poor. If the average refractive index is larger than 1.590, the thickness unevenness of the film becomes large, the variation of the absolute value of the dielectric breakdown voltage of the film becomes large, and when it is used for a capacitor, the change in the capacitance increases. Reliability is reduced.
The average refractive index can be adjusted by the film forming conditions (stretching temperature, stretching ratio, heat setting temperature) and the like.
[0020]
The heat shrinkage at 150 ° C. of the polystyrene film of the present invention needs to be 3% or less, preferably 2.5% or less, more preferably 2% or less. If the heat shrinkage is more than 3%, the film shrinks or the flatness is disturbed in the capacitor manufacturing process, which leads to a defective product (capacitor).
[0021]
As a method of lowering the heat shrinkage rate, for example, to perform a relaxation treatment after the stretching treatment, to maintain the temperature and time of the heat fixation treatment in a certain range in the heat fixation treatment, and if necessary, to relax after the heat fixation treatment Is preferred.
Here, the relaxation treatment after stretching is preferably performed at a temperature equal to or higher than the stretching temperature and equal to or lower than the cold crystallization temperature of the styrene-based polymer (100 to 270 ° C.). Further, the heat setting treatment is performed at a temperature of 220 ° C. or higher and lower than the melting point of the styrene-based polymer within 30 seconds, preferably within 20 seconds. Further, it is preferable that the relaxation treatment is performed at a temperature not higher than the maximum temperature of the heat setting treatment and to the extent that the flatness is not disturbed.
[0022]
In the present specification, the average refractive index is determined by using an Abbe refractometer 4T (manufactured by Atago Optical Co., Ltd.) and measuring the refractive indices in the longitudinal direction, the width direction, and the thickness direction at 10 locations at 10 cm intervals in the longitudinal direction of the film. The measured values were obtained by averaging the refractive indices in the three directions.
The difference between the maximum value and the minimum value of the birefringence {Δ (Δn)} is calculated by calculating the absolute value of the difference between the refractive index in the width direction and the refractive index in the longitudinal direction measured at the above-mentioned 10 points. And the minimum.
Further, the heat shrinkage at 150 ° C. was determined by measuring the length of the film after being left in an atmosphere of 150 ° C. in an untensioned state for 30 minutes, and taking the length of the film before the treatment as 100%. , Calculated as a reduction ratio (%) of the length of the film after the treatment.
[0023]
The thickness of the polystyrene film is not particularly limited, but is preferably 0.5 to 25 μm, and more preferably 1 to 15 μm.
[0024]
The polystyrene-based film is useful as a capacitor film, particularly as a derivative of a capacitor.
[0025]
When a capacitor is formed using the film, a deposition layer or the like is provided on the film surface. In this case, in order to improve the adhesive property between the film and the vapor-deposited layer, an adhesive layer can be provided on the film surface by in-line coating or off-line coating, or corona treatment, flame plasma treatment, or the like can be performed.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0027]
Example 1
Silica having an average particle diameter of 0.5 μm, a degree of dispersion of 20%, and an area shape factor of 80% as a lubricant was added to 100 parts by weight of syndiotactic polystyrene (weight average molecular weight: 300,000, tacticity: 100%). The polymer chips to which 5 parts by weight were added and the polymer chips to which no lubricant was added were mixed at a weight ratio of 1: 9, and then dried. Next, this was melted at 290 ° C., extruded from a T-die having a lip gap of 800 μm, adhered to a cooling roll at 50 ° C. and solidified by cooling by an electrostatic imprinting method to obtain an amorphous sheet having a thickness of 60 μm.
The amorphous sheet is first preheated to 95 ° C. by a metal roll, stretched three times in the machine direction using a ceramic roll having a surface temperature of 142 ° C., cooled, and then further cooled in a machine direction using a 115 ° C. metal roll. Stretched 1.2 times. Next, the film was preheated to 115 ° C by a tenter, stretched twice in the transverse direction at a stretching temperature of 120 ° C, and further stretched 1.6 times in the transverse direction at 150 ° C. Furthermore, after heat-setting at 255 ° C. for 12 seconds, 3% transverse relaxation was performed at 220 ° C. to obtain a polystyrene film (5.3 μm in thickness). The obtained film had good running properties and handling properties.
[0028]
Example 2
Example 1 was repeated except that the film was stretched 2.4 times in the machine direction using a 141 ° C. ceramic roll, then cooled once, and further stretched 1.5 times in the machine direction using a 115 ° C. metal roll. Similarly, a film (5.3 μm in thickness) was obtained.
[0029]
Example 3
Lateral stretching was performed in the same manner as in Example 1 except that the film was preheated to 125 ° C. with a tenter, stretched twice in the transverse direction at a stretching temperature of 125 ° C., and further stretched 1.6 times in the transverse direction at 150 ° C. A film (5.3 μm in thickness) was obtained.
[0030]
Comparative Example 1
Example 1 was repeated except that the film was longitudinally stretched 2.4 times in the machine direction using a 141 ° C. ceramic roll, and then further stretched 1.5 times in a machine direction at 120 ° C. without cooling. A film (5.3 μm in thickness) was obtained in the same manner as described above.
[0031]
Comparative Example 2
Silica having an average particle diameter of 0.5 μm, a degree of dispersion of 20%, and an area shape factor of 80% as a lubricant was added to 100 parts by weight of syndiotactic polystyrene (weight average molecular weight: 300,000, tacticity: 100%). The polymer chips to which 5 parts by weight were added and the polymer chips to which no lubricant was added were mixed at a weight ratio of 1: 9, and then dried. Next, this was melted at 290 ° C., extruded from a T-die having a lip gap of 800 μm, adhered to a cooling roll at 50 ° C. and solidified by cooling by an electrostatic loading method to obtain an amorphous sheet having a thickness of 48 μm.
The amorphous sheet was first preheated to 95 ° C. by a metal roll and stretched three times in the machine direction using a ceramic roll having a surface temperature of 141 ° C. Next, the film was preheated to 120 ° C. by a tenter, stretched twice in the transverse direction at a stretching temperature of 120 ° C., and further stretched 1.5 times in the transverse direction at 150 ° C. Further, after heat-setting at 255 ° C. for 12 seconds, it was subjected to a 3% transverse relaxation treatment at 225 ° C. to obtain a polystyrene film (5.3 μm in thickness).
[0032]
Comparative Example 3
A film (5.3 μm in thickness) was obtained in the same manner as in Example 1 except that the heat setting treatment was performed at 215 ° C. for 20 seconds.
[0033]
Comparative Example 4
Lateral stretching was performed in the same manner as in Example 1 except that the film was preheated to 130 ° C. with a tenter, stretched twice in the transverse direction at a stretching temperature of 125 ° C., and further stretched 1.6 times in the transverse direction at 150 ° C. A film (5.3 μm in thickness) was obtained.
[0034]
Each physical property in the above Examples and Comparative Examples was measured as follows.
{Circle around (1)} Average particle diameter, degree of dispersion of particle diameter Observation of fine particles with an S-510 scanning electron microscope (manufactured by Hitachi, Ltd.), enlargement and copying of a photographed image, tracing the outer shape of the fine particles, Arbitrarily, 200 particles were painted black. This image was measured for the horizontal Feret diameter of each particle using a Luzex 500 image analyzer (manufactured by Nicole), and the average value was defined as the average particle diameter.
Further, the degree of dispersion of the particle diameter was calculated by the following equation.
Variation = (standard deviation of particle diameter / average particle diameter) × 100 (%)
{Circle around (2)} Twenty particles were arbitrarily selected from the trace image used for measuring the average particle diameter of the area shape coefficient, and the respective projected cross-sectional areas were determined using the image analyzer used in the above [1]. In addition, the area of a circle circumscribing the particles was calculated, and calculated by the following equation.
Area shape factor = (projected cross-sectional area of particle / area of circle circumscribing particle) × 100 (%)
[0035]
{Circle around (3)} Weight average molecular weight Measured by gel permeation chromatography (in 1,2,4-trichlorobenzene, 130 ° C.).
▲ 4 ▼ Tacty City
By 13 C-NMR was measured by C 1 carbon signal of an aromatic ring.
[0036]
The physical properties of the polystyrene films obtained in the above Examples and Comparative Examples were measured as follows. Table 1 shows the results.
(1) Average refractive index, Δ (Δn)
Using an Abbe refractometer 4T (manufactured by Atago Optical Co., Ltd.), the refractive indices in the longitudinal direction, the width direction and the thickness direction were measured at 10 locations at 10 cm intervals in the longitudinal direction of the film, and the refractive indices in the three directions were averaged. And the average refractive index.
In addition, the absolute value of the difference between the refractive index in the width direction and the refractive index in the longitudinal direction measured at the above-described 10 points is calculated, and the difference between the maximum and minimum values is calculated as the maximum value and the minimum value of the birefringence. The difference was {Δ (Δn)}.
[0037]
(2) The length of the film after standing for 30 minutes in an atmosphere of a 150 ° C. heat shrinkage of 150 ° C. in an untensioned state, when the length of the film before the treatment was taken as 100%, The reduction ratio of the length of the film after the treatment was determined, and this was defined as the heat shrinkage (%).
[0038]
(3) Dielectric breakdown voltage The measurement was performed in accordance with JIS C-2318. Using a 10 kV DC withstand voltage tester, the voltage when the film was broken and short-circuited was read at an increasing speed of 100 V / sec in an atmosphere of 23 ° C. and 50% RH.
[0039]
(4) Uneven thickness The thickness of the central portion in the width direction of the film was measured along the longitudinal direction by a continuous thickness measuring instrument (manufactured by Micron Keisoku Co., Ltd.), and the thickness unevenness was calculated by the following equation.
Uneven thickness = [(maximum thickness−minimum thickness) / average thickness] × 100 (%)
First grade: uneven thickness 10% or more Second grade: uneven thickness 8 to less than 10% Third grade: uneven thickness 6 to less than 8% Quaternary: uneven thickness 4 to less than 6% Class 5: uneven thickness less than 4%
Further, an aluminum thin film was laminated on both surfaces of the polystyrene films obtained in the above Examples and Comparative Examples by vapor deposition (thickness of the aluminum thin film: 600 °), and the flatness thereof was visually observed. Table 1 shows the results.
[0041]
[Table 1]
[0042]
From the above results, the films obtained in Examples 1 to 3 are excellent in electrical properties, heat resistance, excellent in dielectric breakdown voltage, and are excellent as films for capacitors due to small variations in film thickness. I understand.
[0043]
【The invention's effect】
The polystyrene-based film for a capacitor of the present invention has good electrical properties and heat resistance, has excellent dielectric breakdown voltage, and has excellent thickness uniformity.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8525195A JP3567523B2 (en) | 1995-04-11 | 1995-04-11 | Polystyrene film for capacitors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8525195A JP3567523B2 (en) | 1995-04-11 | 1995-04-11 | Polystyrene film for capacitors |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08283496A JPH08283496A (en) | 1996-10-29 |
JP3567523B2 true JP3567523B2 (en) | 2004-09-22 |
Family
ID=13853360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8525195A Expired - Lifetime JP3567523B2 (en) | 1995-04-11 | 1995-04-11 | Polystyrene film for capacitors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3567523B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003326599A (en) * | 2002-05-15 | 2003-11-19 | Toyobo Co Ltd | Heat-shrinkable polystyrene resin film, and label and container using the same |
JP2006083253A (en) * | 2004-09-15 | 2006-03-30 | Mitsui Chemicals Inc | Stretched polypropylene film |
JP5587534B2 (en) * | 2007-10-18 | 2014-09-10 | 帝人株式会社 | High insulation film |
ATE551705T1 (en) | 2007-06-21 | 2012-04-15 | Teijin Ltd | INSULATING FILM |
JP5801532B2 (en) | 2009-11-30 | 2015-10-28 | 帝人株式会社 | High insulation film |
WO2012147777A1 (en) | 2011-04-26 | 2012-11-01 | 帝人株式会社 | High-insulating film |
JP5629235B2 (en) * | 2011-04-26 | 2014-11-19 | 帝人株式会社 | High insulation film |
JP6430328B2 (en) * | 2015-04-22 | 2018-11-28 | ニチコン株式会社 | Capacitor element manufacturing method |
-
1995
- 1995-04-11 JP JP8525195A patent/JP3567523B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08283496A (en) | 1996-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3567523B2 (en) | Polystyrene film for capacitors | |
JP5771068B2 (en) | High insulation film | |
JP3309933B2 (en) | Polystyrene film | |
WO2012147777A1 (en) | High-insulating film | |
JP3270135B2 (en) | Syndiotactic polystyrene biaxially stretched film for condenser | |
JP3491697B2 (en) | Polystyrene film for capacitors | |
JP5629235B2 (en) | High insulation film | |
JP3567516B2 (en) | Polystyrene film | |
JPH0657013A (en) | Syndiotactic polystyrene biaxially oriented film | |
JPH0665400A (en) | Biaxially oriented syndiotactic polystyrene film | |
JPH11129414A (en) | Matte finish antistatic film | |
JPH07117187A (en) | Polystyrene laminated film | |
JP3271374B2 (en) | Polystyrene film | |
JP3622863B2 (en) | Polystyrene-based biaxially stretched film | |
JP3317411B2 (en) | Polystyrene film | |
JPH0691748A (en) | Syndiotactic polystyrene biaxially drawn film for overhead projector | |
JP3539574B2 (en) | Polystyrene film | |
JPH11129327A (en) | Biaxially drawn film | |
JPH0691749A (en) | Syndiotactic polystyrene biaxially drawn film for photograph/plate-making | |
JPH0848791A (en) | Polystyrene film and capacitor made thereof | |
JPH09131844A (en) | Biaxially oriented polyester film for capacitor | |
JPH0839741A (en) | Laminated film and capacitor using it | |
JPH0848008A (en) | Laminated film and condenser using the same | |
JPH09239828A (en) | Biaxially oriented polyester film | |
JPH03208639A (en) | Biaxially oriented thermoplastic resin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040525 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040607 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080625 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080625 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090625 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090625 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100625 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100625 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110625 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120625 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |