【0001】
【発明の属する技術分野】
本発明は、建物外部からの熱的影響で起きる対流による作用を軽減し得るパネルに関する。
【0002】
【従来の技術と発明が解決しようとする課題】
元来、建築構造物は、屋根や外壁などにより苛酷な外部環境を遮断し、快適な内部空間を維持することを目的とするが、建屋と内外の環境は、一個の独立した熱システムとして熱の移動が自由に行われている。熱の移動と伝播は主として輻射と伝導により行われ、液体と空気のような気体では主として対流により熱が運ばれる。個々の箇所における熱の出入、蓄熱は熱勘定でバランスが保たれ、熱は温度が高い方から低い方に移動する。その移動熱量は温度差に比例するという熱力学の大原則に支配されている。
【0003】
その結果、夏期には、主として太陽の輻射と高い外気温の伝導により建屋の屋根や側壁などの外溝の温度が高まり、伝導により温度の高い外面から低い内面に移り、更に内面に接する屋内の空気に伝導され、加熱された空気は軽いので上昇気流になり対流を生ずる。もし、対流という現象がなければ、外溝から内部空間に向かう熱入力は外溝とそれに接する空気層の温度勾配を少なくし、外からの入熱にブレーキをかけ、外部環境の影響を受けることは少なくなるが、残念ながら対流現象があるために、建屋の外溝に接して温められた空気は逃げ去って、温度勾配を保ち続けるので、熱ポンプのように熱を汲み込み続け、屋内温度を上昇させる。
【0004】
他方、寒冷期には、一般的に外部環境温度が低く内部の暖気は連続的に屋外に放散される。この熱移動の継続にも屋内空間に発生する対流が暖気を運び、建屋の内側の温度と空気の温度差が現象することを妨げていることに起因している。以上の熱移動の三態様に対処する策はそれぞれ異なり、経済的判断を含めて難易度も様々である。冷暖房設備が普及する前は、事務所や居住空間を除いて、屋内空間の温度調節についての関心は薄く、建築構造面でも十分配慮されているとは言い難い。今、改めて空調設備を導入するにしても、熱移動システムを改善しない限り、設備規模が大きくなり、冷暖房エネルギの損失も大きいので、何時でも無条件に採用できるとは限らず、対策は何れも概ねおおげさになり、長期化、困難さ、コスト高は避けられない。
【0005】
近年、空調に対する要望は大きく、空調に消費される電力消費は年々増加の一途を辿っており、消費エネルギの増大は原子力や化石燃料への依存を増大せしめている。その何れも無制限に増やし続けることはできない。特に、炭酸ガスの排出は地球の温暖化をもたらすので、国際的約束として炭酸ガスの排出を6%減らすことは至上命令として遵守する必要がある。具体的には、次の要件ないし課題を充足する解決策が必要となる。
【0006】
(1)熱移動の法則に則った熱システムで計画すること(2)利用空間を区切って熱の流入を遮断すること(3)既設の建築に適用出来ること(4)建屋構造の補強、改造を特に必要としないこと(5)施行が容易で工事期間が短いこと(6)建屋の稼動状態でも工事が実施出来ること(7)対策が美観を損なうものでないこと(8)冷暖房装置の併用については規模と運転経費の低減を図ること(9)工業化の原則に基づき標準化を図ること。
【0007】
【課題を解決するための手段】
上記課題を解決するための本発明を実施態様を示す図面に使用した符号を付して説明すると、請求項1に記載の発明に係る対流遮断パネルの特徴は、薄いシート材を六角形断面の筒状に形成したものを多数一列に接続したシングルハニカム構造体を2セット平行に一体接着した構造であって、それ自体が伸縮可能なのダブルハニカム構造体11からなる仕切り体7と、該仕切り体全体を下から支えて形状を保持させる撓み防止部材13からなる支持部9とを有し、前記撓み防止材11の端部に前記仕切り体7の両端を固定することによりパネルの単体を構成し、該パネルの単体を多数配置し、前記支持部9を取付け手段によって建物内部所定箇所に取付けて建物内部を上下に仕切ることにある。
請求項2に記載の発明に係る対流遮断パネルの特徴は、薄いシート材を六角形断面の筒状に形成したものを多数一列に接続したシングルハニカム構造体からなる仕切り体7と、該仕切り体全体を下から支えて形状を保持させる撓み防止部材13からなる支持部9とを有し、前記撓み防止材11の端部に前記仕切り体7の両端を固定することによりパネルの単体を構成し、該パネルの単体を多数配置し 、前記支持部9を取付け手段によって建物内部所定箇所に取付けて建物内部を上下に仕切ることにある。
更に、請求項3に記載の発明の特徴は、前記請求項1又は2に記載の構成に加え、撓み防止部材は、アルミニウム製の角パイプであることにある。
【0008】
本発明にあっては、次のような作用が奏せられる。すなわち、屋内の利用空間への熱移動と、熱移動が止まらぬ原因が空気の対流現象によるものであるが、自然規象である対流を止めることは出来ないので、建屋内部の空間をパネルによって上下に仕切り、下部の利用空間に対流による熱の出入りすることを妨げ、該空間に於ける温度の安定化を図る。上部空間は対流圏として残し、容積が減少しただけ熱の出入りや対流反応は激しくなるが、加熱して上昇した熱気は建屋項部に設けた排気口(ルーフファン)より排出される。
【0009】
本発明によれば、屋内の下部利用空間はパネルにより熱を運ぶ対流の流入が妨げられ、温度の出入りがなくなるので温度の安定化が得られる。上部対流空間は容積が減らされただけ対流規象は加速されるので、頂部の排気口より効率よく排熱され、建屋の熱勘定の改善に寄与する。パネルは軽量で可撓性と伸縮性に富み、設置現場の形状と設置条件に自由自在に合わせられるので、短期間に簡単に施工出来る。更に、この特性は形状と寸法に自由度が有り寸法規格の大幅な減少、配置計画の簡略化、原図作業の省略が図られ、現場合わせによる施工に当たって特別な配慮と処理を必要としない。
【0010】
空調設備との併用の場合でも、対流の遮断効果による熱勘定の改善で設備規模の縮小が図られ、運転費用も削減され、経済効果が絶大である。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態を図面を参照して説明する。本発明を工場の建屋に適用したものを一実施例として詳細に説明する。工場建屋には、作業対象物の形状、性質などや立地条件などの外的要因によって種々の形式があるが、平屋建、階数建の2つに大きく分けることができ、図示建屋1は、平屋建から成る。
【0012】
また、屋根は、建物の形、大きさ、種類、立地場所、気候風土、屋根葺き材料等に従って多くの種類があるが、工場の屋根としては、採光と換気が重要なファクタであって、図示建屋1の屋根3は、いわゆる切妻屋根から成り、屋根3の棟には、要所要所(図では2カ所)に換気用のルーフファン装置Fが取付けられる。
【0013】
図示工場建屋1(平屋建+切妻屋根)にあっては、建屋内部側で屋根から所定間隔空けて流れ屋根部分に略平行(但、棟下のものは平行でない)に対流遮断パネル(以下、パネル)Pが多数配置される。パネルPの具体的配置としては、図4に示すように、建屋内部全体を平面的に概ね覆う如く敷き詰められたように配設される。図4において、円形で囲った数字1〜7は、パネルの単体の大きさ(単位規格)が異なることを表示している。すなわち、例えば、円形で囲った数字1は2800×2600、円形で囲った数字2は2900×2600、円形で囲った数字3は2970×2600、円形で囲った数字4は2800×700、円形で囲った数字5は2390×700、円形で囲った数字6は2375×700、円形で囲った数字8は2970×700というように、本実施例パネルPは、様々の寸法を有する自社規格品から構成される。
【0014】
ここで、取付けられたパネルPの単体(単位)を示す図5〜7を参照すると、パネルPは、実質的に対流遮断機能を奏する仕切り体7と、これを支持する支持部9、とを含む。仕切り体7は、図示例ではダブルハニカム構造体11から成る。ダブルハニカム構造体とは、薄いシート材を六角形断面の筒状に形成したものを多数数珠つなぎに一列に接続したようなシングルハニカム構造体(これについては、後述する)を2セット平行に一体接着したような構造から成るものである。このダブルハニカム構造体11は、それ自体が可撓性(伸縮自在性)を有し、一方側に(蛇腹風に)折り畳んでコンパクト化できるように構成されている。
【0015】
ダブルハニカム構造体11の具体例(実際例)としては、米国のカムフォテックス社(COMFORTEX CORPORATION )から販売されている商品を挙げることができる。ダブルハニカム構造体11の下側には、全体を下から支える1以上(図示例では、一対)の(形状保持のための)撓み防止部材13が配置され、該構造体11の両端は、挟み板15を介して撓み防止部材13端部に固定されている。(尚、撓み防止部材13は、図示例ではアルミニウム製の角パイプとして具現化しているが、これに限られるものではなく、様々の材料で構成でき、また、様々の断面形状の材料で構成できることは言うまでもない。
【0016】
(4カ所の)挟み板15の各々には、上方に延びるようにネジ付きシャフト17(M6長ネジボルト)が取付けられている。該シャフト17の上端側には、パイラック(C状クランプ部材)19が連結され、パイラック19は、工場建屋の屋根の骨組み(梁)を構成するIビーム21に引っ掛かる(取付く)ように構成されている。
【0017】
以上の構成を有する上記図示実施例においては、屋根内側と仕切り体7(ダブルハニカム構造体11)との間で画成される屋根裏近傍空間において、図2に矢印で示すような空気の流れ(対流)が起きる。すなわち、この屋根裏近傍空間内で温められた空気は、直ちにルーフファン(排気口)Fから外部に効率良く排出される。
【0018】
この熱の循環排出が非常に効率良く行われる効果、或いはこれに加えて屋根裏近傍空間における空気(層)の存在による断熱効果により、ダブルハニカム構造体11(仕切り体7)で仕切られた工場の実質的内部空間に対する熱の出入が大幅に減少し、そこにおいて対流現象が起きないか、起きても非常に僅かである。これにより、工場の実質的内部空間の温度を極めて安定的に維持できる。
【0019】
ところで、上記実施態様では、仕切り体7として、ダブルハニカム構造体11(図8(a))を例にして説明したが、これに代えて上述したような(単一の)シングルハニカム構造体31(同図(b))を採用することもできる。
【0020】
仕切り体7は、撓み防止部材13に強度(形状保持機能)をもたせる関係上、それ相応の強度で足り、紙、布、プラスチック樹脂、薄い(非鉄)金属板など、様々の材料で構成することができる。勿論、採光の観点からは、無色又は有色で、透明ないし半透明である材料が望ましい。遮光の観点からは、光透過性を有しない部材が望ましい。
【0021】
仕切り体7が可撓性ないし伸縮性を有する場合、次のような利点がある。すなわち、図9(左手側)に示すように、蛇腹風に全体を小さく縮めることによって運搬・収納等に至便である。また、パネル取付け工事のために現地で展開作業を行うことができ、かさ張らないので都合が良い。
【0022】
また、屋根によっては曲線的な部分もあり、それに沿うように形状を変えることができる(形状適合性)。例えば、ドーム風に設置取付けを行う場合、図10に示すような全体を丸く曲げた撓み防止部材13を用いてこれを行うことができる(図9)。
【0023】
更に、仕切り部材が重量的に非常に軽いということも見逃せない点である。また、仕切り体は、恰もカーテンを取付けるように簡易簡便にそして迅速に取付けることができる点も評価に値する。また、仕切り体がダブルハニカム構造体やシングルハニカム構造体から成る場合、それを構成する数珠繋ぎ状の多数の筒状部に、例えば、断熱材及び/又は吸音材を装填することにより、断熱上や騒音対策上非常に優れた作用・効果を得ることが可能である。
【0024】
ところで、上述した屋根3の流れ屋根部分に略平行にパネルを配置する構成に代えて、床に略平行な天井風に多数のパネルP(上述した様々のものを作用可能)を、空中に敷き詰めるように配置する構造(すなわち、建屋内を対流圏と利用空間とに仕切る構造)に関して、実験を試みた(図11)。この構造にあっても、室温を安定的に保持する点に関して、良好な結果を得ることが確認された。
【0025】
【発明の効果】
以上説明したように本発明によれば、建物内部を効果的に仕切ることができ、外部からの熱的な影響を殆ど及ぼされることなく、内部利用空間を温度的に安定保持できる。また、その取付け工事的な面に関して、非常に容易に且つ迅速に安価に行うことができ、非常に実用的・実際的である。
【図面の簡単な説明】
【図1】本実施態様の工場建屋の内部を見えるようにした斜視図である。
【図2】本実施態様の工場建屋における空気の流れを示す側面図である。
【図3】屋根部分のみを示す側面図である。
【図4】建屋内部の平面図である。
【図5】実施例パネルの側面図である。
【図6】実施例パネルの平面図である。
【図7】実施例パネルの斜視図である。
【図8】異なるパネル構造を示す斜視図である。
【図9】パネルの縮め状態から展開する状態を説明する斜視図である。
【図10】撓み防止部材の別の例を示す側面図である。
【図11】天井風に設置したパネルを示す図である。
【符号の説明】
1…工場建屋
3…屋根
7…仕切り体
11…ダブルハニカム構造体
13…撓み防止部材
31…シングルハニカム構造体
33…蛇腹構造体
35…シート
F…ルーフファン装置
P…パネル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a panel capable of reducing the effect of convection caused by a thermal influence from outside a building.
[0002]
[Prior Art and Problems to be Solved by the Invention]
Originally, the purpose of a building structure is to block a harsh external environment with a roof or an outer wall and maintain a comfortable internal space.However, the building and the internal and external environments use a single independent thermal system as a thermal system. The movement is free. The movement and propagation of heat is mainly performed by radiation and conduction, and heat is mainly transferred by convection in gas such as liquid and air. The flow of heat in and out of each location, and the storage of heat, is balanced by the heat balance, and heat moves from higher to lower temperatures. The heat transfer is governed by the thermodynamic principle that is proportional to the temperature difference.
[0003]
As a result, in summer, the temperature of the outer grooves such as the roof and side walls of the building rises mainly due to the conduction of the sun's radiation and the high outside air temperature, and the conduction shifts from the high-temperature outer surface to the lower inner surface due to conduction, and furthermore, the indoor space in contact with the inner surface Since the heated air which is conducted to the air and is light, it becomes an updraft and generates convection. If there is no phenomenon of convection, the heat input from the outer groove to the internal space will reduce the temperature gradient between the outer groove and the air layer in contact with it, brake the external heat input, and be affected by the external environment because of the convection, but unfortunately less is fled the air heated in contact with the outer groove of the building, so continue maintaining the temperature gradient, followed Kumikomi heat as heat pumps, indoor temperature To rise.
[0004]
On the other hand, in the cold season, the external environment temperature is generally low and the warm air inside is continuously radiated to the outside. Continuation of this heat transfer is also caused by the convection generated in the indoor space carrying warm air, preventing the temperature difference between the temperature inside the building and the temperature of the air from occurring. The measures to cope with the above three aspects of heat transfer are different from each other, and have various degrees of difficulty including economic judgment. Before the spread of air-conditioning equipment, there is little interest in controlling the temperature of indoor spaces, except for offices and living spaces, and it cannot be said that sufficient attention has been paid to building structures. Even if air-conditioning equipment is introduced again, unless the heat transfer system is improved, the equipment scale will be large and the loss of cooling and heating energy will be large, so it cannot always be adopted unconditionally. It is generally overwhelming and prolonged, difficult, and expensive.
[0005]
In recent years, there has been a great demand for air conditioning, and the power consumption consumed for air conditioning has been increasing year by year, and the increase in energy consumption has increased dependence on nuclear power and fossil fuels. Neither of them can be continued indefinitely. In particular, because carbon dioxide emissions cause global warming, reducing carbon dioxide emissions by 6% as an international commitment must be complied with as a supreme order. Specifically, a solution that satisfies the following requirements or issues is needed.
[0006]
(1) Planning with a heat system that conforms to the law of heat transfer (2) Blocking the flow of heat by separating the use space (3) Being applicable to existing buildings (4) Reinforcement and remodeling of building structures (5) The construction is easy and the construction period is short. (6) The construction can be performed even when the building is in operation. (7) The countermeasures do not impair the aesthetic appearance. (8) Combined use of cooling and heating equipment (9) Standardization based on the principle of industrialization.
[0007]
[Means for Solving the Problems]
The present invention for solving the above problems will be described with reference to the reference numerals used in the drawings showing the embodiments. The feature of the convection blocking panel according to the invention according to claim 1 is that a thin sheet material is formed of a hexagonal cross section. A partition body 7 composed of a double honeycomb structure 11 which is capable of expanding and contracting, two sets of single honeycomb structures formed by connecting a large number of cylindrical honeycomb bodies in a line, and which is capable of expanding and contracting; A supporting portion 9 made of a bending prevention member 13 for supporting the whole from below and holding the shape, and fixing both ends of the partition body 7 to the end of the bending prevention member 11 to constitute a single panel. A large number of such panels are arranged, and the support portion 9 is attached to a predetermined location inside the building by attaching means to partition the interior of the building up and down.
A feature of the convection cutoff panel according to the second aspect of the present invention is that a partition member 7 composed of a single honeycomb structure formed by connecting a large number of thin sheet members formed in a cylindrical shape with a hexagonal cross section in a line, and the partition member A supporting portion 9 made of a bending prevention member 13 for supporting the whole from below and holding the shape, and fixing both ends of the partition body 7 to the end of the bending prevention member 11 to constitute a single panel. A large number of such panels are arranged, and the support portion 9 is attached to a predetermined location inside the building by attaching means to partition the interior of the building up and down.
Furthermore, a feature of the invention described in claim 3 is that, in addition to the configuration described in claim 1 or 2, the deflection preventing member is an aluminum square pipe.
[0008]
According to the present invention, the following effects can be obtained. In other words, heat transfer to the indoor use space and the reason that heat transfer does not stop are due to the convection phenomenon of air, but since it is not possible to stop convection which is a natural pattern, the space inside the building is The upper and lower partitions prevent heat from flowing into and out of the lower use space by convection, and stabilize the temperature in the space. The upper space is left as a troposphere, and as the volume decreases, the flow of heat in and out and the convection reaction become more intense, but the heated hot air that is heated rises is discharged from an exhaust port (roof fan) provided in the building section.
[0009]
ADVANTAGE OF THE INVENTION According to this invention, since the inflow of the convection which carries heat is prevented by the panel in the indoor lower use space, and the temperature does not go in and out, the temperature can be stabilized. Since the convection pattern is accelerated as the volume of the upper convection space is reduced, the heat is efficiently exhausted from the exhaust port at the top, which contributes to the improvement of the thermal budget of the building. The panels are lightweight, highly flexible and stretchable, and can be easily adjusted in a short period of time because they can be freely adjusted to the shape and installation conditions of the installation site. Furthermore, this characteristic has a degree of freedom in shape and size, greatly reduces the dimensional standard, simplifies the layout plan, and eliminates the work of the original drawing, so that special consideration and processing are not required for the construction at the site.
[0010]
Even when used in combination with an air conditioner, the scale of the facility can be reduced by improving the heat balance due to the effect of blocking convection, the operating cost can be reduced, and the economic effect is enormous.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. An example in which the present invention is applied to a factory building will be described in detail as an example. There are various types of factory buildings depending on external factors such as the shape and properties of work objects and location conditions, but they can be broadly divided into two-story buildings and single-story buildings. It consists of building.
[0012]
In addition, there are many types of roofs according to the shape, size, type, location, climatic climate, roofing material, etc. of the building, but lighting and ventilation are important factors for the roof of a factory. The roof 3 of the building 1 is composed of a so-called gable roof, and a roof fan unit F for ventilation is attached to the ridge of the roof 3 at necessary places (two places in the figure).
[0013]
In the illustrated factory building 1 (one-story building + gable roof), the convection cut-off panel (hereinafter, the one below the ridge is not parallel) at a predetermined distance from the roof at the inside of the building and substantially parallel to the flowing roof part Panel) P is arranged in large numbers. As a specific arrangement of the panels P, as shown in FIG. 4, the panels P are arranged so as to cover the entire interior of the building in a plan view. In FIG. 4, numerals 1 to 7 surrounded by a circle indicate that the size (unit standard) of the single panel is different. That is, for example, the numeral 1 in a circle is 2800 × 2600, the numeral 2 in a circle is 2900 × 2600, the numeral 3 in a circle is 2970 × 2600, the numeral 4 in a circle is 2800 × 700, The panel P according to the present embodiment has various dimensions, such as the enclosed numeral 5 is 2390 × 700, the enclosed numeral 6 is 2375 × 700, and the enclosed numeral 8 is 2970 × 700. Be composed.
[0014]
Here, referring to FIGS. 5 to 7 showing a single unit (unit) of the attached panel P, the panel P includes a partition member 7 having substantially a convection blocking function and a support portion 9 supporting the partition member 7. Including. The partition body 7 is composed of a double honeycomb structure 11 in the illustrated example. A double honeycomb structure is composed of two sets of single honeycomb structures (those described later) that are formed by forming thin sheet materials into a cylinder with a hexagonal cross section and connecting them in a row in a row. It consists of a structure that is bonded. The double honeycomb structure 11 itself has flexibility (extensibility), and is configured to be folded to one side (in a bellows-like manner) to be compact.
[0015]
As a specific example (actual example) of the double honeycomb structure 11, a product sold by COMFORTEX CORPORATION in the United States can be mentioned. On the lower side of the double honeycomb structure 11, one or more (in the illustrated example, a pair) bending prevention members 13 (for holding the shape) that support the whole from below are arranged, and both ends of the structure 11 are sandwiched. It is fixed to the end of the deflection preventing member 13 via the plate 15. (Note that the deflection preventing member 13 is embodied as a square pipe made of aluminum in the illustrated example, but is not limited thereto, and may be made of various materials, and may be made of materials having various cross-sectional shapes. Needless to say.
[0016]
A threaded shaft 17 (M6 long screw bolt) is attached to each of the (four) holding plates 15 so as to extend upward. A py rack (C-shaped clamp member) 19 is connected to the upper end side of the shaft 17, and the py rack 19 is configured to be hooked (attached) to an I-beam 21 constituting a framework (beam) of a roof of a factory building. ing.
[0017]
In the illustrated embodiment having the above-described configuration, in the space near the attic defined between the inside of the roof and the partition body 7 (double honeycomb structure 11), the flow of air as indicated by an arrow in FIG. Convection) occurs. That is, the air heated in the space near the attic is immediately and efficiently discharged to the outside from the roof fan (exhaust port) F.
[0018]
Due to the effect that the heat is circulated and discharged very efficiently, or in addition to this, the heat insulation effect due to the presence of air (layer) in the space near the attic, the factory divided by the double honeycomb structure 11 (partition body 7). The flow of heat into and out of the substantial interior space is greatly reduced, in which convection phenomena do not occur or are very slight. Thereby, the temperature of the substantial internal space of the factory can be maintained very stably.
[0019]
By the way, in the above-described embodiment, the double honeycomb structure 11 (FIG. 8A) has been described as an example as the partition body 7. However, instead of this, the (single) single honeycomb structure 31 as described above is used. (FIG. 9B) can also be adopted.
[0020]
The partition member 7 is made of various materials, such as paper, cloth, plastic resin, and thin (non-ferrous) metal plate, in order to provide the strength (shape holding function) to the deflection preventing member 13 and to have a sufficient strength. Can be. Of course, from the viewpoint of lighting, a colorless or colored material that is transparent or translucent is desirable. From the viewpoint of light shielding, a member having no light transmittance is desirable.
[0021]
When the partition body 7 has flexibility or elasticity, there are the following advantages. That is, as shown in FIG. 9 (left hand side), it is convenient to carry and store by shrinking the whole in a bellows style. In addition, deployment work can be performed on site for panel installation work, and it is convenient because it is not bulky.
[0022]
In addition, some roofs have curved portions, and the shape can be changed along the curved portions (shape adaptability). For example, in the case of installation and installation in a dome style, this can be performed by using a bending prevention member 13 which is bent as a whole as shown in FIG. 10 (FIG. 9).
[0023]
Furthermore, the fact that the partition member is very light in weight cannot be overlooked. It is also worthy of evaluation that the partition body can be easily and simply and quickly mounted as if a curtain were mounted. Further, when the partition body is formed of a double honeycomb structure or a single honeycomb structure, for example, by mounting a heat insulating material and / or a sound absorbing material to a large number of cascading cylindrical portions constituting the same, heat insulation or It is possible to obtain a very excellent action and effect in noise control.
[0024]
By the way, instead of the configuration in which the panels are arranged substantially parallel to the flow roof portion of the roof 3 described above, a large number of panels P (the various things described above can be operated) are laid in the air in a ceiling wind substantially parallel to the floor. An experiment was conducted with respect to a structure (that is, a structure that divides a building into a troposphere and a use space) (FIG. 11). Even with this structure, it was confirmed that good results could be obtained in terms of stably maintaining room temperature.
[0025]
【The invention's effect】
As described above, according to the present invention, the inside of a building can be effectively partitioned, and the internal use space can be stably maintained at a temperature with almost no external thermal influence. In addition, in terms of installation work, it can be performed very easily, quickly and inexpensively, and is very practical and practical.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the inside of a factory building according to the present embodiment.
FIG. 2 is a side view showing an air flow in the factory building according to the embodiment.
FIG. 3 is a side view showing only a roof portion.
FIG. 4 is a plan view of a building interior.
FIG. 5 is a side view of the example panel.
FIG. 6 is a plan view of an example panel.
FIG. 7 is a perspective view of an example panel.
FIG. 8 is a perspective view showing a different panel structure.
FIG. 9 is a perspective view illustrating a state where the panel is expanded from a contracted state.
FIG. 10 is a side view showing another example of the deflection preventing member.
FIG. 11 is a diagram showing a panel installed in a ceiling wind.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Factory building 3 ... Roof 7 ... Partition body 11 ... Double honeycomb structure 13 ... Deflection prevention member 31 ... Single honeycomb structure 33 ... Bellows structure 35 ... Sheet F ... Roof fan device P ... Panel