Nothing Special   »   [go: up one dir, main page]

JP3552028B2 - Soil compaction management method and apparatus - Google Patents

Soil compaction management method and apparatus Download PDF

Info

Publication number
JP3552028B2
JP3552028B2 JP15738899A JP15738899A JP3552028B2 JP 3552028 B2 JP3552028 B2 JP 3552028B2 JP 15738899 A JP15738899 A JP 15738899A JP 15738899 A JP15738899 A JP 15738899A JP 3552028 B2 JP3552028 B2 JP 3552028B2
Authority
JP
Japan
Prior art keywords
frequency
geometric mean
peak frequency
compaction
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15738899A
Other languages
Japanese (ja)
Other versions
JP2000345512A (en
Inventor
弘 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP15738899A priority Critical patent/JP3552028B2/en
Publication of JP2000345512A publication Critical patent/JP2000345512A/en
Application granted granted Critical
Publication of JP3552028B2 publication Critical patent/JP3552028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Road Paving Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、振動ローラの加速度を用いた土の締固め管理方法及び装置に関する。
【0002】
【従来の技術】
土地造成工事においては、どのような盛土材料を用いてどのように締固めを行うかが重要であり、よく締まって密な構造になっている土は、外力に対する抵抗が大きく、より高い安定性を保つ。したがって、撒き出された盛土材料は、締め固め用の機械で十分に締め固めなければならない。
【0003】
そのため、盛土工事を行うにあたっては、設計時において予め盛土転圧試験を実施し、転圧機械の機種、一層の撒き出し厚さ及び最適な転圧回数を決定するとともに、施工時において実際の撒き出し厚さや転圧回数が設計値に沿ったものとなるように管理することが盛土品質を向上させる上で不可欠となる。
【0004】
一方、撒き出し厚さや転圧回数を管理するのみならず、実際の土の締固め状況を監視することも重要であることは言うまでもない。
【0005】
ここで、転圧された土の締固め状況を転圧機械である振動ローラの鉛直方向加速度から調べる方法が知られている。かかる方法は、計測された振動ローラの加速度時刻歴データをフーリエ解析によって周波数領域に変換し、次に、変換されたデータからピーク値、すなわち卓越振動数における加速度スペクトル(パワースペクトル)を基本(一次)振動数での値A、二次振動数での値B、三次振動数での値Cとしてそれぞれ求め、しかる後に比率(B+C)/Aを演算するものである。
【0006】
かかる手法は、土を締め固めていくにしたがって地盤のバネ係数も増加するという特性を利用したものであり、既に実用化されている。
【0007】
【発明が解決しようとする課題】
ここで、基本振動数は、本来、振動ローラ固有のものであるため、転圧中に変化することはないと思われていたが、実際には、振動ローラに設けられたアクチュエータの回転数が施工中の種々の要因によって変動することがあり、その場合には、設定された基本振動数が実際の基本振動数からずれてしまうこととなって解析精度の低下を招くという問題を生じていた。
【0008】
また、二次振動数及び三次振動数には、転圧対象である地盤の弾性挙動が反映されるが、転圧材料の剛性が高いと、転圧中に振動ローラの振動輪が地表から跳ね上がってしまうことがあり、かかる場合には基本振動数と同様、ピーク振動数が変動し、やはり解析精度の低下を招くという問題を生じていた。
【0009】
本発明は、上述した事情を考慮してなされたもので、ピーク振動数が変動しても土の締固め状況を適切に評価することが可能な土の締固め管理方法及び装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る土の締固め管理方法は請求項1に記載したように、転圧機械に備えられた振動体の鉛直方向加速度を転圧中に計測し、計測された加速度データから加速度スペクトルを求め、該加速度スペクトルを一次推定ピーク振動数を含む第1の周波数帯域で積分して相乗平均Aを求めるとともに、前記加速度スペクトルを二次推定ピーク振動数及び三次推定ピーク振動数を含む第2の周波数帯域で積分して相乗平均Bを求め、しかる後に該相乗平均Bを前記相乗平均Aで除してピーク比率とするとともに該ピーク比率を土の締固め状況を評価する指標とするものである。
【0011】
また、本発明に係る土の締固め管理装置は請求項2に記載したように、転圧機械に備えられた振動体の鉛直方向加速度を転圧中に計測する加速度計と、該加速度計で計測された加速度データから加速度スペクトルを求める解析手段と、前記加速度スペクトルを一次推定ピーク振動数を含む第1の周波数帯域で積分して相乗平均Aを求めるとともに二次推定ピーク振動数及び三次推定ピーク振動数を含む第2の周波数帯域で前記加速度スペクトルを積分して相乗平均Bを求め、該相乗平均Bを前記相乗平均Aで除してピーク比率を算出する演算手段とからなるものである。
【0012】
本発明に係る土の締固め管理方法及び装置においては、まず、振動ローラ等の転圧機械に備えられた振動輪等の振動体の鉛直方向加速度を転圧中に計測する。
【0013】
次に、FFTアナライザ等の解析手段を用いて計測された加速度データの加速度スペクトルを求める。
【0014】
次に、演算手段にて前記加速度スペクトルを一次推定ピーク振動数を含む第1の周波数帯域で積分して相乗平均Aを求めるとともに、二次推定ピーク振動数及び三次推定ピーク振動数を含む第2の周波数帯域で積分して相乗平均Bを求め、しかる後に該相乗平均Bを前記相乗平均Aで除する、すなわちB/Aを演算してピーク比率とし、該ピーク比率を土の締固め状況を評価する指標とする。
【0015】
このようにすると、基本ピーク振動数や二次若しくは三次ピーク振動数に変動が生じたとしても、第1の周波数帯域や第2の周波数帯域を適宜設定しておけば、真のピーク振動数は、これらの周波数帯域に必ず含まれることとなり、加速度スペクトルにも真のピーク振動数での値が反映される。
【0016】
ここで、一次推定ピーク振動数とは、一次ピーク振動数としてとりあえず初期的に設定される振動数であって転圧中に変動の可能性があるものであり、第1の周波数帯域とは、かかる変動があったとしても真の一次ピーク振動数が必ず含まれることになるであろう帯域を意味する。
【0017】
同様に、二次推定ピーク振動数及び三次推定ピーク振動数とは、それぞれ二次ピーク振動数、三次ピーク振動数としてとりあえず初期的に設定される振動数であって転圧中に変動の可能性があるものであり、第2の周波数帯域とは、かかる変動があったとしても真の二次ピーク振動数及び三次ピーク振動数が必ず含まれることになるであろう帯域を意味する。
【0018】
【発明の実施の形態】
以下、本発明に係る土の締固め管理方法及び装置の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0019】
図1(a)は、本実施形態に係る土の締固め管理装置を示した全体ブロック図である。同図でわかるように、本実施形態に係る土の締固め管理装置1は、転圧機械に備えられた振動体の鉛直方向加速度を転圧中に計測する加速度計2と、該加速度計で計測された加速度データから加速度スペクトルを求める解析手段としてのFFTアナライザ3と、加速度スペクトルを一次推定ピーク振動数を含む第1の周波数帯域で加速度スペクトルを積分して相乗平均Aを求めるとともに、二次推定ピーク振動数及び三次推定ピーク振動数を含む第2の周波数帯域で積分して相乗平均Bを求め、該相乗平均Bを相乗平均Aで除してピーク比率を算出する演算手段としての演算回路4とからなる。なお、演算回路4には、演算結果であるピーク比率を出力するディスプレイ8やプリンタ9を接続しておくのがよい。
【0020】
ここで、加速度計2は、同図(b)に示すように、転圧機械である振動ローラ6に備えられた振動体としての振動輪7の非減衰部に取り付けてあり、該振動輪の鉛直成分加速度を計測できるようになっている。
【0021】
本実施形態に係る土の締固め管理装置1及び管理方法においては、まず、振動ローラ6に備えられた振動輪7の転圧中における鉛直方向加速度を加速度計2で計測する。
【0022】
次に、計測された加速度データをFFTアナライザ3にてフーリエ変換して加速度スペクトルを求める。図2(a)に求められた加速度スペクトルを示す。
【0023】
次に、演算回路4にて加速度スペクトルを一次推定ピーク振動数fを含む第1の周波数帯域で積分する、すなわち同図に示す斜線領域11の面積を求め、その平方根をとって相乗平均Aとする。
【0024】
同様に、加速度スペクトルを二次推定ピーク振動数f及び三次推定ピーク振動数fを含む第2の周波数帯域で積分する、すなわち同図に示す斜線領域12の面積を求め、その平方根をとって相乗平均Bとする。
【0025】
ここで、一次推定ピーク振動数fは、転圧中に変動の可能性があるものの、一次ピーク振動数としてとりあえず初期的に設定可能な振動数であり、例えば振動ローラ6固有の振動数から評価することができる。
【0026】
また、第1の周波数帯域は、かかる変動があったとしても真の一次ピーク振動数が必ず含まれることになるであろう帯域であり、振動ローラ6やアクチュエータの構造、仕様、性能等を考慮しつつ、必要に応じて試験を行った上、適宜定めればよい。かかる第1の周波数帯域は、例えば一次推定ピーク振動数fを中心として±5Hzの範囲とすることができる。
【0027】
一方、二次推定ピーク振動数f及び三次推定ピーク振動数fは、転圧中に変動の可能性があるものの、それぞれ二次ピーク振動数、三次ピーク振動数としてとりあえず初期的に設定可能な振動数である。
【0028】
また、第2の周波数帯域は、かかる変動があったとしても真の二次ピーク振動数や三次ピーク振動数が必ず含まれることになるであろう帯域であり、締固めに伴う地盤の弾性挙動の変化を考慮しつつ、必要に応じて現地での転圧試験を行った上、適宜定めればよい。かかる第2の周波数帯域は、例えば50〜90Hzの範囲とすることができる。
【0029】
次に、演算回路4にて相乗平均Bを相乗平均Aで除する、すなわちB/Aを演算してピーク比率とし、これをディスプレイ8やプリンタ9に適宜出力するとともに、該ピーク比率を土の締固め状況を評価する指標とする。
【0030】
このようにすると、基本ピーク振動数や二次若しくは三次ピーク振動数に変動が生じたとしても、第1の周波数帯域や第2の周波数帯域を適宜設定しておけば、真のピーク振動数は、これらの帯域に必ず含まれることとなり、加速度スペクトルにも真のピーク振動数での値が反映される。
【0031】
すなわち、図2(b)に示すように、真の一次ピーク振動数が仮に一次推定ピーク振動数fから低周波側にずれてf´になったとしても、かかる真の一次ピーク振動数f´が第1の周波数帯域に含まれているため、真の一次ピーク振動数f´における加速度スペクトル値は、相乗平均Aに反映される。
【0032】
以上説明したように、本実施形態に係る土の締固め管理方法及び装置によれば、基本ピーク振動数や二次若しくは三次ピーク振動数に変動が生じたとしても、第1の周波数帯域や第2の周波数帯域を適宜設定しておけば、真のピーク振動数は、これらの帯域に必ず含まれることとなり、加速度スペクトルにも真のピーク振動数での値が反映される。
【0033】
したがって、振動ローラ6のアクチュエータの回転数が何らかの原因で変動したり、転圧中に振動輪7が地表から跳ね上がるような場合、例えばロック材料を転圧するような場合であっても、土の締固め状況を適切に評価することが可能となる。
【0034】
また、従来のPSD解析手法でピーク比率を精度よく求めようとすると、ピーク振動数の変動に対応すべく、該ピーク振動数をそのつど正確に求める必要があるが、処理すべきデータ量が膨大であるため、転圧作業を行いながら解析を進めるのは実際にはきわめて困難であった。
【0035】
しかしながら、本実施形態に係る土の締固め管理方法及び装置によれば、演算回路4での演算中、ピーク振動数を求める必要がないため、リアルタイム処理が可能となり、土の締固めに関する品質を飛躍的に向上させることができる。
【0036】
次に、本実施形態に係る土の締固め管理方法及び装置の作用効果を実験で確認したので、以下にその概要を説明する。
【0037】
実験は、ロックフィルダムの建設工事現場における振動ローラによる転圧試験として行い、各転圧ごとの実際の締固め密度をそのときの沈下量から評価するとともに、本実施形態に係る土の締固め管理方法にしたがってピーク比率を演算した。
【0038】
図3は、このような転圧回数ごとの現場密度と本実施形態に係る方法(帯域積分ピーク法)による解析結果とを従来のPSDピーク法による結果とともに示したグラフである。これらの結果から、本実施形態に係る土の締固め管理方法によれば、演算されたピーク比率が現場密度ときわめて良好な相関関係を示し、盛土の品質管理として非常に有効な手段となり得ることがわかる。ちなみに、従来の解析手法であるPSDピーク法では、ロック材料を転圧する際に発生する振動ローラの局所的な跳ね上がりを適確にとらえることができないため、現場密度との相関性はきわめて悪いこともわかる。
【0039】
【発明の効果】
以上述べたように、本発明に係る土の締固め管理方法及び装置によれば、基本ピーク振動数や二次若しくは三次ピーク振動数に変動が生じたとしても、第1の周波数帯域や第2の周波数帯域を適宜設定しておけば、真のピーク振動数は、これらの帯域に必ず含まれることとなり、加速度スペクトルにも真のピーク振動数での値が反映される。
【0040】
したがって、例えば振動体のアクチュエータの回転数が何らかの原因で変動したり、転圧中に振動体が地表から跳ね上がるような場合、例えばロック材料を転圧するような場合であっても、土の締固め状況を適切に評価することが可能となる。
【0041】
【図面の簡単な説明】
【図1】本実施形態に係る土の締固め管理装置の図であり、(a)は全体ブロック図、(b)は加速度計の取付け状況を示した図。
【図2】本実施形態に係る土の締固め管理方法及び装置の作用を示した図。
【図3】本実施形態に係る土の締固め管理方法及び装置の作用効果に関する実験結果を示したグラフ。
【符号の説明】
1 土の締固め管理装置
2 加速度計
3 FFTアナライザ(解析手段)
4 演算回路(演算手段)
6 振動ローラ(転圧機械)
7 振動輪(振動体)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a soil compaction management method and apparatus using the acceleration of a vibration roller.
[0002]
[Prior art]
In land reclamation work, it is important to determine what kind of embankment material is used and how it is compacted.Soil that is well-tightened and has a dense structure has greater resistance to external forces and higher stability Keep. Therefore, the spouted embankment material must be sufficiently compacted with a compacting machine.
[0003]
For this reason, when performing embankment work, an embankment compaction test is performed in advance at the time of design to determine the model of the compacting machine, the further spreading thickness and the optimal number of compaction times, and the actual It is indispensable to control the delivery thickness and the number of rolling times so as to be in accordance with the design values in order to improve the quality of the embankment.
[0004]
On the other hand, it goes without saying that it is important not only to control the spreading thickness and the number of times of compaction but also to monitor the actual compaction state of the soil.
[0005]
Here, there is known a method of examining the compaction state of the compacted soil from the vertical acceleration of a vibrating roller which is a compacting machine. According to such a method, the measured acceleration time history data of the vibrating roller is converted into a frequency domain by Fourier analysis, and then the peak value, that is, the acceleration spectrum (power spectrum) at the dominant frequency is basically (primary) from the converted data. ) The value A at the frequency, the value B at the secondary frequency, and the value C at the tertiary frequency, respectively, and then the ratio (B + C) / A is calculated.
[0006]
Such a method utilizes the characteristic that the spring coefficient of the ground increases as the soil is compacted, and has already been put to practical use.
[0007]
[Problems to be solved by the invention]
Here, the fundamental frequency was originally assumed to be unique to the vibrating roller, and thus was not expected to change during rolling. However, in reality, the rotational frequency of the actuator provided on the vibrating roller was reduced. It may fluctuate due to various factors during construction, in which case the set fundamental frequency will deviate from the actual fundamental frequency, causing a problem of lowering the analysis accuracy. .
[0008]
In addition, the secondary frequency and the tertiary frequency reflect the elastic behavior of the ground to be compacted.If the rigidity of the compacted material is high, the vibrating wheel of the vibrating roller jumps off the ground during compaction. In such a case, the peak frequency fluctuates as in the case of the basic frequency, and this also causes a problem that the analysis accuracy is lowered.
[0009]
The present invention has been made in view of the above circumstances, and provides a soil compaction management method and apparatus capable of appropriately evaluating the compaction state of soil even when the peak frequency fluctuates. With the goal.
[0010]
[Means for Solving the Problems]
To achieve the above object, a soil compaction management method according to the present invention measures a vertical acceleration of a vibrating body provided in a compaction machine during compaction, as described in claim 1. The acceleration spectrum is obtained from the obtained acceleration data, the acceleration spectrum is integrated in a first frequency band including the primary estimated peak frequency to obtain a geometric mean A, and the acceleration spectrum is obtained from the secondary estimated peak frequency and the tertiary estimated peak frequency. The geometric mean B is obtained by integrating in the second frequency band including the frequency, and thereafter, the geometric mean B is divided by the geometric mean A to obtain a peak ratio, and the peak ratio is used to evaluate the compaction state of the soil. It is an index to be used.
[0011]
Further, as described in claim 2, the soil compaction management device according to the present invention includes an accelerometer that measures the vertical acceleration of the vibrating body provided in the compacting machine during compaction, and an accelerometer. Analysis means for obtaining an acceleration spectrum from the measured acceleration data; integrating the acceleration spectrum in a first frequency band including a primary estimated peak frequency to obtain a geometric mean A, and obtaining a secondary estimated peak frequency and a tertiary estimated peak The arithmetic means calculates the geometric mean B by integrating the acceleration spectrum in the second frequency band including the frequency, and calculates the peak ratio by dividing the geometric mean B by the geometric mean A.
[0012]
In the soil compaction management method and apparatus according to the present invention, first, the vertical acceleration of a vibrating body such as a vibrating wheel provided in a rolling machine such as a vibrating roller is measured during rolling.
[0013]
Next, an acceleration spectrum of the acceleration data measured by using an analyzing means such as an FFT analyzer is obtained.
[0014]
Next, the arithmetic means integrates the acceleration spectrum in a first frequency band including the primary estimated peak frequency to obtain a geometric mean A, and a second average including the secondary estimated peak frequency and the tertiary estimated peak frequency. To obtain a geometric mean B, and thereafter, the geometric mean B is divided by the geometric mean A, that is, B / A is calculated as a peak ratio, and the peak ratio is used to determine the soil compaction situation. Index to be evaluated.
[0015]
In this way, even if the basic peak frequency or the secondary or tertiary peak frequency fluctuates, the true peak frequency can be set by appropriately setting the first frequency band and the second frequency band. , Are always included in these frequency bands, and the value at the true peak frequency is also reflected in the acceleration spectrum.
[0016]
Here, the primary estimated peak frequency is a frequency that is initially set as a primary peak frequency for the time being and may vary during rolling compaction, and the first frequency band is Even if there is such a fluctuation, it means a band in which a true primary peak frequency will always be included.
[0017]
Similarly, the secondary estimated peak frequency and the tertiary estimated peak frequency are initially set as the secondary peak frequency and the tertiary peak frequency, respectively, and may vary during rolling. The second frequency band means a band in which a true secondary peak frequency and a tertiary peak frequency will always be included even if such a fluctuation occurs.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a soil compaction management method and apparatus according to the present invention will be described with reference to the accompanying drawings. In addition, the same reference numerals are given to components and the like that are substantially the same as those in the related art, and description thereof is omitted.
[0019]
FIG. 1A is an overall block diagram showing a soil compaction management device according to the present embodiment. As can be seen from the figure, the soil compaction management device 1 according to the present embodiment includes an accelerometer 2 that measures the vertical acceleration of a vibrating body provided in a compaction machine during compaction, and an accelerometer. An FFT analyzer 3 as analysis means for obtaining an acceleration spectrum from the measured acceleration data; and calculating the geometric mean A by integrating the acceleration spectrum in a first frequency band including a primary estimated peak frequency, An arithmetic circuit as arithmetic means for calculating a geometric mean B by integrating in a second frequency band including the estimated peak frequency and the tertiary estimated peak frequency, and dividing the geometric mean B by the geometric mean A to calculate a peak ratio. 4 It is preferable to connect the display 8 and the printer 9 for outputting the peak ratio as the calculation result to the calculation circuit 4.
[0020]
Here, the accelerometer 2 is attached to a non-attenuating portion of a vibrating wheel 7 as a vibrating body provided on a vibrating roller 6 which is a rolling machine, as shown in FIG. The vertical component acceleration can be measured.
[0021]
In the soil compaction management device 1 and the management method according to the present embodiment, first, the vertical acceleration during the rolling of the vibrating wheel 7 provided on the vibrating roller 6 is measured by the accelerometer 2.
[0022]
Next, the measured acceleration data is Fourier-transformed by the FFT analyzer 3 to obtain an acceleration spectrum. FIG. 2A shows the obtained acceleration spectrum.
[0023]
Then, integrating the acceleration spectrum at a first frequency band including a primary estimated peak frequency f 1 in the arithmetic circuit 4, i.e. determine the area of the hatched region 11 shown in the figure, the geometric mean A taking the square root And
[0024]
Similarly, integrating the acceleration spectrum at a second frequency band including the second estimated peak frequency f 2 and third order estimated peak frequency f 3, i.e. measuring the area of the hatched region 12 shown in the figure, taking the square root To the geometric mean B.
[0025]
Here, the primary estimated peak frequency f 1 is a frequency that can be initially set as a primary peak frequency, although there is a possibility that the primary peak frequency fluctuates during rolling. Can be evaluated.
[0026]
The first frequency band is a band in which the true primary peak frequency will always be included even if there is such a fluctuation, and the structure, specifications, performance, etc. of the vibration roller 6 and the actuator are taken into consideration. In addition, a test may be performed as needed, and the value may be determined as appropriate. Such first frequency band, for example, be in the range of ± 5 Hz around the primary estimated peak frequency f 1.
[0027]
On the other hand, the secondary estimated peak frequency f 2 and the tertiary estimated peak frequency f 3 may fluctuate during the compaction, but can be initially set as the secondary peak frequency and the tertiary peak frequency, respectively, for the time being. Frequency.
[0028]
Further, the second frequency band is a band in which the true secondary peak frequency and the tertiary peak frequency will always be included even if there is such a fluctuation, and the elastic behavior of the ground due to compaction. In consideration of the change in the pressure, a rolling test on site is performed as needed, and the value may be determined as appropriate. Such a second frequency band can be, for example, in the range of 50 to 90 Hz.
[0029]
Next, the arithmetic circuit 4 divides the geometric mean B by the geometric mean A, that is, calculates B / A to obtain a peak ratio, and outputs the peak ratio to the display 8 and the printer 9 as appropriate. Use this as an index to evaluate the compaction situation.
[0030]
In this way, even if the basic peak frequency or the secondary or tertiary peak frequency fluctuates, the true peak frequency can be set by appropriately setting the first frequency band and the second frequency band. , Are always included in these bands, and the value at the true peak frequency is also reflected in the acceleration spectrum.
[0031]
That is, as shown in FIG. 2B, even if the true primary peak frequency shifts to the low frequency side from the primary estimated peak frequency f 1 to f 1 ′, the true primary peak frequency becomes the true primary peak frequency. Since f 1 ′ is included in the first frequency band, the acceleration spectrum value at the true primary peak frequency f 1 ′ is reflected in the geometric mean A.
[0032]
As described above, according to the soil compaction management method and device according to the present embodiment, even if the basic peak frequency or the secondary or tertiary peak frequency fluctuates, the first frequency band or the second If the second frequency band is set appropriately, the true peak frequency will always be included in these bands, and the value at the true peak frequency will be reflected in the acceleration spectrum.
[0033]
Therefore, even if the rotational speed of the actuator of the vibrating roller 6 fluctuates for some reason, or if the vibrating wheel 7 jumps off the ground surface during rolling, for example, when the lock material is rolled, the soil is tightened. It is possible to appropriately evaluate the state of compaction.
[0034]
Further, in order to accurately determine the peak ratio by the conventional PSD analysis method, it is necessary to accurately determine the peak frequency in order to cope with fluctuations in the peak frequency, but the amount of data to be processed is enormous. Therefore, it was actually extremely difficult to proceed with the analysis while performing the compaction work.
[0035]
However, according to the soil compaction management method and apparatus according to the present embodiment, it is not necessary to obtain the peak frequency during the calculation in the arithmetic circuit 4, so that real-time processing becomes possible, and the quality related to soil compaction is reduced. It can be dramatically improved.
[0036]
Next, the operation and effect of the soil compaction management method and apparatus according to the present embodiment were confirmed by experiments, and the outline thereof will be described below.
[0037]
The experiment was performed as a compaction test using a vibratory roller at the construction site of the rock fill dam, and the actual compaction density for each compaction was evaluated from the settlement amount at that time, and the compaction management of the soil according to the present embodiment was performed. The peak ratio was calculated according to the method.
[0038]
FIG. 3 is a graph showing the on-site density for each number of compaction times and the analysis result by the method (band integral peak method) according to the present embodiment, together with the result by the conventional PSD peak method. From these results, according to the soil compaction management method according to the present embodiment, the calculated peak ratio shows a very good correlation with the site density, which can be a very effective means for quality control of the embankment. I understand. Incidentally, the PSD peak method, which is a conventional analysis method, cannot accurately detect the local jumping of the vibrating roller that occurs when the lock material is compacted, so that the correlation with the field density may be extremely poor. Understand.
[0039]
【The invention's effect】
As described above, according to the soil compaction management method and device of the present invention, even if the basic peak frequency or the secondary or tertiary peak frequency fluctuates, the first frequency band or the second , The true peak frequency is always included in these bands, and the value at the true peak frequency is reflected in the acceleration spectrum.
[0040]
Therefore, for example, when the rotational speed of the actuator of the vibrating body fluctuates for some reason, or when the vibrating body jumps from the ground surface during compaction, for example, when the lock material is compacted, the compaction of the soil is performed. The situation can be appropriately evaluated.
[0041]
[Brief description of the drawings]
1A and 1B are diagrams of a soil compaction management device according to an embodiment, wherein FIG. 1A is an overall block diagram, and FIG. 1B is a diagram illustrating an attachment state of an accelerometer.
FIG. 2 is a view showing the operation of the soil compaction management method and apparatus according to the embodiment.
FIG. 3 is a graph showing experimental results regarding the operation and effect of the soil compaction management method and device according to the embodiment.
[Explanation of symbols]
1 soil compaction management device 2 accelerometer 3 FFT analyzer (analysis means)
4 Arithmetic circuit (arithmetic means)
6 Vibration roller (rolling machine)
7 vibrating wheel (vibrating body)

Claims (2)

転圧機械に備えられた振動体の鉛直方向加速度を転圧中に計測し、計測された加速度データから加速度スペクトルを求め、該加速度スペクトルを一次推定ピーク振動数を含む第1の周波数帯域で積分して相乗平均Aを求めるとともに、前記加速度スペクトルを二次推定ピーク振動数及び三次推定ピーク振動数を含む第2の周波数帯域で積分して相乗平均Bを求め、しかる後に該相乗平均Bを前記相乗平均Aで除してピーク比率とするとともに該ピーク比率を土の締固め状況を評価する指標とすることを特徴とする土の締固め管理方法。The vertical acceleration of the vibrating body provided in the compaction machine is measured during compaction, an acceleration spectrum is obtained from the measured acceleration data, and the acceleration spectrum is integrated in a first frequency band including the primary estimated peak frequency. To obtain a geometric mean A, and integrate the acceleration spectrum in a second frequency band including a secondary estimated peak frequency and a tertiary estimated peak frequency to obtain a geometric mean B. A soil compaction management method, wherein a peak ratio is obtained by dividing by a geometric mean A, and the peak ratio is used as an index for evaluating a soil compaction state. 転圧機械に備えられた振動体の鉛直方向加速度を転圧中に計測する加速度計と、該加速度計で計測された加速度データから加速度スペクトルを求める解析手段と、前記加速度スペクトルを一次推定ピーク振動数を含む第1の周波数帯域で積分して相乗平均Aを求めるとともに二次推定ピーク振動数及び三次推定ピーク振動数を含む第2の周波数帯域で前記加速度スペクトルを積分して相乗平均Bを求め、該相乗平均Bを前記相乗平均Aで除してピーク比率を算出する演算手段とからなることを特徴とする土の締固め管理装置。An accelerometer for measuring the vertical acceleration of a vibrating body provided in the compaction machine during compaction, an analyzing means for obtaining an acceleration spectrum from acceleration data measured by the accelerometer, and a primary estimation peak vibration A geometric mean A is obtained by integrating in a first frequency band including a number, and a geometric mean B is obtained by integrating the acceleration spectrum in a second frequency band including a secondary estimated peak frequency and a tertiary estimated peak frequency. And an arithmetic means for calculating the peak ratio by dividing the geometric mean B by the geometric mean A.
JP15738899A 1999-06-04 1999-06-04 Soil compaction management method and apparatus Expired - Fee Related JP3552028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15738899A JP3552028B2 (en) 1999-06-04 1999-06-04 Soil compaction management method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15738899A JP3552028B2 (en) 1999-06-04 1999-06-04 Soil compaction management method and apparatus

Publications (2)

Publication Number Publication Date
JP2000345512A JP2000345512A (en) 2000-12-12
JP3552028B2 true JP3552028B2 (en) 2004-08-11

Family

ID=15648559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15738899A Expired - Fee Related JP3552028B2 (en) 1999-06-04 1999-06-04 Soil compaction management method and apparatus

Country Status (1)

Country Link
JP (1) JP3552028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878674A (en) * 2014-02-27 2015-09-02 哈姆股份公司 Method for determining a slip in the compressor roller of a soil compressor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498464B (en) * 2013-10-19 2015-05-06 浦江县科创进出口有限公司 Rolling system
JP6385890B2 (en) * 2015-06-03 2018-09-05 鹿島建設株式会社 Compaction management method and compaction management system
JP7183855B2 (en) * 2019-02-20 2022-12-06 株式会社大林組 Ground estimation method
CN112525337B (en) * 2020-11-18 2023-06-02 西安因联信息科技有限公司 Pretreatment method for vibration monitoring data of mechanical press
CN113174918B (en) * 2021-04-14 2022-07-15 中交四航工程研究院有限公司 Method for detecting transverse compaction degree and uniformity of roadbed
CN112942294B (en) * 2021-05-13 2021-08-31 西南交通大学 Roadbed uniformity detection method, device and equipment and readable storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878674A (en) * 2014-02-27 2015-09-02 哈姆股份公司 Method for determining a slip in the compressor roller of a soil compressor
US9645071B2 (en) 2014-02-27 2017-05-09 Hamm Ag Method to determine a slip state of the compactor roller of a soil compactor caused by an oscillation motion of a soil compactor

Also Published As

Publication number Publication date
JP2000345512A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
EP1141487B1 (en) System for predicting compaction performance
KR101067576B1 (en) Measurement method and device of characteristics of soil compaction in laboratory
US7483791B2 (en) Determination of soil stiffness levels
CN103255755B (en) Lossless method for fast evaluating filling compaction quality of soil building stones in real time and evaluating device thereof
US8176800B2 (en) Method for determining tension in a rod
US20190055698A1 (en) Method for compacting the ballast bed of a track, and tamping unit
JP2000352044A (en) Banking rolling compaction control system
CN108717082A (en) A kind of compaction of earth rock material quality continuous assessment method based on integrated sonic detection technology
JP3552028B2 (en) Soil compaction management method and apparatus
CA2000097A1 (en) Machine monitoring method
Baidya et al. Investigation of resonant frequency and amplitude of vibrating footing resting on a layered soil system
US8155919B2 (en) Construction modulus testing apparatus and method
US6244102B1 (en) Method and system for examination and optimal compaction of soil enbankments
JP2003166232A (en) Compaction control device
JP2018154975A (en) Quality control method of soil, and quality monitoring system of soil
CN109632217B (en) Continuous detection method for bearing capacity of pavement structure
JP5940823B2 (en) Concrete compaction management method
JP3531726B2 (en) Soil compaction management method and apparatus
JP2010059670A (en) Construction method for estimating uniaxial compressive strength
US5610336A (en) Method for estimating frequencies of machine foundations
JP3732719B2 (en) Method and apparatus for measuring ground subsidence
JP6385890B2 (en) Compaction management method and compaction management system
Rausche et al. Analyzing and interpreting dynamic measurements taken during vibratory pile driving
JPH1078333A (en) Measuring monitoring system for driven pile
JP3541091B2 (en) Compaction degree measuring device and compaction degree measuring method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3552028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees