Nothing Special   »   [go: up one dir, main page]

JP3546588B2 - Microwave plasma generator and thin film manufacturing method - Google Patents

Microwave plasma generator and thin film manufacturing method Download PDF

Info

Publication number
JP3546588B2
JP3546588B2 JP10667696A JP10667696A JP3546588B2 JP 3546588 B2 JP3546588 B2 JP 3546588B2 JP 10667696 A JP10667696 A JP 10667696A JP 10667696 A JP10667696 A JP 10667696A JP 3546588 B2 JP3546588 B2 JP 3546588B2
Authority
JP
Japan
Prior art keywords
plasma generator
introduction window
microwave
thin film
microwave introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10667696A
Other languages
Japanese (ja)
Other versions
JPH09291363A (en
Inventor
武志 森田
秀樹 ▲吉▼田
康弘 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP10667696A priority Critical patent/JP3546588B2/en
Publication of JPH09291363A publication Critical patent/JPH09291363A/en
Application granted granted Critical
Publication of JP3546588B2 publication Critical patent/JP3546588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空中に於いて基体上にプラズマを照射して基体の表面をエッチングまたは薄膜を形成するプラズマ発生装置及び薄膜の製造方法に関するものである。
【0002】
【従来の技術】
従来の薄膜製造方法としては真空蒸着法、スパッタ法などが多く用いられてきたが、これら従来の薄膜製造方法に加えて近年プラズマCVDを用いた薄膜の製造方法が多く用いられるようになってきた。特に、プラズマCVDを用いた製造方法によれば化学反応による複雑な組成の薄膜や、スパッタ法と同等の薄膜を高速で形成することが可能となる。
【0003】
中でも最も多くプラズマCVDが用いられてきたのは半導体の製造プロセスであり、個別のディスク状のウェハー毎に処理を行っている。ここで、プラズマの発生方法としては様々な手法が考えられているが、磁場とマイクロ波の組み合わせにより強いプラズマを発生させ、生産性を高める技術が普及しつつあり、このプラズマCVD技術を薄膜型磁気テープに用いて、特開平7−254145号公報に示されるように半連続処理を行うことが検討されている。同公報では真空チャンバー内でマイクロ波プラズマを発生させて、薄膜型磁気テープの表面にダイアモンド状カーボン保護膜を形成している。
【0004】
以下、図面に基づいて従来の薄膜の製造方法及び製造装置を説明する。図2は従来のプラズマ発生装置の正面図である。図2において、1は真空槽、2はベースフィルム、3はガス導入口、4はマイクロ波電源、5はマイクロ波導入窓、6は放電管、7は磁石、8は冷却ドラムである。
【0005】
マイクロ波はマイクロ波電源4で発生し、マイクロ波導入窓5を通って放電管6の内部に導入される。放電管6の内部にはガス導入口3からガスが導入されており、磁石7の発生する磁界とマイクロ波により高密度プラズマが発生する。高密度プラズマにより重合反応が起こり、冷却ドラム8上でベースフィルム2上に薄膜を形成する。
【0006】
【発明が解決しようとする課題】
しかし、上記従来例はディスクを処理する技術を用いたものであり、大量の薄膜形成を想定していない。つまり、ディスクを処理する場合は個別のディスクに対する処理となるので、プロセスサイクルが短くマイクロ波導入窓5への薄膜の付着量は少なく、また、プロセスサイクルの中にマイクロ波導入窓5のクリーニングプロセスを導入することが可能であるが、図2に示した様に、大量の薄膜形成を想定した半連続処理においてはベースフィルム2のすべてを処理する間のマイクロ波導入窓5への薄膜の付着量が問題となり、半連続処理でのバッチ処理に大きな制約を生じ生産性を低下させる。
【0007】
つまり、マイクロ波プラズマ発生装置において、モノマーガスを用いて薄膜形成処理を長時間行うとプラズマ化したモノマーガスは基体上に堆積するだけでなくマイクロ波導入窓5にも堆積し、不活性ガスを用いたエッチングに於いても長時間処理を行なうとエッチングされた基体材料がマイクロ波導入窓5に堆積する。
【0008】
さらに、マイクロ波導入窓5に前記堆積物が堆積するとマイクロ波導入窓5を通ったマイクロ波が堆積物に吸収されることによりマイクロ波のプラズマ室内への進入を妨げ、プラズマ室内のモノマーガスまたは不活性ガスはマイクロ波が充分に供給されないことから堆積速度またはエッチング速度が低下すると共にプラズマ密度が不均一となる。
【0009】
また、マイクロ波導入窓5の堆積物が更に堆積してくるとマイクロ波の吸収により温度上昇が発生し、マイクロ波導入窓5と真空槽1との間に設けられた真空を保持する為のパッキンが変形や変質を起こし真空漏れを発生する。
【0010】
本発明は、上記従来の問題点に鑑み、堆積物の悪影響を除去し、長時間安定で均一な薄膜性能を保持する薄膜の製造装置及び製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
この課題を解決するために本発明は、マイクロ波プラズマ発生中に堆積物がマイクロ波導入窓に堆積しようとする時、その堆積物がマイクロ波導入窓まで到達できないように構成したものである。
【0012】
これにより、長時間安定で均一なマイクロ波プラズマ発生装置と薄膜性能が得られる。
【0013】
【発明の実施の形態】
本発明の請求項1に記載の発明は、真空中に於いてマイクロ波を利用してプラズマを発生させるプラズマ発生装置に於いて、表面の断面形状が凹凸を持つマイクロ波導入窓を持つことにより、マイクロ波導入窓の一部に堆積物が堆積するものの、一部では堆積物の堆積を抑制することが可能となり、長時間の半連続処理を可能とするという作用を有し、導電性堆積物が堆積し易い部分については、あらかじめ導電性を与えることにより、処理中のインピーダンス変化を防止し、安定した条件で処理を行うという作用を有する。請求項に記載の発明は、さらに堆積物の堆積を抑制する凹凸形状を明確にしたものである。
【0021】
以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は本発明の実施の形態1におけるプラズマ発生装置のマイクロ波導入窓の断面図で、5はマイクロ波導入窓、9は導電層である。図1における凸部の導電層の横幅、凹部の横幅、凸部の高さを変化させて、製膜速度が30%低下するまでの処理時間を比較した。導入ガスとしてはメタンガスを用い、3×10-3torr導入し、1000Wのマイクロ波を導入して、搬送速度を10m/分でカーボン保護膜を形成した。ベースフィルムとして厚み6ミクロンのポリエチレンテレフタレート上に0.15ミクロンのコバルト系磁性層を酸素雰囲気中で蒸着し、その上に保護膜を形成したが、処理始めは規定の10nmの厚みとした。(表1)に、その結果を示す。なお、マイクロ波導入窓の断面形状は(表1)に示したとおりであるが、マイクロ波導入窓の長さは、いずれの場合も600mmとした。
【0022】
【表1】

Figure 0003546588
【0023】
(表1)のAからGは凸部の高さを一定として、凸部と凹部の横幅による影響を示す。凹部の横幅が5ミリ以上とすることにより初期製膜速度を確保することが可能となる。
【0024】
DとHからLは凸部と凹部の横幅寸法を一定として、凸部の高さを比較したものである。凸部の高さを3ミリ以上とすることにより製膜速度の劣化を防ぐことが可能となる。また、凸部の高さを7ミリ以上とすると初期製膜速度が劣化する傾向がみられた。MとDは導電層の効果を調べたものである。導電層を設けることにより初期の製膜速度は低下するが、製膜速度の劣化は大幅に改善される。
【0025】
なお、ここでは図1に示したように、凹部と凸部の間は90度傾斜の直線となっているが、傾斜を90度に制限したり、直線に制限したり、同一の断面形状をした2次元的な加工に制約するものではない。一般に、凹部の幅は凹凸の平均高さでくぼんだ部分をとるべきであり、凸部の高さは凹部と凸部の最大差をとるべきである。
【0036】
【発明の効果】
以上のように本発明によれば、堆積物の悪影響を除去し、長時間安定で均一な薄膜製造装置と薄膜性能を提供することを実現できるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるマイクロ波導入窓の断面図
【図2】従来例におけるプラズマ発生装置の正面図
【符号の説明】
1 真空槽
2 ベースフィルム
3 ガス導入口
4 マイクロ波電源
5 マイクロ波導入窓
6 放電管
7 磁石
8 冷却ドラム
9 導電層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma generator for irradiating plasma on a substrate in a vacuum to etch the surface of the substrate or form a thin film, and a method for manufacturing a thin film.
[0002]
[Prior art]
As a conventional thin film manufacturing method, a vacuum deposition method, a sputtering method, and the like have been frequently used. In addition to these conventional thin film manufacturing methods, recently, a thin film manufacturing method using plasma CVD has been frequently used. . In particular, according to a manufacturing method using plasma CVD, a thin film having a complicated composition due to a chemical reaction or a thin film equivalent to a sputtering method can be formed at high speed.
[0003]
Among them, plasma CVD has been most frequently used in semiconductor manufacturing processes, in which processing is performed for individual disk-shaped wafers. Here, various methods have been considered as a method of generating plasma. However, a technique of generating strong plasma by a combination of a magnetic field and a microwave to increase productivity is becoming widespread. The use of a magnetic tape for semi-continuous processing as disclosed in JP-A-7-254145 has been studied. In this publication, microwave plasma is generated in a vacuum chamber to form a diamond-like carbon protective film on the surface of a thin-film magnetic tape.
[0004]
Hereinafter, a conventional method and apparatus for manufacturing a thin film will be described with reference to the drawings. FIG. 2 is a front view of a conventional plasma generator. In FIG. 2 , 1 is a vacuum chamber, 2 is a base film, 3 is a gas inlet, 4 is a microwave power supply, 5 is a microwave introduction window, 6 is a discharge tube, 7 is a magnet, and 8 is a cooling drum.
[0005]
The microwave is generated by a microwave power supply 4 and is introduced into a discharge tube 6 through a microwave introduction window 5. Gas is introduced into the discharge tube 6 from the gas inlet 3, and high-density plasma is generated by the magnetic field generated by the magnet 7 and the microwave. A polymerization reaction occurs by the high-density plasma, and a thin film is formed on the base film 2 on the cooling drum 8.
[0006]
[Problems to be solved by the invention]
However, the above-mentioned conventional example uses a technology for processing a disk, and does not assume formation of a large amount of thin films. In other words, when processing disks, the processing is performed on individual disks, so that the process cycle is short and the amount of thin film adhered to the microwave introduction window 5 is small, and the cleaning process of the microwave introduction window 5 is performed during the process cycle. However, as shown in FIG. 2 , in the semi-continuous process assuming the formation of a large amount of thin films, the deposition of the thin film on the microwave introduction window 5 during processing of the entire base film 2 is possible. The quantity becomes a problem, which greatly restricts batch processing in semi-continuous processing and lowers productivity.
[0007]
That is, in a microwave plasma generator, when a thin film forming process is performed for a long time using a monomer gas, the monomer gas that has been plasmanized not only deposits on the substrate but also deposits on the microwave introduction window 5 to remove the inert gas. In the etching used, if the treatment is performed for a long time, the etched base material is deposited on the microwave introduction window 5.
[0008]
Further, when the deposit is deposited on the microwave introduction window 5, the microwave passing through the microwave introduction window 5 is absorbed by the deposit, thereby preventing the microwave from entering the plasma chamber and causing monomer gas or Since the microwave is not sufficiently supplied to the inert gas, the deposition rate or the etching rate decreases, and the plasma density becomes non-uniform.
[0009]
Further, when the deposits in the microwave introduction window 5 further accumulate, a temperature rise occurs due to the absorption of the microwave, and the vacuum for maintaining the vacuum provided between the microwave introduction window 5 and the vacuum chamber 1 is maintained. The packing deforms or deteriorates, causing vacuum leakage.
[0010]
An object of the present invention is to provide an apparatus and a method for manufacturing a thin film that eliminates the adverse effects of deposits and maintains stable and uniform thin-film performance for a long time.
[0011]
[Means for Solving the Problems]
In order to solve this problem, the present invention is configured such that when a deposit attempts to deposit on a microwave introduction window during generation of microwave plasma, the deposit cannot reach the microwave introduction window.
[0012]
Thereby, a stable and uniform microwave plasma generator and thin film performance can be obtained for a long time.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
According to a first aspect of the present invention, there is provided a plasma generating apparatus for generating a plasma using a microwave in a vacuum, wherein the plasma generating apparatus has a microwave introduction window having a surface having a concave and convex sectional shape. although deposited sediments in a part of the microwave introduction window, a part in it is possible to suppress the deposition of sediments, have a effect that enables the long semi-continuous process, a conductive deposition By giving conductivity in advance to a portion where an object is easily deposited, a change in impedance during processing is prevented, and the processing is performed under stable conditions . The invention according to claim 2 further clarifies the uneven shape for suppressing the accumulation of deposits.
[0021]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a cross-sectional view of a microwave introduction window of a plasma generator according to Embodiment 1 of the present invention , where 5 is a microwave introduction window, and 9 is a conductive layer. By changing the width of the conductive layer, the width of the concave portion, and the height of the convex portion in FIG. 1, the processing time until the film forming speed was reduced by 30% was compared. Methane gas was used as the introduced gas, 3 × 10 −3 torr was introduced, a microwave of 1000 W was introduced, and a carbon protective film was formed at a transport speed of 10 m / min. As a base film, a cobalt-based magnetic layer having a thickness of 0.15 μm was vapor-deposited on a polyethylene terephthalate having a thickness of 6 μm in an oxygen atmosphere, and a protective film was formed thereon. (Table 1) shows the results. The cross-sectional shape of the microwave introduction window was as shown in (Table 1), and the length of the microwave introduction window was 600 mm in each case.
[0022]
[Table 1]
Figure 0003546588
[0023]
A to G in Table 1 show the influence of the width of the convex portion and the concave portion while keeping the height of the convex portion constant. By setting the width of the concave portion to 5 mm or more, it is possible to secure an initial film forming speed.
[0024]
D and H to L are comparisons of the heights of the protrusions with the width of the protrusions and the recesses being constant. By setting the height of the convex portion to 3 mm or more, it is possible to prevent the film forming speed from deteriorating. When the height of the projections was 7 mm or more, there was a tendency that the initial film formation speed was deteriorated. M and D are for examining the effect of the conductive layer. By providing the conductive layer, the initial film forming speed is reduced, but the deterioration of the film forming speed is greatly improved.
[0025]
Here, as shown in FIG. 1 , a straight line inclined at 90 degrees is formed between the concave portion and the convex portion. However, the inclination is limited to 90 degrees, the line is limited to a straight line, and the same cross-sectional shape is used. It is not limited to the two-dimensional processing performed. In general, the width of the concave portion should be concave at the average height of the concave and convex portions, and the height of the convex portion should be the maximum difference between the concave portion and the convex portion.
[0036]
【The invention's effect】
As described above, according to the present invention, it is possible to eliminate the adverse effects of deposits and provide a stable and uniform thin-film manufacturing apparatus and thin-film performance for a long time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a microwave introduction window according to a first embodiment of the present invention. FIG. 2 is a front view of a conventional plasma generator.
DESCRIPTION OF SYMBOLS 1 Vacuum tank 2 Base film 3 Gas inlet 4 Microwave power supply 5 Microwave introduction window 6 Discharge tube 7 Magnet 8 Cooling drum 9 Conductive layer

Claims (4)

真空中に於いてマイクロ波を利用してプラズマを発生させるプラズマ発生装置に於いて、表面の断面形状が凹凸を持つマイクロ波導入窓を持ち、前記マイクロ波導入窓の一部の表面が導電性を持つことを特徴とするプラズマ発生装置。 2. Description of the Related Art A plasma generator that generates plasma using microwaves in a vacuum has a microwave introduction window having an uneven surface cross-sectional shape, and a part of the surface of the microwave introduction window is electrically conductive. A plasma generator characterized by having: 前記マイクロ波導入窓の凸部が導電層を持つことを特徴とする請求項1記載のプラズマ発生装置。2. The plasma generator according to claim 1, wherein the projection of the microwave introduction window has a conductive layer. 表面に凹凸形状を持ち、表面突起の凹部の幅が5mm以上であるマイクロ波導入窓を用いた請求項1または2記載のプラズマ発生装置。 3. The plasma generator according to claim 1, wherein a microwave introduction window having a concave-convex shape on the surface and a width of the concave portion of the surface protrusion being 5 mm or more is used. 請求項1ないしのいずれかに記載のプラズマ発生装置を用いた薄膜の製造方法。Method of manufacturing a thin film using the plasma generator according to any of claims 1 to 3.
JP10667696A 1996-04-26 1996-04-26 Microwave plasma generator and thin film manufacturing method Expired - Fee Related JP3546588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10667696A JP3546588B2 (en) 1996-04-26 1996-04-26 Microwave plasma generator and thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10667696A JP3546588B2 (en) 1996-04-26 1996-04-26 Microwave plasma generator and thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPH09291363A JPH09291363A (en) 1997-11-11
JP3546588B2 true JP3546588B2 (en) 2004-07-28

Family

ID=14439681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10667696A Expired - Fee Related JP3546588B2 (en) 1996-04-26 1996-04-26 Microwave plasma generator and thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP3546588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023972B2 (en) * 2007-11-02 2012-09-12 凸版印刷株式会社 Vacuum deposition system

Also Published As

Publication number Publication date
JPH09291363A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
EP1827871B1 (en) Methods for removing black silicon and black silicon carbide from surfaces of silicon and silicon carbide electrodes for plasma processing apparatuses
JP3595853B2 (en) Plasma CVD film forming equipment
US4962049A (en) Process for the plasma treatment of the backside of a semiconductor wafer
JP4145361B2 (en) How to coat edges with diamond-like carbon
US6001432A (en) Apparatus for forming films on a substrate
JPH10229058A (en) Deposition chamber device with coating
WO2001039559A1 (en) Method and apparatus for plasma treatment
JP3546588B2 (en) Microwave plasma generator and thin film manufacturing method
JP3083008B2 (en) Film forming apparatus and film forming method
JP3836991B2 (en) Film forming method and magnetic recording medium manufacturing method
JP2590534B2 (en) Thin film formation method
JPH1153731A (en) Magnetic disk and its production
JPH1087397A (en) Head carbon coating film and electric shaver edge using same
JP3930184B2 (en) CVD apparatus and method for manufacturing magnetic recording medium
JP3930181B2 (en) CVD apparatus, film forming method, and magnetic recording medium manufacturing method
JPS6285430A (en) Plasma treatment and apparatus for the same
JP3180332B2 (en) Method of cleaning apparatus for forming carbon or carbon-based coating
JP3305654B2 (en) Plasma CVD apparatus and recording medium
JP3133206B2 (en) Plasma processing method and plasma processing apparatus
JP3644624B2 (en) Plasma generator
KR19980063630A (en) Modified Physical Vapor Deposition Chamber and Method for Depositing Materials at Low Pressure
US20220098729A1 (en) System and method of cleaning process chambers using plasma
JP3930183B2 (en) CVD apparatus and method for manufacturing magnetic recording medium
JPH06280027A (en) Plasma treatment method and device
JP3930182B2 (en) Film forming method and magnetic recording medium manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees