Nothing Special   »   [go: up one dir, main page]

JP3544716B2 - Method and apparatus for controlling ammonia injection amount in denitration apparatus - Google Patents

Method and apparatus for controlling ammonia injection amount in denitration apparatus Download PDF

Info

Publication number
JP3544716B2
JP3544716B2 JP26280594A JP26280594A JP3544716B2 JP 3544716 B2 JP3544716 B2 JP 3544716B2 JP 26280594 A JP26280594 A JP 26280594A JP 26280594 A JP26280594 A JP 26280594A JP 3544716 B2 JP3544716 B2 JP 3544716B2
Authority
JP
Japan
Prior art keywords
ammonia injection
injection amount
signal
concentration
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26280594A
Other languages
Japanese (ja)
Other versions
JPH08117553A (en
Inventor
寿則 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP26280594A priority Critical patent/JP3544716B2/en
Publication of JPH08117553A publication Critical patent/JPH08117553A/en
Application granted granted Critical
Publication of JP3544716B2 publication Critical patent/JP3544716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、脱硝装置のアンモニア注入量制御方法および装置に係り、特に、排ガス中の窒素酸化物(NO) を除去する乾式脱硝装置へアンモニア(NH)を注入するアンモニアの注入量制御方法および装置に関するものである。
【0002】
【従来の技術】
近年、我が国においては重油供給量のひつ迫から、石油依存度の是正を計るために、従来の重油専焼から石炭専焼、LNG(液化天然ガス)専焼へと燃料を変換しつつあり、特に事業用ボイラにおいては石炭専焼、LNG専焼の大容量火力発電所が建設されている。
【0003】
ところが、石炭燃料は石油燃料、ガス燃料に比べて燃料性が悪いので排ガス中に含まれるNOおよび未燃分が発生しやすく、特にNOの低減対策のために火炎の分割、排ガスの再循環、二段燃焼および炉内脱硝などを採用して緩慢な燃焼を行なわせてNOを低減することも行なわれている。
そしてこの石炭専焼火力、LNG専焼火力においては、ボイラ負荷が常に全負荷で運転されるものは少なく、負荷を75%負荷、50%負荷、25%負荷へと上げ、下げして運転したり、運転を停止するなど、いわゆる高頻度起動停止( Daily Start Stop 以下単にDSSという)運転を行なって中間負荷を担う火力発電プラントへ移行しつつある。
【0004】
一方、この中間負荷火力用にはこの火力発電ボイラの他に、起動特性のよいガスタービンと排熱回収ボイラを組合わせた、いわゆるコンバインドプラントも用いられ、DSS運転を行なって電力需要の多い中間のみ運転し、夜間は運転を停止するものが建設されようとしている。
ところが、この石炭専焼、LNG専焼の中間負荷用ボイラ、ガスタービンにおいてもNO排出濃度の規制強化に伴ない、従来の燃焼改善に加えて、NHを還元剤として触媒の存在下で脱硝を行なう乾式接触還元脱硝装置を設置するプラントが増加している。
【0005】
それは石炭専焼ボイラにおいては燃料の燃焼性が悪いのでNO量が増加し、LNG専焼ボイラ、ガスタービンプラントにおいては酸素量が多く高温燃焼を行なうために、石炭専焼ボイラと同様に、排ガス中には多量のNOを含有しているので、図3に示すような脱硝装置が設置される。
図3は、脱硝装置が設置されたボイラの代表的な煙風道系統を示す。
【0006】
空気ダクト31内の燃焼用空気は押込通風機32にて昇圧され、空気予熱器33にて排ガスダクト34の排ガスによって加熱された後ウインドボックス35よりボイラ36へ供給される。
一方ボイラ36内で燃焼した排ガスは、排ガスダクト34でNH注入管37からのNHによって脱硝されると共に、下流に配置した脱硝装置38内の触媒39において脱硝を促進し、排ガス中のNOは除去されて空気予熱器33、集塵機40、誘引通風機41で昇圧され大気へ放出される。
【0007】
ところが、かかる脱硝装置38においては、触媒39の種類によっても多少反応温度範囲は異なるが、最も脱硝効率の高い温度範囲は300〜400℃の比較的高温であり、温度範囲はいたって狭い。従って、中間負荷火力用のボイラやコンバインドサイクルのように常にDSS運転されるものにおいては、負荷変動によって排ガス温度が常に変動し、触媒39の使用可能領域をはずれてしまう欠点がある。
【0008】
この場合、触媒39の使用ガス温度が高すぎると、触媒39の組織が変化して触媒39としての機能がそこなわれ、また使用ガス温度が低すぎると排ガス中に存在する無水硫酸(SO)と反応してやはり触媒39の機能が劣化する。
一方、常にDSS運転される火力発電用ボイラ、コンバインドサイクルにおいては、排ガス量およびNO濃度が変動し、これによって脱硝性能の追従性が悪くなる欠点がある。
【0009】
それは、触媒39上でのNOとNHの反応機構に起因する排ガス量およびNO濃度が起動時、負荷変化時のように変動する場合には、負荷変動に合わせてNH注入量を変化させても脱硝性能が負荷変動に追従できないからである。
これらの問題を回避するために提案された、従来のNHの注入量制御装置の代表的な例を図2に示す。
【0010】
図2において、入口NO濃度検出器1で検出された入口NO信号1aと、排ガス流量信号22を演算器11で演算し総NO量信号12を算出する。一方入口NO信号1aと出口NO設定器6で設定された設定NO信号6aより必要モル比設定器8で必要モル比(NO量とNH量の比率)信号8aを算出し、これに出口NO濃度検出器3で検出された実測出口NO信号3aと設定NO信号6aとの偏差による補正を加算器7aで行ない、この補正された必要モル比信号8bと先に述べた総NO量信号12とを演算器13で演算し必要NH流量信号14を算出する。
【0011】
この必要NH流量信号14と実測NH流量検出器4で検出された実測NH流量信号4aを比較器9bで比較してその偏差信号15を算出し、これを比例積分器16で弁開度信号17に変換して電空変換器18により制御信号19に変換し、NH配管20のNH流量調節弁2を開、閉する。
【0012】
【発明が解決しようとする課題】
上記従来技術は、瞬間、瞬間における脱硝装置出口の窒素酸化物の濃度を規定値以下に保つ機能は有しているが、ある一定時間平均値での窒素酸化物濃度を一定値以下に抑制する機能を有していなかった。そのため、負荷変動等により、一時的に窒素酸化物の排出濃度が規定値を超えた場合、そのまま、時間平均値も規制値を超えてしまう問題があった。
【0013】
本発明の目的は、瞬時のNO排出量を規定値以下に保ちつつ、しかも時間平均のNO排出量を規制値以下に保つ機能をもつ脱硝装置のアンモニア注入量制御方法および装置を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するため本願で特許請求する発明は以下のとおりである。
(1)脱硝装置の入口NO濃度と出口NO濃度および同濃度設定値とにより必要アンモニアモル比信号を求め、この信号と排ガスの総NO量とに基づいてアンモニア注入量設定信号を求め、該設定信号とアンモニア注入量測定値との偏差に基づいて脱硝装置へのアンモニア注入量を制御する方法において、出口NO濃度の所定時間にわたる移動平均演算値と前記出口NO濃度設定値との偏差に基づいて、前記アンモニア注入量設定信号を補正することを特徴とする脱硝装置のアンモニア注入量制御方法。
(2)脱硝装置で処理すべき排ガスの総NO量に応じてアンモニア注入量を制御する脱硝装置のアンモニア注入量制御装置において、処理すべき排ガス流量と入口NO濃度と出口NO濃度および濃度設定値とに基づいてアンモニア注入量信号を算出する手段と、出口NO濃度の所定時間にわたる移動平均演算値を算出する移動平均演算器と、該演算値と出口NO濃度設定値との偏差値に基づいてアンモニア注入量補正信号を算出する補正手段と、前記アンモニア注入量信号とアンモニア注入量補正信号とによりアンモニア注入量設定値を算出する手段と、このアンモニア注入量設定値とアンモニア注入量測定値とによりアンモニア流量調節弁を制御する手段とを設けたことを特徴とする脱硝装置へのアンモニア注入量制御装置。
【0015】
【作用】
本発明によれば、脱硝装置出口の窒素酸化物濃度の移動平均演算を行ない、その結果、時間平均の排出量が規制値を超える場合には、過剰にアンモニアを注入し、窒素酸化物濃度を低く抑えるようになるので、時間平均の規制値を超過することがない。
【0016】
【実施例】
図1に、本発明によるアンモニア注入量制御回路の実施例を示す。図1において、図2と同一符号は図2と同一のものを示す。ボイラまたはガスタービンの燃焼排ガスは、脱硝装置38の直前でアンモニア注入管37によりアンモニアを注入され、脱硝装置により、排ガス中の窒素酸化物を低減されて、煙突より排出される。このような、脱硝装置において、脱硝装置の入口NO濃度検出器1による入口NO信号1aと脱硝装置の出口NO設定器6で設定された設定NO信号6aに基づきモル比設定器8により、必要モル比8aの演算を行なう。これと脱硝装置出口NO濃度検出器3による実測出口NO信号3aとの間に偏差がある場合は加算器7aによりモル比の修正を行なう。
【0017】
こうして得られた必要モル比信号8bを、排ガス量信号22と、脱硝装置入口NO濃度検出器1による入口NO信号1aとの乗算で計算される総NO量信号12に掛けることにより、必要とするアンモニア注入量信号14を求める。
さらに、本発明においては、移動平均演算器5により、脱硝装置出口NO濃度検出器3による実測出口NO信号3aの移動平均の演算を行なう。これにより求まる実測出口NOの移動平均値5aと出口NO設定器6で設定された設定NO信号6aの差を減算器9cによって計算する。
【0018】
この結果、NOの移動平均値5aが、設定NO信号6aを超過する場合は過剰のアンモニアを注入するよう、超過量に基づく関数発生器23の出力値23aを上記した必要アンモニア注入量信号14の値に加算する。この加算された最終的な必要アンモニア注入量信号14aをアンモニア流量4とアンモニア流量調節弁2で構成される回路の設定値として与える。
【0019】
【発明の効果】
従来技術では、脱硝装置出口NO量の瞬時値をある規定値以下に抑える機能しか有していなかった。このため、負荷変化等により、出口NO量が一時的に規定値を超過した場合、時間平均値の排出量が、結果的に規制値を超過してしまうことになっていたが、本発明によれば、一時的にNO量が、規定値を超過しても、その後アンモニアを過剰に注入することによりこれを触媒中に含浸させ、NO排出量を規定値より低く抑えることができる。その結果、時間平均値は規制値を満足するものとなる。
【図面の簡単な説明】
【図1】本発明による、脱硝装置のアンモニア注入量制御回路を示す図。
【図2】従来技術による脱硝装置のアンモニア注入量制御回路を示す図。
【図3】脱硝装置が設置されたボイラの煙風道系統図。
【符号の説明】
1…入口NO濃度検出器、2…アンモニア流量調節弁、3…出口NO濃度検出器、4…NH流量検出器、5…移動平均演算器、6…出口NO設定器、7…加算器、8…必要モル比設定器、9…減算器、11…乗算器、12…総NO量信号、13…乗算器、14…必要NH流量信号、14a…NH流量設定信号、15…NH流量偏差信号、19…制御信号、20…NH配管、22…排ガス流量信号、23…関数発生器、37…NH注入管、38…脱硝装置。
[0001]
[Industrial applications]
The present invention relates to a method and an apparatus for controlling the injection amount of ammonia in a denitration apparatus, and more particularly to a method and apparatus for controlling the injection amount of ammonia to inject ammonia (NH 3 ) into a dry denitration apparatus for removing nitrogen oxides (NO x ) in exhaust gas. And devices.
[0002]
[Prior art]
In recent years, Japan has been converting fuel from conventional heavy oil burning to coal burning and LNG (liquefied natural gas) burning in order to correct the dependence on petroleum due to the tight supply of heavy oil. In the boiler, large-capacity thermal power plants have been constructed that are exclusively used for coal and LNG.
[0003]
However, coal petroleum fuels, NO x and unburned prone included because poor fuel resistance in the exhaust gas as compared with the gas fuel, in particular split flames for measures to reduce the NO x, re exhaust gas circulation is also performed to employ such two-stage combustion and furnace denitration to perform a slow combustion to reduce the NO x to.
Of the coal-fired power and LNG-fired power, there are few boiler loads that are always operated at full load. The boiler load is increased to 75% load, 50% load, and 25% load, and the boiler load is reduced. There is a shift to a thermal power plant that carries an intermediate load by performing a so-called high-frequency start-stop (hereinafter simply referred to as DSS) operation such as stopping the operation.
[0004]
On the other hand, for this intermediate-load thermal power plant, in addition to this thermal power generation boiler, a so-called combined plant combining a gas turbine with good startup characteristics and an exhaust heat recovery boiler is also used. Only driving and shutting down at night are being built.
However, this coal-, LNG mono-fuel combustion of the intermediate load boiler, not accompanied the tighter regulation of the NO x emission concentrations in a gas turbine, in addition to the conventional combustion improvement, the denitration in the presence of a catalyst and NH 3 as a reducing agent The number of plants equipped with dry catalytic reduction denitration equipment for performing the process is increasing.
[0005]
It increases the amount of NO x since poor combustion of the fuel in coal-boiler, LNG-fired boiler, in order to perform the amount of oxygen are many high-temperature combustion in a gas turbine plant, like the coal-boiler, the flue gas since contains a large amount of NO x, NO x removal apparatus is installed as shown in FIG.
FIG. 3 shows a typical flue duct system of a boiler provided with a denitration device.
[0006]
The air for combustion in the air duct 31 is pressurized by a forced draft fan 32, heated by exhaust gas from an exhaust gas duct 34 by an air preheater 33, and then supplied from a wind box 35 to a boiler 36.
On the other hand, the exhaust gas burned in the boiler 36 is denitrified by the NH 3 from the NH 3 injection pipe 37 in the exhaust gas duct 34, and promotes the denitration in the catalyst 39 in the denitration device 38 arranged downstream, so that the NO in the exhaust gas is reduced. The x is removed, and the pressure is increased by the air preheater 33, the dust collector 40, and the induction ventilator 41 and released to the atmosphere.
[0007]
However, in such a denitration device 38, the reaction temperature range slightly varies depending on the type of the catalyst 39, but the temperature range in which the denitration efficiency is highest is a relatively high temperature of 300 to 400 ° C, and the temperature range is extremely narrow. Therefore, in the case of a boiler or a combined cycle for an intermediate-load thermal power plant that is always operated in the DSS, there is a drawback that the exhaust gas temperature always fluctuates due to the load fluctuation and deviates from the usable area of the catalyst 39.
[0008]
In this case, if the working gas temperature of the catalyst 39 is too high, the structure of the catalyst 39 changes and the function as the catalyst 39 is impaired. If the working gas temperature is too low, the sulfuric anhydride (SO 3) present in the exhaust gas is present. ), The function of the catalyst 39 also deteriorates.
On the other hand, always thermal power boiler being DSS operation, the combined cycle, exhaust gas volume and concentration of NO x is varied, whereby there is a disadvantage that followability of the NOx removal performance is deteriorated.
[0009]
It startup exhaust gas amount and concentration of NO x due to the reaction mechanism of the NO x and NH 3 in the above catalyst 39, in the case of variation such as during load changes, the NH 3 injection rate according to the load variation This is because the denitration performance cannot follow the load fluctuation even if it is changed.
FIG. 2 shows a typical example of a conventional NH 3 injection amount control device proposed to avoid these problems.
[0010]
2, calculates the inlet NO x signal 1a detected by the inlet concentration of NO x detector 1 calculates the exhaust gas flow rate signal 22 in arithmetic unit 11 of the total amount of NO x signal 12. Meanwhile calculates the inlet NO x signal 1a and the outlet NO x setter 6 set by the setting NO x signal 6a required molar ratio than a necessary molar ratio setter 8 (NO x amount and the amount of NH 3 ratio) signals 8a, It performs correction by the deviation between the outlet concentration of NO x detector 3 and the measured outlet NO x signal 3a detected by the set NO x signal 6a in the adder 7a, described in this corrected required molar ratio signal 8b and above The calculated total NO x amount signal 12 is calculated by the calculator 13 to calculate the required NH 3 flow rate signal 14.
[0011]
The required NH 3 flow rate signal 14 and the measured NH 3 flow rate signal 4 a detected by the measured NH 3 flow rate detector 4 are compared by a comparator 9 b to calculate a deviation signal 15, which is opened by a proportional integrator 16. The control signal 19 is converted into a control signal 19 by the electropneumatic converter 18, and the NH 3 flow control valve 2 in the NH 3 pipe 20 is opened and closed.
[0012]
[Problems to be solved by the invention]
The above prior art has a function to keep the concentration of nitrogen oxides at the outlet of the denitration apparatus at a moment or less at a specified value or less, but suppresses the nitrogen oxide concentration at an average value for a certain period of time to a certain value or less. Had no function. Therefore, when the nitrogen oxide emission concentration temporarily exceeds the specified value due to a load change or the like, there is a problem that the time average value also exceeds the regulated value as it is.
[0013]
An object of the present invention, while maintaining the instantaneous of the NO x emissions below a specified value, yet provides ammonia injection amount control method and apparatus for denitration device having a function to keep below the regulated value NO x emissions of the time average It is in.
[0014]
[Means for Solving the Problems]
The invention claimed in this application to achieve the above object is as follows.
(1) determine the required ammonia molar ratio signal by an inlet concentration of NO x and outlet concentration of NO x and the concentration setting of the denitration apparatus, obtains the ammonia injection amount setting signal based on the total amount of NO x of the signal and the exhaust gas a method for controlling ammonia injection amount to the denitrification device based on a deviation between the set signal and the ammonia injection quantity measurement value, moving average calculation value over a predetermined time of the outlet concentration of NO x and said outlet concentration of NO x set value Wherein the ammonia injection amount setting signal is corrected based on the deviation of the ammonia injection amount setting signal.
(2) in the ammonia injection rate control unit of the denitration device for controlling ammonia injection amount according to the total amount of NO x of the exhaust gas to be treated by the denitration apparatus, the exhaust gas flow rate and inlet concentration of NO x to be processed and an outlet concentration of NO x and means for calculating the ammonia injection amount signal based on the density setting value, a moving average calculator for calculating a moving average operation value over a predetermined time of the outlet concentration of NO x, and the calculated value and the outlet concentration of NO x set value Correction means for calculating an ammonia injection amount correction signal based on the deviation value; means for calculating an ammonia injection amount set value based on the ammonia injection amount signal and the ammonia injection amount correction signal; Means for controlling an ammonia flow control valve based on an amount measurement value, and an ammonia injection amount control apparatus for a denitration apparatus.
[0015]
[Action]
According to the present invention, a moving average calculation of the nitrogen oxide concentration at the outlet of the denitration apparatus is performed, and as a result, when the time-average emission exceeds the regulation value, excessive ammonia is injected to reduce the nitrogen oxide concentration. Since it will be kept low, it will not exceed the hourly average regulation value.
[0016]
【Example】
FIG. 1 shows an embodiment of an ammonia injection amount control circuit according to the present invention. 1, the same reference numerals as those in FIG. 2 indicate the same components as those in FIG. The combustion exhaust gas from the boiler or gas turbine is injected with ammonia by an ammonia injection pipe 37 immediately before the denitration device 38, and the nitrogen oxides in the exhaust gas are reduced by the denitration device and discharged from the chimney. Such, in denitration device, denitrification device inlet concentration of NO x detector 1 according to the inlet NO x signal 1a and the denitration apparatus outlet NO x setter on the basis of the setting NO x signal 6a which is set in 6 molar ratio setter 8 , The required molar ratio 8a is calculated. If there is a deviation between the measured outlet NO x signal 3a according to this and the denitrator outlet concentration of NO x detector 3 to correct the molar ratio by the adder 7a.
[0017]
The required molar ratio signal 8b thus obtained, an exhaust gas amount signal 22, by multiplying the total amount of NO x signal 12 is calculated by multiplying the inlet NO x signal 1a by denitrator inlet concentration of NO x detector 1, The required ammonia injection amount signal 14 is obtained.
Further, in the present invention, the moving average computing unit 5 performs the calculation of the moving average of the measured outlet NO x signal 3a according denitrator outlet concentration of NO x detector 3. This difference in the obtained measured outlet NO x moving average 5a and outlet NO x setter 6 set by the setting NO x signal 6a of the calculated by the subtracter 9c.
[0018]
As a result, the moving average value 5a of the NO x is set NO x if it exceeds a signal 6a to inject an excess of ammonia, required ammonia injection amount signal output value 23a of the function generator 23 based on the excess amount above Add to the value of 14. The added final required ammonia injection amount signal 14a is given as a set value of a circuit composed of the ammonia flow rate 4 and the ammonia flow rate control valve 2.
[0019]
【The invention's effect】
In the prior art, only it had no function to suppress below a specified value in the instantaneous value of the denitrator outlet amount of NO x. Therefore, the load variation or the like, when the amount of the outlet NO x exceeds the temporary specified value, the discharge amount of the time average value, was supposed to become excess as a result, the regulated value, the present invention According to temporarily amount of NO x is even exceeded the prescribed value, then the ammonia which is impregnated into the catalyst by excessively injected and NO x emissions amount can be lowered than the specified value . As a result, the time average value satisfies the regulation value.
[Brief description of the drawings]
FIG. 1 is a diagram showing an ammonia injection amount control circuit of a denitration apparatus according to the present invention.
FIG. 2 is a diagram showing an ammonia injection amount control circuit of a conventional denitration apparatus.
FIG. 3 is a flue system diagram of a boiler provided with a denitration device.
[Explanation of symbols]
1 ... inlet concentration of NO x detector, 2 ... ammonia flow control valve, 3 ... outlet concentration of NO x detector, 4 ... NH 3 flow rate detector, 5 ... moving average calculator, 6 ... outlet NO x setter, 7 ... adder, 8 ... required molar ratio setter 9 ... subtractor, 11 ... multiplier, 12 ... total amount of NO x signal, 13 ... multiplier, 14 ... need NH 3 flow rate signal, 14a ... NH 3 flow rate setting signal, 15: NH 3 flow deviation signal, 19: control signal, 20: NH 3 pipe, 22: exhaust gas flow signal, 23: function generator, 37: NH 3 injection pipe, 38: denitration device.

Claims (2)

脱硝装置の入口NO濃度と出口NO濃度および同濃度設定値とにより必要アンモニアモル比信号を求め、この信号と排ガスの総NO量とに基づいてアンモニア注入量設定信号を求め、該設定信号とアンモニア注入量測定値との偏差に基づいて脱硝装置へのアンモニア注入量を制御する方法において、出口NO濃度の所定時間にわたる移動平均演算値と前記出口NO濃度設定値との偏差に基づいて、前記アンモニア注入量設定信号を補正することを特徴とする脱硝装置のアンモニア注入量制御方法。Seeking necessary ammonia molar ratio signal by an inlet concentration of NO x and outlet concentration of NO x and the concentration setting of the denitration apparatus, obtains the ammonia injection amount setting signal based on the total amount of NO x of the signal and the exhaust gas, the setting a method for controlling ammonia injection amount to the denitrification device based on a deviation between the signal and the ammonia injection quantity measurement, the deviation between the outlet concentration of NO x set value and the moving average operation value over a predetermined time of the outlet concentration of NO x And correcting the ammonia injection amount setting signal on the basis of the ammonia injection amount setting signal. 脱硝装置で処理すべき排ガスの総NO量に応じてアンモニア注入量を制御する脱硝装置のアンモニア注入量制御装置において、処理すべき排ガス流量と入口NO濃度と出口NO濃度および濃度設定値とに基づいてアンモニア注入量信号を算出する手段と、出口NO濃度の所定時間にわたる移動平均演算値を算出する移動平均演算器と、該演算値と出口NO濃度設定値との偏差値に基づいてアンモニア注入量補正信号を算出する補正手段と、前記アンモニア注入量信号とアンモニア注入量補正信号とによりアンモニア注入量設定値を算出する手段と、このアンモニア注入量設定値とアンモニア注入量測定値とによりアンモニア流量調節弁を制御する手段とを設けたことを特徴とする脱硝装置へのアンモニア注入量制御装置。In the ammonia injection rate control unit of the denitration device for controlling ammonia injection amount according to the total amount of NO x of the exhaust gas to be treated by the denitration apparatus, the exhaust gas flow to be treated and an inlet concentration of NO x and outlet concentration of NO x and concentration setting means for calculating the ammonia injection amount signal based on the bets, and the moving average calculator for calculating a moving average operation value over a predetermined time of the outlet concentration of NO x, the deviation between the calculated value and the outlet concentration of NO x set value Correction means for calculating an ammonia injection amount correction signal based on the ammonia injection amount signal and the ammonia injection amount correction signal; and means for calculating an ammonia injection amount set value based on the ammonia injection amount signal and the ammonia injection amount correction signal. And means for controlling the ammonia flow control valve by means of the above.
JP26280594A 1994-10-26 1994-10-26 Method and apparatus for controlling ammonia injection amount in denitration apparatus Expired - Fee Related JP3544716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26280594A JP3544716B2 (en) 1994-10-26 1994-10-26 Method and apparatus for controlling ammonia injection amount in denitration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26280594A JP3544716B2 (en) 1994-10-26 1994-10-26 Method and apparatus for controlling ammonia injection amount in denitration apparatus

Publications (2)

Publication Number Publication Date
JPH08117553A JPH08117553A (en) 1996-05-14
JP3544716B2 true JP3544716B2 (en) 2004-07-21

Family

ID=17380861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26280594A Expired - Fee Related JP3544716B2 (en) 1994-10-26 1994-10-26 Method and apparatus for controlling ammonia injection amount in denitration apparatus

Country Status (1)

Country Link
JP (1) JP3544716B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575931B2 (en) * 2002-06-19 2009-08-18 E.I. Du Pont De Nemours And Company Method and apparatus for reducing a nitrogen oxide, and control thereof
CN106268239B (en) * 2016-08-05 2019-11-26 华电电力科学研究院 The isolated control method of the integral of thermal power plant's denitration control system
CN114100367B (en) * 2021-10-19 2024-07-19 国能神福(石狮)发电有限公司 Denitration control method and device

Also Published As

Publication number Publication date
JPH08117553A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
JPS6157927B2 (en)
CN109092035A (en) A kind of device and its working method for adjusting denitration spray ammonia flow adding feedforward based on cascade PID
JPH0429923B2 (en)
JPS6219229A (en) Control device for amount of ammonia to be injected
CN209020167U (en) A kind of device for adjusting denitration spray ammonia flow adding feedforward based on cascade PID
JPH0926105A (en) Boiler
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JPH0633743A (en) Denitration control device
JP3831804B2 (en) Exhaust gas denitration equipment
KR102483964B1 (en) NOx REDUCTION FACILITY CONTROL METHOD OF GAS TURBINE COMBINED CYCLE POWER PLANT USING NATURAL GAS
JPH0811171B2 (en) Ammonia injection amount control device
JPS5926779B2 (en) Method for controlling nitrogen oxide emissions in gas turbine plants
JP3149211B2 (en) Boiler pulverized coal combustion method
JP6667867B2 (en) Boiler equipment and its operation method
CN206593090U (en) Combustion system
JPH0367728B2 (en)
JPS60257823A (en) Apparatus for controlling injection amount of ammonia
TWI854530B (en) Boiler controller, boiler system, and boiler control program
JPH0582246B2 (en)
JP2024121432A (en) Denitrification control device, denitrification control method, and program
JPS61200838A (en) Boiler with denitration apparatus
JPH0461917A (en) Exhaust gas treatment apparatus
JPS6361815A (en) Boiler automatic control system
JPH0418656Y2 (en)
JP3263184B2 (en) DeNOx control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040406

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees