Nothing Special   »   [go: up one dir, main page]

JP3543389B2 - Separation and regeneration method of ion exchange resin - Google Patents

Separation and regeneration method of ion exchange resin Download PDF

Info

Publication number
JP3543389B2
JP3543389B2 JP26367794A JP26367794A JP3543389B2 JP 3543389 B2 JP3543389 B2 JP 3543389B2 JP 26367794 A JP26367794 A JP 26367794A JP 26367794 A JP26367794 A JP 26367794A JP 3543389 B2 JP3543389 B2 JP 3543389B2
Authority
JP
Japan
Prior art keywords
exchange resin
resin
cation
regeneration
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26367794A
Other languages
Japanese (ja)
Other versions
JPH08117615A (en
Inventor
武 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP26367794A priority Critical patent/JP3543389B2/en
Publication of JPH08117615A publication Critical patent/JPH08117615A/en
Application granted granted Critical
Publication of JP3543389B2 publication Critical patent/JP3543389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【産業上の利用分野】
本発明はイオン交換樹脂の分離再生方法に係り、特に、復水脱塩装置(コンデミ)において、その処理水質を左右するイオン交換樹脂の再生状態をより良好なものとするための再生方法に関する。
【0002】
【従来の技術】
従来、復水脱塩装置(コンデミ)においては、復水中にイオン交換樹脂の再生剤である酸やアルカリが混入することを防止するために、脱塩塔と再生塔とが完全に分離されて設けられている。脱塩塔内のイオン交換樹脂のイオン交換容量が飽和に達して再生が必要となった際には、その脱塩塔を主系統から切り離し、塔内のイオン交換樹脂を加圧水と加圧空気により再生塔へ移送して再生する。
【0003】
ところで、イオン交換脱塩装置としては、カチオン交換樹脂とアニオン交換樹脂とを混合して脱塩に使用する混床式イオン交換脱塩装置が、得られる処理水質の面から好ましく、このため、コンデミにおいても混床式脱塩塔が採用されている。
【0004】
一方、発電所においては、復水中の不純物による系統内材質の腐蝕やタービンスケールの防止等の点から、給水の水質をより高度に維持するべく努力がはらわれており、コンデミの処理水質についてもより一層高水質であることが望まれている。
【0005】
コンデミの処理水質は、一般に脱塩塔に充填されるイオン交換樹脂の再生状態によって決定されるが、イオン交換樹脂の再生状態をより高度にするためには、混床式脱塩塔のアニオン交換樹脂とカチオン交換樹脂との分離をより確実に行って、「逆再生」と呼ばれるカチオン・アニオン交換樹脂の分離不完全による不具合を解消すべく、分離されたカチオン交換樹脂中のアニオン交換樹脂量、及び、分離されたアニオン交換樹脂中のカチオン交換樹脂量を極力減少させる必要がある。
【0006】
即ち、カチオン交換樹脂はH形で使用され、その再生は酸溶液を通液することにより行われる。一方、アニオン交換樹脂はOH形で使用され、その再生はアルカリ溶液を通液することにより行われる。
【0007】
従って、混床式脱塩塔のイオン交換樹脂の再生は、カチオン交換樹脂とアニオン交換樹脂とを分離して行われるが、この分離が完全に行われないと、次の脱塩工程において不純物が漏出し、種々の害を及ぼす。例えば、アニオン交換樹脂中にカチオン交換樹脂が混入すると、アルカリ(主として水酸化ナトリウムが使用される。)による再生でカチオン交換樹脂がNa形となり、この樹脂を使って脱塩を行うとナトリウムイオンが放出され、ボイラチューブやタービンにスケール障害を引き起こす。また、カチオン交換樹脂中にアニオン交換樹脂が混入すると、酸(主として硫酸又は塩酸が使用される。)による再生でアニオン交換樹脂がSO4 形又はCl形となり、脱塩に際して硫酸イオン又は塩素イオンが放出され、スケール障害を引き起こす。
【0008】
ところが、従来は混床式イオン交換床に上向流通水して樹脂層を展開することにより、比重差で両イオン交換樹脂を分離しているため、両イオン交換樹脂の境界面では完全に分離することができず、イオン交換樹脂同志の混入は避けられなかった。
【0009】
従来、このイオン交換樹脂の分離性の改善のために、混床を、上向流通水で、アニオン交換樹脂からなる上層、カチオン交換樹脂からなる下層及び上層及び下層の間のアニオン交換樹脂とカチオン交換樹脂とが混合している中間層に分離し、このアニオン交換樹脂とカチオン交換樹脂とが混在する中間層の樹脂(アニオン交換樹脂とカチオン交換樹脂との界面付近の樹脂。以下「中間樹脂」と称する場合がある。)を再生には関与させない方法が提案されている。
【0010】
例えば、特開昭54−41277号公報では、中間樹脂を直ちに再生せずに、次回の混床の分離再生時に、被分離再生樹脂と混合して、具体的には、該中間樹脂の上に、被分離再生樹脂を配置して、分離再生を行う方法が提案されている。
【0011】
【発明が解決しようとする課題】
このように、中間樹脂を再生系からのぞくことにより、カチオン・アニオン両交換樹脂を工業的に二分して再生することが可能になったが、このような方法を採用しても、カチオン交換樹脂中へのアニオン交換樹脂の残留を完全に排除することはできなかった。
【0012】
本発明は上記従来の問題点を解決し、コンデミの脱塩塔等の混床式イオン交換装置のイオン交換樹脂を再生するに当り、アニオン交換樹脂とカチオン交換樹脂との分離性を改善して、効果的な再生処理を行う方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明のイオン交換樹脂の分離再生方法は、アニオン交換樹脂とカチオン交換樹脂との混床よりなる被分離再生樹脂を分離再生する方法であって、該混床を上向流通水によりアニオン交換樹脂のみの上層、アニオン交換樹脂とカチオン交換樹脂とが混合している中間層、及び、カチオン交換樹脂のみの下層に分離する分離工程と、各層を他の層から隔離し、前記上層及び下層をそれぞれ再生剤で再生する再生工程とを備える方法において、前記中間層を次回の分離再生時に被分離再生樹脂の上部に配置した後、前記分離工程及び再生工程を行うことを特徴とする。
【0014】
【作用】
特開昭54−41277号公報の方法においては、前回の分離再生工程で発生した中間樹脂を次回の分離再生に当り、脱塩塔内の被分離再生樹脂と混合して分離再生する際、次のような手順で行っている。
【0015】
▲1▼ 前回の分離再生工程で発生した中間樹脂をカチオン再生塔(カチオン交換樹脂の再生塔)に移送した後、脱塩塔内の被分離再生樹脂をカチオン再生塔に移送する。
【0016】
▲2▼ カチオン再生塔内を逆洗して、アニオン交換樹脂の上層、中間樹脂の中間層及びカチオン交換樹脂の下層に分離させる。
【0017】
▲3▼ 上層のアニオン交換樹脂をアニオン再生塔(アニオン交換樹脂の再生塔)に移送して再生する。
【0018】
▲4▼ カチオン再生塔内を再度逆洗して再分離し、上層の中間樹脂を中間樹脂槽に移送する。
【0019】
▲5▼ カチオン再生塔内のカチオン交換樹脂を再生する。
【0020】
即ち、従来においては、再生に要する時間を短縮するため、及び、カチオン再生塔における逆洗によりイオン交換樹脂を効果的に分離できるとの考えから、上述の如く、前回の分離再生時の中間樹脂をカチオン再生塔に移送した後、次回の被分離再生樹脂をカチオン再生塔に移送している。
【0021】
従って、従来において、脱塩塔内の被分離再生樹脂は、カチオン再生塔に移送されて、前回の中間樹脂の上に配置されることとなる。
【0022】
ところで、中間樹脂は、カチオン交換樹脂とアニオン交換樹脂とが混合された状態のものであり、従って、被分離再生樹脂と中間樹脂とをカチオン再生塔に移送した状態において、カチオン再生塔内の下部には、相当量のアニオン交換樹脂が中間樹脂中に混入して存在することとなる。
【0023】
一方で、一般に、カチオン再生塔の集水ストレーナーは20cm程度のピッチで設けられているため、樹脂を受け入れた後の逆洗分離工程において、特に下部の集水ストレーナー間では十分な逆洗水流が得られず、ここに存在する樹脂を十分に流動化させることができない。
【0024】
その結果、従来の如く、中間樹脂上に被分離再生樹脂を配置すると、中間樹脂として移送されたアニオン交換樹脂が逆洗水流によりカチオン再生塔の上部に流動することなく、逆洗後もカチオン再生塔下部に残留する現象が発生する。通常の場合、従来においては、全アニオン交換樹脂量の0.8〜2%程度のアニオン交換樹脂が、カチオン再生塔内のカチオン交換樹脂に混入して逆再生されている。
【0025】
これに対して、本発明の方法においては、前回の中間樹脂を被分離再生樹脂の上に配置するため、従来の如く、中間樹脂中のアニオン交換樹脂が再生塔下部に残留することなく、逆洗時には再生塔上部のみでアニオン交換樹脂が流動することとなる。このため、逆洗により、アニオン交換樹脂の上層、アニオン交換樹脂とカチオン交換樹脂との中間層及びカチオン交換樹脂の下層に効果的に分離することができ、カチオン交換樹脂中へのアニオン交換樹脂の混入及び混入したアニオン交換樹脂の逆再生は防止される。
【0026】
このような本発明の方法によれば、逆再生樹脂量を従来の0.8〜2%から、0.3〜0.6%程度に大幅に低下させることができる。
【0027】
【実施例】
以下、図面を参照して本発明を詳細に説明する。
【0028】
図1は本発明のイオン交換樹脂の分離再生方法の一実施例方法を説明するコンデミの系統図であり、図中、1は脱塩塔、2はカチオン再生塔(カチオン交換樹脂の再生塔)、3はアニオン再生塔(アニオン交換樹脂の再生塔)、4は中間樹脂貯槽、11〜25の各符号は配管を示す。
【0029】
図1の装置において、脱塩塔1内のイオン交換樹脂の再生に当っては、まず、配管11,12を経て、脱塩塔1内のイオン交換樹脂をカチオン再生塔2に移送した後、カチオン再生塔2に水を上向流通水して逆洗する。即ち、水を配管13から14,15を経て、カチオン再生塔2に導入して逆洗する。逆洗排水は配管17から排出させる。なお、19は中間排出配管である。
【0030】
逆洗により、アニオン交換樹脂及びカチオン交換樹脂が展開され、比重差でカチオン再生塔2内のイオン交換樹脂は、アニオン交換樹脂の上層と、中間樹脂の中間層とカチオン交換樹脂の下層とに分離される。
【0031】
分離された3層のうち、上層のアニオン交換樹脂を配管20,21を経てアニオン再生塔3に移送する。即ち、水を配管13,14,15を経てカチオン再生塔2に送り、アニオン交換樹脂を配管20,21より流出させる。この再生水は配管22より排出される。
【0032】
次に、上記と同様の逆洗操作を再び繰り返して行い、中間樹脂の上層(第1回目の逆洗時の中間層)とカチオン交換樹脂の下層とに再分離する。そして、上層の中間樹脂を配管20,23より中間樹脂貯槽4へ移送する。
【0033】
アニオン交換樹脂及び中間樹脂を移送した後のカチオン再生塔2内は、実質的に、カチオン交換樹脂のみであるため常法に従って酸溶液で再生を行う。再生後のカチオン交換樹脂は配管18より図示しないカチオン交換樹脂貯槽又は脱塩塔1に移送する。
【0034】
一方、アニオン再生塔3内のアニオン交換樹脂は、配管24よりアルカリ溶液を供給して常法に従って再生を行う。再生後のアニオン交換樹脂は、配管22より図示しないアニオン交換樹脂貯槽又は脱塩塔1に移送する。
【0035】
次の脱塩処理においては、脱塩塔1内に前回の再生で得られたアニオン交換樹脂及びカチオン交換樹脂と、必要に応じて新品のアニオン交換樹脂及びカチオン交換樹脂を充填し、常法に従って脱塩処理を行う。脱塩処理により、イオン交換能が飽和に達して再生処理が必要となった場合には、この脱塩塔1内のイオン交換樹脂の再生を行う。
【0036】
まず、脱塩塔1内のイオン交換樹脂をカチオン再生塔2に移送し、次いで、中間樹脂貯槽4内の、前回の分離再生で得られた中間樹脂を、配管25,12を経てカチオン再生塔2内に移送する。これにより、中間樹脂は、カチオン再生塔2内において、脱塩塔1から移送された被分離再生樹脂の上に配置される。
【0037】
その後は、前回の分離再生操作と同様にして、逆洗による分離、アニオン交換樹脂の移送、逆洗による再分離、中間樹脂の移送を行い、アニオン再生塔内に移送されたアニオン交換樹脂及びカチオン再生塔内に残留するカチオン交換樹脂の再生を各々行って、分離再生を終了する。
【0038】
なお、本発明において、イオン交換樹脂の分離、再生を行う塔については特に制限はなく、分離は脱塩塔で行っても良く、また、別途、分離再生塔を設けて行っても良い。更に、アニオン再生塔で分離を行うようにすることもできる。
【0039】
脱塩塔で分離を行う場合には、上層をアニオン再生塔に移送し、中間層を中間樹脂貯槽に移送し、下層はそのまま脱塩塔に残すかカチオン再生塔に移送する。別途、分離再生塔を設けて分離を行う場合には、上層をアニオン再生塔に移送し、中間層を中間樹脂貯槽に移送し、下層をそのまま残留させる。いずれの場合においても、前回の分離再生で得られた中間樹脂層を、次回の分離再生まで待機させ、次回の被分離再生樹脂の上に配置するように、樹脂を移送すれば良い。分離した各層を塔から取出すには、上層及び中間層はそれぞれ上向流で塔頂から取り出し、下層は下降流で塔下部から取出すこともできるが、塔中間部に樹脂取出管を設け、上向流で樹脂層を展開して、各層の界面が樹脂取出管の位置にくるように上向流速を調節し、この状態で樹脂取出管に設けた弁を開くと、界面上の樹脂だけを取出すことができる。
【0040】
なお、本発明において、カチオン交換樹脂及びアニオン交換樹脂の再生は常法に従って行うことができ、アニオン交換樹脂は2〜20重量%の水酸化ナトリウム溶液等のアルカリ溶液で、また、カチオン交換樹脂は2〜10重量%の硫酸又は塩酸等の酸溶液を通液して行い、その後押出し、水洗を行う。
【0041】
以下に具体的な実施例及び比較例を挙げて本発明をより詳細に説明する。
【0042】
実施例1
図1に示す方法に従って、脱塩塔内の混床式イオン交換樹脂の分離再生を行った。
【0043】
なお、再生塔2,3はいずれも塔径2.3mφ、高さ5.7mの円柱状の塔である。脱塩塔1は塔径3.2mφ、高さ2.9mの円柱状の塔である。また、中間樹脂貯槽4は塔径1.0mφ、高さ2.0mの円柱状の塔である。
【0044】
脱塩塔には、カチオン交換樹脂(三菱化成(株)製Diaion PK228G)6.8m3 とアニオン交換樹脂(三菱化成(株)製Diaion PA312L)3.7m3 とを充填した。
【0045】
まず、脱塩塔1内のイオン交換樹脂の全量をカチオン再生塔2に導入し、上向流通水を行って、アニオン交換樹脂からなる上層と、アニオン交換樹脂とカチオン交換樹脂とが混在する中間層と、カチオン交換樹脂からなる下層とに分離した。そしてアニオンの上層をアニオン再生塔3に移送し、中間層を中間樹脂貯槽4に移送し、アニオン再生塔3ではアニオン交換樹脂の再生を行い、カチオン再生塔2ではカチオン交換樹脂の再生を行った。中間樹脂貯槽4に移送されたイオン交換樹脂は、アニオン交換樹脂0.6m3 ,カチオン交換樹脂0.2m3 であった。なお、この分離再生の方法及び条件は、後述の2回目の分離再生条件と同様である。
【0046】
各再生塔2,3で再生されたカチオン交換樹脂及びアニオン交換樹脂を各々脱塩塔1に返送し、更に新しいカチオン交換樹脂とアニオン交換樹脂とを補充して脱塩処理を行った後、次のような操作で2回目の分離再生を行った。
【0047】
まず、脱塩塔1内のイオン交換樹脂の全量をカチオン再生塔2に移送し、その後、中間樹脂貯槽4から前回の分離再生時に分離された中間層のイオン交換樹脂の全量をカチオン再生塔2内の被分離再生樹脂の上に移送した。
【0048】
その後、まず、カチオン再生塔2に逆洗水をLV=12m/hで30分間通水してアニオン交換樹脂の上層とカチオン交換樹脂の下層と、アニオン交換樹脂とカチオン交換樹脂とが混在する中間層とに分離した。引き続き、LV=12m/hの上向流を30分通水して、上層のアニオン交換樹脂をアニオン再生塔3に移送した。再びカチオン再生塔2に逆洗水をLV=20m/hで30分間通水して再分離を行い、上層(中間層)のアニオン交換樹脂とカチオン交換樹脂とが混在する層と、下層のカチオン交換樹脂とに分離し、引き続き、LV=20m/hの上向流を20分通水して上層(中間層)のアニオン交換樹脂とカチオン交換樹脂とが混在する層を中間樹脂貯槽4に移送した。
【0049】
この移送後、カチオン再生塔2内にカチオン交換樹脂に混入して残留するアニオン交換樹脂量を測定した結果、約22.3リットルであり、全アニオン交換樹脂量に対して0.60%と著しく低く、カチオン交換樹脂とアニオン交換樹脂とを効果的に分離できることが確認された。
【0050】
比較例1
実施例1において、2回目の分離再生に当り、まず、1回目の分離再生で分離された中間樹脂貯槽4内の中間樹脂を、カチオン再生塔2に移送した後、この中間樹脂の上に脱塩塔1内の被分離再生樹脂を配置して逆洗による分離、上層のアニオン交換樹脂の移送、逆洗による再分離、上層(中間層)の中間樹脂の移送を行ったこと以外は同様にして分離再生を行った。
【0051】
その結果、カチオン再生塔2内にカチオン交換樹脂に混入して残留するアニオン交換樹脂量は約32.4リットルであり、全アニオン交換樹脂量に対して0.87%と、実施例1に比べて残留率が高かった。
【0052】
【発明の効果】
以上詳述した通り、本発明のイオン交換樹脂の分離再生方法によれば、コンデミの脱塩塔等の混床式イオン交換装置のイオン交換樹脂を再生するに当り、アニオン交換樹脂とカチオン交換樹脂との分離性を改善して、効果的な再生処理を行うことができる。
【図面の簡単な説明】
【図1】本発明のイオン交換樹脂の分離再生方法の一実施例方法を説明するコンデミの系統図である。
【符号の説明】
1 脱塩塔
2 カチオン再生塔
3 アニオン再生塔
4 中間樹脂貯槽
[0001]
[Industrial applications]
The present invention relates to a method for separating and regenerating an ion-exchange resin, and more particularly to a method for regenerating a deionized water desalination apparatus (condemi) to improve the regenerated state of the ion-exchange resin that affects the quality of treated water.
[0002]
[Prior art]
Conventionally, in a condensate desalination apparatus (condemi), a desalination tower and a regeneration tower are completely separated in order to prevent an acid or an alkali which is a regenerant of an ion exchange resin from being mixed into the condensate water. Is provided. When the ion exchange capacity of the ion exchange resin in the desalination tower reaches saturation and regeneration becomes necessary, the desalination tower is disconnected from the main system, and the ion exchange resin in the tower is separated by pressurized water and pressurized air. Transfer to regeneration tower for regeneration.
[0003]
Incidentally, as the ion exchange desalination apparatus, a mixed bed type ion exchange desalination apparatus in which a cation exchange resin and an anion exchange resin are mixed and used for desalination is preferable in view of the quality of treated water to be obtained. A mixed-bed desalination tower is also used in.
[0004]
On the other hand, in the power plant, efforts are being made to maintain the water quality of the feedwater at a higher level in order to prevent corrosion of the material in the system due to impurities in the condensate and to prevent turbine scale, etc. It is desired that the water quality be even higher.
[0005]
The treatment water quality of the condemi is generally determined by the state of regeneration of the ion exchange resin packed in the desalination tower. The amount of anion exchange resin in the separated cation exchange resin, in order to more reliably separate the resin and the cation exchange resin, and to eliminate the problem of incomplete separation of the cation / anion exchange resin called "reverse regeneration", In addition, it is necessary to reduce the amount of the cation exchange resin in the separated anion exchange resin as much as possible.
[0006]
That is, the cation exchange resin is used in the H form, and the regeneration is performed by passing an acid solution. On the other hand, the anion exchange resin is used in the OH form, and its regeneration is performed by passing an alkaline solution.
[0007]
Therefore, the regeneration of the ion-exchange resin in the mixed-bed desalting tower is performed by separating the cation-exchange resin and the anion-exchange resin, but if this separation is not completely performed, impurities will be generated in the next desalination step. Leakage, causing various harms. For example, when a cation exchange resin is mixed in an anion exchange resin, the cation exchange resin becomes Na form by regeneration with alkali (mainly sodium hydroxide is used), and when desalination is performed using this resin, sodium ions are formed. Released, causing scale disturbance in boiler tubes and turbines. Further, when an anion exchange resin is mixed in the cation exchange resin, the anion exchange resin becomes SO 4 or Cl by regeneration with an acid (mainly sulfuric acid or hydrochloric acid is used). Released, causing scale disturbance.
[0008]
However, conventionally, both ion-exchange resins are separated by a specific gravity difference by spreading the resin layer by flowing upward water to a mixed-bed type ion-exchange bed. It was not possible to avoid mixing of ion exchange resins.
[0009]
Conventionally, in order to improve the separability of this ion exchange resin, the mixed bed is treated with upward flowing water, the upper layer made of an anion exchange resin, the lower layer made of a cation exchange resin, and the cation exchange resin and cation between the upper and lower layers. The resin in the intermediate layer in which the anion exchange resin and the cation exchange resin are separated (the resin near the interface between the anion exchange resin and the cation exchange resin; hereinafter, “intermediate resin”) ) May not be involved in reproduction.
[0010]
For example, in Japanese Patent Application Laid-Open No. 54-41277, the intermediate resin is not immediately regenerated, but is mixed with the regenerated resin to be separated at the next separation and regeneration of the mixed bed. There has been proposed a method of arranging a resin to be separated and performing separation and regeneration.
[0011]
[Problems to be solved by the invention]
Thus, by removing the intermediate resin from the regeneration system, it has become possible to industrially regenerate the cation / anion exchange resin in two parts, but even if such a method is adopted, the cation exchange resin can be regenerated. The residual anion exchange resin could not be completely eliminated.
[0012]
The present invention solves the above-mentioned conventional problems, and in regenerating an ion exchange resin of a mixed-bed ion exchange device such as a desalination tower of condemi, improves the separability between an anion exchange resin and a cation exchange resin. Another object of the present invention is to provide a method for performing an effective reproduction process.
[0013]
[Means for Solving the Problems]
The method for separating and regenerating an ion-exchange resin according to the present invention is a method for separating and regenerating a regenerated resin to be separated, comprising a mixed bed of an anion exchange resin and a cation exchange resin. Only the upper layer, an intermediate layer in which an anion exchange resin and a cation exchange resin are mixed, and a separation step of separating only the cation exchange resin into a lower layer, separating each layer from other layers, and separating the upper layer and the lower layer from each other. A regenerating step of regenerating with a regenerating agent, wherein the separation step and the regenerating step are performed after the intermediate layer is disposed on the resin to be separated and regenerated at the next separation and regenerating.
[0014]
[Action]
In the method disclosed in JP-A-54-41277, when the intermediate resin generated in the previous separation / regeneration step is mixed with the resin to be separated / regenerated in the desalting tower for the next separation / regeneration, the following process is performed. The procedure is as follows.
[0015]
{Circle around (1)} After the intermediate resin generated in the previous separation and regeneration step is transferred to a cation regeneration tower (cation exchange resin regeneration tower), the separated and regenerated resin in the desalting tower is transferred to the cation regeneration tower.
[0016]
{Circle around (2)} The inside of the cation regeneration tower is backwashed to separate into an upper layer of the anion exchange resin, an intermediate layer of the intermediate resin and a lower layer of the cation exchange resin.
[0017]
{Circle around (3)} The upper layer anion exchange resin is transferred to an anion regeneration tower (anion exchange resin regeneration tower) for regeneration.
[0018]
{Circle around (4)} The inside of the cation regeneration tower is backwashed again to separate again, and the upper intermediate resin is transferred to the intermediate resin tank.
[0019]
(5) Regenerate the cation exchange resin in the cation regeneration tower.
[0020]
That is, conventionally, as described above, in order to reduce the time required for regeneration, and from the viewpoint that the ion exchange resin can be effectively separated by backwashing in the cation regeneration tower, as described above, the intermediate resin during the previous separation and regeneration was used. Is transferred to the cation regeneration tower, and then the next regenerated resin to be separated is transferred to the cation regeneration tower.
[0021]
Therefore, conventionally, the regenerated resin to be separated in the desalting tower is transferred to the cation regenerating tower and placed on the previous intermediate resin.
[0022]
By the way, the intermediate resin is a state in which the cation exchange resin and the anion exchange resin are mixed, and therefore, in a state where the regenerated resin to be separated and the intermediate resin are transferred to the cation regeneration tower, the lower part in the cation regeneration tower is Means that a considerable amount of anion exchange resin is present in the intermediate resin.
[0023]
On the other hand, in general, since the water collecting strainers of the cation regeneration tower are provided at a pitch of about 20 cm, in the backwashing separation step after receiving the resin, a sufficient backwashing water flow particularly between the lower water collecting strainers. As a result, the resin present here cannot be sufficiently fluidized.
[0024]
As a result, when the regenerated resin to be separated is disposed on the intermediate resin as in the related art, the anion exchange resin transferred as the intermediate resin does not flow to the upper part of the cation regeneration tower due to the backwash water flow, and the cation is regenerated even after the backwash. A phenomenon that remains at the bottom of the tower occurs. In the usual case, conventionally, an anion exchange resin of about 0.8 to 2% of the total amount of the anion exchange resin is mixed into the cation exchange resin in the cation regeneration tower for reverse regeneration.
[0025]
On the other hand, in the method of the present invention, since the previous intermediate resin is disposed on the resin to be separated and separated, the anion exchange resin in the intermediate resin does not remain at the lower part of the regeneration tower as in the related art. At the time of washing, the anion exchange resin flows only at the upper part of the regeneration tower. For this reason, the backwashing can effectively separate the anion exchange resin into an upper layer, an intermediate layer between the anion exchange resin and the cation exchange resin, and a lower layer of the cation exchange resin. Contamination and reverse regeneration of the contaminated anion exchange resin are prevented.
[0026]
According to such a method of the present invention, the amount of reverse-regenerated resin can be significantly reduced from 0.8 to 2% of the related art to about 0.3 to 0.6%.
[0027]
【Example】
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0028]
FIG. 1 is a system diagram of a condemi illustrating an embodiment of a method for separating and regenerating an ion exchange resin according to the present invention. In the figure, 1 is a desalination tower, and 2 is a cation regeneration tower (cation exchange resin regeneration tower). 3, an anion regeneration tower (anion exchange resin regeneration tower); 4, an intermediate resin storage tank;
[0029]
In the apparatus of FIG. 1, in regenerating the ion exchange resin in the desalination tower 1, first, the ion exchange resin in the desalination tower 1 is transferred to the cation regeneration tower 2 via the pipes 11 and 12. Water is flowed upward to the cation regeneration tower 2 to backwash. That is, water is introduced from the pipe 13 through the pipes 14 and 15 into the cation regeneration tower 2 and backwashed. The backwash drainage is discharged from the pipe 17. Reference numeral 19 denotes an intermediate discharge pipe.
[0030]
By the backwashing, the anion exchange resin and the cation exchange resin are developed, and the ion exchange resin in the cation regeneration tower 2 is separated into an upper layer of the anion exchange resin, an intermediate layer of the intermediate resin and a lower layer of the cation exchange resin due to a difference in specific gravity. Is done.
[0031]
Of the three separated layers, the upper anion exchange resin is transferred to the anion regeneration tower 3 via the pipes 20 and 21. That is, water is sent to the cation regeneration tower 2 via the pipes 13, 14 and 15, and the anion exchange resin flows out of the pipes 20 and 21. This regenerated water is discharged from the pipe 22.
[0032]
Next, the same backwashing operation as described above is repeated again to separate again into an upper layer of the intermediate resin (an intermediate layer at the time of the first backwashing) and a lower layer of the cation exchange resin. Then, the upper intermediate resin is transferred from the pipes 20 and 23 to the intermediate resin storage tank 4.
[0033]
After the anion exchange resin and the intermediate resin have been transferred, the inside of the cation regeneration tower 2 is substantially composed of only the cation exchange resin. The regenerated cation exchange resin is transferred from the pipe 18 to a cation exchange resin storage tank or the desalination tower 1 (not shown).
[0034]
On the other hand, the anion exchange resin in the anion regeneration tower 3 is regenerated by supplying an alkaline solution from the pipe 24 according to a conventional method. The regenerated anion exchange resin is transferred to an anion exchange resin storage tank (not shown) or the desalination tower 1 via a pipe 22.
[0035]
In the next desalination treatment, the anion exchange resin and the cation exchange resin obtained in the previous regeneration and, if necessary, a new anion exchange resin and a cation exchange resin are filled in the desalination tower 1, and the demineralization tower 1 is filled in a usual manner. Desalination is performed. When the ion exchange capacity reaches saturation due to the desalting treatment and the regeneration treatment is required, the ion exchange resin in the desalting tower 1 is regenerated.
[0036]
First, the ion exchange resin in the desalting tower 1 is transferred to the cation regeneration tower 2, and then the intermediate resin obtained by the previous separation and regeneration in the intermediate resin storage tank 4 is passed through the pipes 25 and 12 to the cation regeneration tower 2. Transfer into 2. As a result, the intermediate resin is disposed in the cation regeneration tower 2 on the separation regeneration resin transferred from the desalting tower 1.
[0037]
Thereafter, in the same manner as in the previous separation and regeneration operation, separation by backwashing, transfer of anion exchange resin, reseparation by backwashing, and transfer of intermediate resin were performed, and the anion exchange resin and cations transferred to the anion regeneration tower were transferred. Regeneration of the cation exchange resin remaining in the regeneration tower is performed, and the separation regeneration is completed.
[0038]
In the present invention, there is no particular limitation on the column in which the ion exchange resin is separated and regenerated, and the separation may be performed in a desalination column, or a separate separation and regeneration column may be provided. Further, the separation may be performed in an anion regeneration tower.
[0039]
When separation is performed in a desalination tower, the upper layer is transferred to an anion regeneration tower, the intermediate layer is transferred to an intermediate resin storage tank, and the lower layer is left as it is in a desalination tower or transferred to a cation regeneration tower. When a separation and regeneration tower is separately provided for separation, the upper layer is transferred to an anion regeneration tower, the intermediate layer is transferred to an intermediate resin storage tank, and the lower layer is left as it is. In either case, the intermediate resin layer obtained by the previous separation and regeneration may be made to wait until the next separation and regeneration, and the resin may be transferred so as to be arranged on the next resin to be separated and reproduced. To take out each separated layer from the tower, the upper layer and the intermediate layer can be taken out from the top of the tower in an upward flow, and the lower layer can be taken out from the lower part of the tower by a downflow. The resin layer is developed in countercurrent, the upward flow rate is adjusted so that the interface of each layer is at the position of the resin take-out tube, and in this state, when the valve provided on the resin take-out tube is opened, only the resin on the interface is removed. Can be taken out.
[0040]
In the present invention, regeneration of the cation exchange resin and the anion exchange resin can be carried out according to a conventional method, wherein the anion exchange resin is an alkali solution such as a 2 to 20% by weight sodium hydroxide solution, and the cation exchange resin is The solution is passed through a 2 to 10% by weight acid solution such as sulfuric acid or hydrochloric acid, and then extruded and washed with water.
[0041]
Hereinafter, the present invention will be described in more detail with reference to specific examples and comparative examples.
[0042]
Example 1
According to the method shown in FIG. 1, the mixed-bed ion exchange resin in the desalination tower was separated and regenerated.
[0043]
Each of the regeneration towers 2 and 3 is a columnar tower having a tower diameter of 2.3 mφ and a height of 5.7 m. The desalination tower 1 is a columnar tower having a tower diameter of 3.2 mφ and a height of 2.9 m. The intermediate resin storage tank 4 is a columnar tower having a tower diameter of 1.0 mφ and a height of 2.0 m.
[0044]
The demineralizer was charged with a cation exchange resin (Mitsubishi Chemical Co. Diaion PK228G) 6.8m 3 and an anion exchange resin (Mitsubishi Chemical Co. Diaion PA312L) 3.7m 3.
[0045]
First, the entire amount of the ion exchange resin in the desalting tower 1 is introduced into the cation regeneration tower 2, and upward flowing water is supplied to the intermediate layer where the anion exchange resin and the cation exchange resin are mixed. The layer was separated into a lower layer composed of a cation exchange resin. Then, the upper layer of the anion was transferred to the anion regeneration tower 3, the intermediate layer was transferred to the intermediate resin storage tank 4, the anion exchange resin was regenerated in the anion regeneration tower 3, and the cation exchange resin was regenerated in the cation regeneration tower 2. . Ion exchange resins were transferred to the intermediate resin reservoir 4, the anion exchange resin 0.6 m 3, was cation-exchange resin 0.2 m 3. The method and conditions for this separation / regeneration are the same as the second separation / reproduction conditions described later.
[0046]
The cation exchange resin and the anion exchange resin regenerated in each of the regeneration towers 2 and 3 are returned to the desalination tower 1, respectively, and a new cation exchange resin and an anion exchange resin are replenished to perform desalination treatment. The second separation and regeneration was performed by the operation described above.
[0047]
First, the entire amount of the ion exchange resin in the desalting tower 1 is transferred to the cation regeneration tower 2, and then the entire amount of the ion exchange resin in the intermediate layer separated during the previous separation and regeneration from the intermediate resin storage tank 4 is transferred to the cation regeneration tower 2. Was transferred onto the resin to be separated and regenerated.
[0048]
Thereafter, first, backwash water is passed through the cation regeneration tower 2 at LV = 12 m / h for 30 minutes, and an intermediate layer in which an anion exchange resin and a cation exchange resin are mixed, and an anion exchange resin and a cation exchange resin are mixed. Separated into layers. Subsequently, an upward flow of LV = 12 m / h was passed through for 30 minutes, and the anion exchange resin in the upper layer was transferred to the anion regeneration tower 3. The backwash water is again passed through the cation regeneration tower 2 at LV = 20 m / h for 30 minutes to perform re-separation, and the upper layer (intermediate layer) in which the anion exchange resin and the cation exchange resin are mixed, and the lower layer of the cation exchange resin And the upper layer (intermediate layer) in which an anion exchange resin and a cation exchange resin are mixed is transferred to the intermediate resin storage tank 4 by passing an upward flow of LV = 20 m / h for 20 minutes. did.
[0049]
After this transfer, the amount of the anion exchange resin remaining in the cation exchange resin after being mixed with the cation exchange resin in the cation regeneration tower 2 was about 22.3 liters, which was significantly 0.60% of the total anion exchange resin amount. Thus, it was confirmed that the cation exchange resin and the anion exchange resin could be effectively separated.
[0050]
Comparative Example 1
In Example 1, in the second separation / regeneration, first, the intermediate resin in the intermediate resin storage tank 4 separated in the first separation / regeneration is transferred to the cation regeneration tower 2 and then removed on the intermediate resin. The same operation is performed except that the regenerated resin to be separated in the salt tower 1 is disposed, separation by backwashing, transfer of the upper anion exchange resin, reseparation by backwash, and transfer of the intermediate resin of the upper layer (intermediate layer) are performed. And separated and regenerated.
[0051]
As a result, the amount of anion exchange resin remaining in the cation regeneration tower 2 after being mixed with the cation exchange resin was about 32.4 liters, which was 0.87% of the total anion exchange resin amount, as compared with Example 1. And the residual ratio was high.
[0052]
【The invention's effect】
As described in detail above, according to the method for separating and regenerating an ion-exchange resin of the present invention, in regenerating the ion-exchange resin of a mixed-bed ion-exchange apparatus such as a desalination tower of Condemi, an anion-exchange resin and a cation-exchange resin are used. And the effective reproduction process can be performed.
[Brief description of the drawings]
FIG. 1 is a system diagram of a condemi illustrating an embodiment of a method for separating and regenerating an ion exchange resin according to the present invention.
[Explanation of symbols]
1 desalination tower 2 cation regeneration tower 3 anion regeneration tower 4 intermediate resin storage tank

Claims (1)

アニオン交換樹脂とカチオン交換樹脂との混床よりなる被分離再生樹脂を分離再生する方法であって、
該混床を上向流通水によりアニオン交換樹脂のみの上層、アニオン交換樹脂とカチオン交換樹脂とが混合している中間層、及び、カチオン交換樹脂のみの下層に分離する分離工程と、
各層を他の層から隔離し、前記上層及び下層をそれぞれ再生剤で再生する再生工程とを備える方法において、
前記中間層を次回の分離再生時に被分離再生樹脂の上部に配置した後、前記分離工程及び再生工程を行うことを特徴とするイオン交換樹脂の分離再生方法。
A method for separating and regenerating a regenerated resin to be separated, comprising a mixed bed of an anion exchange resin and a cation exchange resin,
A separation step of separating the mixed bed into an upper layer of only anion exchange resin by upward flowing water, an intermediate layer in which anion exchange resin and cation exchange resin are mixed, and a lower layer of only cation exchange resin;
A regeneration step of isolating each layer from other layers and regenerating the upper layer and the lower layer with a regenerating agent, respectively.
A method for separating and regenerating an ion-exchange resin, wherein the separation step and the regenerating step are performed after disposing the intermediate layer above the resin to be separated and regenerated at the time of the next separation and regeneration.
JP26367794A 1994-10-27 1994-10-27 Separation and regeneration method of ion exchange resin Expired - Fee Related JP3543389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26367794A JP3543389B2 (en) 1994-10-27 1994-10-27 Separation and regeneration method of ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26367794A JP3543389B2 (en) 1994-10-27 1994-10-27 Separation and regeneration method of ion exchange resin

Publications (2)

Publication Number Publication Date
JPH08117615A JPH08117615A (en) 1996-05-14
JP3543389B2 true JP3543389B2 (en) 2004-07-14

Family

ID=17392816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26367794A Expired - Fee Related JP3543389B2 (en) 1994-10-27 1994-10-27 Separation and regeneration method of ion exchange resin

Country Status (1)

Country Link
JP (1) JP3543389B2 (en)

Also Published As

Publication number Publication date
JPH08117615A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
US3385787A (en) Condensate purification process
US3414508A (en) Condensate purification process
US5955510A (en) Process for the regeneration of ion exchange resins in a fixed double-bed type apparatus
WO2007040266A1 (en) Process and equipment for demineralizing condensate
US4528101A (en) Method of separating acid from salt by adsorption with recycling
JP3632331B2 (en) Ion exchange method and ion exchange column used in this ion exchange method
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
JP3543389B2 (en) Separation and regeneration method of ion exchange resin
JP3610388B2 (en) Condensate demineralizer
JP5075159B2 (en) Separation tower for mixed ion exchange resin
US4472282A (en) Mixed bed polishing process
JP3215471B2 (en) Method and apparatus for regenerating ion exchange resin
JP2654053B2 (en) Condensate desalination equipment
JP3963025B2 (en) Ion exchange resin separation and regeneration method
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP3837762B2 (en) Ion exchange resin separation and regeneration method
JPH0138553B2 (en)
JP2940651B2 (en) Pure water production equipment
JP2891820B2 (en) Regeneration method of ion exchange resin
KR100499644B1 (en) Method and apparatus for recycling ion-exchange resin of condensate polishing plants
JPS5966354A (en) Regeneration of ion-exchange resin
JPS59183398A (en) Maintenance system of condensate desalt tower
JP3852487B2 (en) Regeneration method of ion exchange resin
JP3051005B2 (en) Method of adjusting Na / Cl molar ratio of condensate desalination unit
JP2002066340A (en) Condensate desalting equipment and regeneration process of ion-exchange resin

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees