JP3407234B2 - Control method of distributed arrangement type power supply linked to power system - Google Patents
Control method of distributed arrangement type power supply linked to power systemInfo
- Publication number
- JP3407234B2 JP3407234B2 JP07922795A JP7922795A JP3407234B2 JP 3407234 B2 JP3407234 B2 JP 3407234B2 JP 07922795 A JP07922795 A JP 07922795A JP 7922795 A JP7922795 A JP 7922795A JP 3407234 B2 JP3407234 B2 JP 3407234B2
- Authority
- JP
- Japan
- Prior art keywords
- power
- power supply
- voltage
- interconnection point
- interconnection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Photovoltaic Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、分散配置型電源を電
力系統と連系して運転する際に、両電源が連系する地点
の電圧が上昇するのを抑制する電力系統と連系する分散
配置型電源の制御方法に関する。
【0002】
【従来の技術】風力発電や太陽電池のように天然自然の
エネルギーを電力に変換する電源や燃料電池などは、大
気汚染などの公害を生じないで電力を発生できるし、省
エネルギー効果も得られるので、多用されるようになっ
ている。これら各電源は、従来は電力系統とは独立した
状態で使用していたので、発生電力に余剰を生じても、
この余剰電力を有効利用することはできなかった。しか
し、近年これらの電源を電力系統と連系して運転するこ
とが可能になった。このような電源を分散配置型電源と
称する。以下では、太陽電池を電力源にした分散配置型
電源を例にして連系運転を説明する。
【0003】図3は分散配置型電源を電力系統と連系し
て運転する際の基本的な構成を示した主回路接続図であ
る。図3の回路において、5は分散配置型電源であっ
て、太陽電池6とインバータ7とで構成している。系統
電源2と配電線インピーダンス3とで電力系統を構成し
ており、この電力系統と分散配置型電源5とを接続する
地点が連系点である。この連系点に負荷4を接続する。
【0004】太陽電池6は日射量によってその発生電力
は変動するが、常にその時点での発生電力が最大になる
ように、太陽電池6の特性に合わせてインバータ7へ入
力する直流電流・電圧を制御(この部分の図示は省略し
ている)する。この直流電圧から得られる電圧指令値と
電力系統の交流に同期追従して作る正弦波とで交流電流
指令値を発生させるが、パルス幅変調制御形のインバー
タ7はこの交流電流指令値で制御される。太陽電池6は
前述したように、その時点で発生可能な最大直流電力を
出力し、前記のインバータ7はこの直流電力を 100%力
率の交流電力に変換して負荷4へ給電する。
【0005】ここで、負荷4の消費電力が増加するか或
いは太陽の日射量が減少して、太陽電池6の発生電力が
不足になれば、電力系統から連系点を介して、不足分の
電力が負荷4へ供給される。これとは逆に、負荷4の消
費電力が減少するなどにより太陽電池6の発生電力に余
剰を生じれば、この余剰電力は、連系点と配電線インピ
ーダンス3とを介して系統電源2へ送り込まれる。これ
を電力の逆潮流という。尚、前述した同期追従により余
弦波を作れば、進み力率又は遅れ力率にできるので、無
効電力制御が可能になる。
【0006】分散配置型電源5が発電していないとき、
系統電源2からは配電線インピーダンス3を経て負荷4
へ電力を送っており、この電力で配電線インピーダンス
3には電圧降下を生じる。よって連系点の電圧は、系統
電源2の出力電圧よりもこの電圧降下分だけ低くなる。
分散配置型電源5が電力系統と連系運転してその出力を
負荷4へ供給すると、その分だけ系統電源2から供給す
る電力が減少するので、配電線インピーダンス3の電圧
降下も小さくなる。即ち連系点電圧が上昇する。更に分
散配置型電源5の供給電力が増加して逆潮流状態になる
と、連系点電圧が系統電源2の出力電圧よりも高くなる
こともあり、この電圧上昇が連系点に接続している機器
に損傷を与える恐れを生じる。
【0007】連系点のこのような電圧上昇は、進相無効
電力制御か有効電力制御により抑制するのであるが、一
般には両者の制御を併用する。進相無効電力制御は、イ
ンバータ7に進相無効電力を発生させて、これを配電線
インピーダンス3のリアクタンス分に流す(分散配置型
電源5が発生する進相無効電力は系統電源2側から見れ
ば遅相無効電力である)ことで電圧降下を生じさせて、
連系点電圧を抑制するものである。又、有効電力制御
は、配電線インピーダンス3の抵抗分に流れる逆潮流電
力による電圧上昇を、当該逆潮流電力を制限することで
連系点電圧を抑制するものである。
【0008】ところで、「分散型電源系統連系技術指
針」では、進相無効電力制御により電圧を抑制する場合
でも、力率は85%以上にすることが定められているの
で、通常は次のように制御する。即ち、分散配置型電源
5が出力する有効電力はそのままの値を維持し、先ず進
相無効電力制御により電圧を抑制するが、力率を85%ま
で低下させても未だ電圧の抑制が不十分であるならば、
次に有効電力を絞る制御を開始させる。
【0009】図4は連系点電圧の上昇を抑制する従来方
法を示したフローチャートであって、分散配置型電源5
が力率 100%,最大出力で運転中(処理11)に、連系
点電圧が予め定めた制限値を越えれば(判断21)、力
率が85%になるまでは進相無効電力制御(処理12,判
断22)を行う。それでも未だ連系点電圧が制限値以上
(判断23)ならば有効電力を削減(処理13)する制
御を行うが、有効電力を制御すると力率も変化してしま
うから、力率85%を維持するように、有効電力と同時に
進相無効電力も調整(処理14,判断24)して、連系
点電圧を制限値以下に制御する。連系点電圧が制限値以
下になれば(判断25)、分散配置型電源5は再び元の
運転状態,即ち力率 100%で最大出力運転の状態(処理
15)に戻す。
【0010】
【発明が解決しようとする課題】前述したように、配電
線インピーダンス3の電圧降下のために、分散配置型電
源5が電力系統と連系運転すると、連系点の電圧が上昇
すれることがある。この場合は、先ず進相無効電力制御
で力率を85%にするが、それでも電圧抑制効果が不十分
ならば有効電力を削減する制御を行うが、有効電力削減
時に力率が85%以下にならないようにするためには、進
相無効電力も同時に削減しなければならない。この進相
無効電力の削減は電圧抑制効果を低下させるから、これ
を補うべくより一層有効電力を削減しなければならなく
なる。このような制御の結果で連系点電圧を制限値以下
に抑制することに成功すれば、分散配置型電源5は再び
力率100%で最大出力運転の状態に戻るので、連系点電
圧は再度上昇を開始する。電圧が制限値を越えれば前述
した動作でこの電圧を抑制する。このような動作を繰り
返す際に分散配置型電源5が出力する電力の変動は、配
電線インピーダンス3を構成するリアクタンス分と抵抗
分との比率によるけれども、大である。即ち分散配置型
電源5の出力電力は大きくハンチングする不都合を生じ
る。
【0011】図5は図3の回路を図4の従来例フローチ
ャートに従って制御したときの各部の動作を示したタイ
ムチャートであって、図5は実線Aで示した系統電源
2の電圧変化と実線Cで示した連系点電圧の変化、図5
は分散配置型電源5が出力する有効電力の変化、図5
は分散配置型電源5が出力する進相無効電力の変化、
図5は回路力率の変化を、それぞれが示している。
【0012】系統電源2電圧の上昇と共に連系点電圧も
上昇して、t1 時点で制限値に達すると、進相無効電力
が増加して力率は低下し始める。t2 時点で力率が85%
まで低下すると進相無効電力の増加は止まり、有効電力
が減少し始めるので、力率85%を維持するべく進相無効
電力も減少を開始する。t3 時点で連系点電圧が制限値
よりやや小さくなれば有効電力を増やし始めるから進相
無効電力も増加を開始する。しかしt4 時点で連系点電
圧が制限値に達して、有効電力と進相無効電力はふただ
び減少する。この制御を繰り返す際に、有効電力は大き
くハンチングする(図5参照)。
【0013】そこでこの発明の目的は、電力系統と連系
運転する分散配置型電源の出力電力が、連系点電圧を一
定値に維持するために大きくハンチングするのを抑制す
ることにある。
【0014】
【課題を解決するための手段】前記の目的を達成するた
めにこの発明の電力系統と連系する分散配置型電源の制
御方法は、系統電源から配電線インピーダンスを介して
電力を供給する電力系統と、通常は100%力率で最大
電力を出力すべく運転される分散配置型電源とを連系点
で接続し、両電源の連系運転で負荷へ電力の供給を行な
うものにおいて、前記分散配置型電源が、前記連系点の
電圧が予め定めた上限値まで上昇したとき、前記連系点
へ無効分電力の供給を開始し、力率が予め定めた一定値
以下でなく、前記連係点電圧が前記上限値の下側に設定
した下限値に到達すれば、100%力率の最大電力を出
力する通常運転状態に復帰させ、力率が予め定めた一定
値以下であれば、前記連係点へ供給している有効分電力
を削減するとともに無効電力を調整し、その際、当該連
系点電圧が前記下限値に到達していなければ前記連係点
へ供給している有効分電力を削減するとともに無効電力
を調整する制御を継続し、当該連系点電圧が前記下限値
に到達したところで、100%力率の最大電力を出力す
る通常運転状態に復帰させるものとする。
【0015】
【作用】電力系統と連系運転する分散配置型電源は、通
常は 100%力率で最大電力を出力するべく運転し、連系
点電圧が制限値を越えた場合にのみ、有効電力と進相無
効電力の両者を制御して連系点電圧を抑制するのである
が、本発明では、この連系点電圧に上限値と下限値とを
設け、連系点電圧がこの範囲内に在るときは前述した両
制御を継続して連系点電圧を前記上限値以下となるよう
に抑制し、連系点電圧が前記下限値以下になったときに
のみ 100%力率の最大電力を出力する通常運転に戻らせ
るものである。
【0016】
【実施例】図1は本発明の実施例を表したフローチャー
トであるが、図1の実施例フローチャートに図示の5つ
の処理11〜15と、2つの論理和素子18,19と、
5つの判断21〜25の名称と役割は、図4で既述の従
来方法フローチャートと同じであるから、これらの説明
は省略する。
【0017】この実施例フローチャートは、連系点電圧
の上限値(又は制限値)の下側に下限値を設定し、連系
点電圧がこの下限値に達するまでは進相無効電力の供給
を継続(処理31)し、或いは有効電力の削減を継続
(処理32)し、下限値に到達したときにやっと 100%
力率の最大電力を出力する通常運転状態に戻すことで、
分散配置型電源5の出力電力のハンチングを抑制する。
【0018】
【発明の効果】図2は図3の回路を図1の実施例フロー
チャートの制御により本発明の効果を表したタイムチャ
ートであって、図2は実線Aで示した系統電源2の電
圧変化と実線Cで示した連系点電圧の変化、図2は分
散配置型電源5が出力する有効電力の変化、図2は分
散配置型電源5が出力する進相無効電力の変化、図2
は回路力率の変化を、それぞれが示している。
【0019】本発明では連系点電圧に上限値と下限値と
を設定(図2参照)し、この範囲内の在るときにのみ
分散配置型電源5は連系点電圧の抑制動作をする。即
ち、系統電源2電圧の上昇と共に連系点電圧も上昇し
て、t1 時点で上限値に達すると、進相無効電力が増加
して力率は低下し始める。t2 時点で力率が85%まで低
下すると進相無効電力の増加は止まり、有効電力が減少
し始めるので、力率85%を維持するべく進相無効電力も
減少を開始する。t3 時点で連系点電圧が上限値を下回
ると、有効電力と進相無効電力はその時点の値を維持す
るから、力率も85%のままである。t11時点に系統電源
2の電圧が低下するのにつれて連系点電圧も低下し始
め、t12時点で下限値に到達すると有効電力が増加し始
めるので、力率を85%に維持するべく進相無効電力も増
加を開始する。その結果、t14時点で連系点電圧は再び
上限値に達して電圧抑制動作を再開している。
【0020】この図2のタイムチャートで明らかなよう
に、本発明では電圧抑制動作を開始する上限電圧と電圧
抑制動作を終了する下限電圧とを設けることで、分散配
置型電源5の出力電圧のハンチングを大幅に抑制(図2
,参照)する効果が得られる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply system in which a distributed power supply is connected to an electric power system. The present invention relates to a method for controlling a distributed power supply that is linked to a power system that suppresses power generation. 2. Description of the Related Art A power supply or a fuel cell, such as a wind power generator or a solar cell, that converts natural and natural energy into electric power can generate electric power without causing pollution such as air pollution and has an energy saving effect. Because it can be obtained, it is used a lot. Conventionally, each of these power supplies has been used independently of the power system, so even if there is a surplus in the generated power,
This surplus power could not be used effectively. However, in recent years, it has become possible to operate these power sources in connection with a power system. Such a power supply is referred to as a distributed power supply. In the following, the interconnection operation will be described using a distributed arrangement type power supply using a solar cell as a power source as an example. FIG. 3 is a main circuit connection diagram showing a basic configuration when a distributed arrangement type power supply is operated in connection with a power system. In the circuit of FIG. 3, reference numeral 5 denotes a distributed power supply, which is composed of a solar cell 6 and an inverter 7. A power system is configured by the system power supply 2 and the distribution line impedance 3, and a connection point between the power system and the distributed power supply 5 is an interconnection point. The load 4 is connected to this interconnection point. Although the power generated by the solar cell 6 varies depending on the amount of solar radiation, the DC current and voltage input to the inverter 7 are adjusted in accordance with the characteristics of the solar cell 6 so that the power generated at that time is always maximized. Control (illustration of this part is omitted). An AC current command value is generated by a voltage command value obtained from the DC voltage and a sine wave generated in synchronization with the AC of the power system. The inverter 7 of the pulse width modulation control type is controlled by the AC current command value. You. As described above, the solar cell 6 outputs the maximum DC power that can be generated at that time, and the inverter 7 converts the DC power into AC power having a 100% power factor and supplies the AC power to the load 4. [0005] Here, if the power consumption of the load 4 increases or the amount of solar radiation of the sun decreases and the generated power of the solar cell 6 becomes insufficient, the shortage from the power system via the interconnection point is obtained. Power is supplied to the load 4. Conversely, if a surplus occurs in the power generated by the solar cell 6 due to a decrease in the power consumption of the load 4, the surplus power is transmitted to the system power supply 2 via the interconnection point and the distribution line impedance 3. Sent in. This is called reverse power flow. If a cosine wave is created by the above-described synchronous tracking, a leading power factor or a lagging power factor can be obtained, so that reactive power control becomes possible. When the distributed power source 5 is not generating power,
From the system power supply 2, load 4
Power is sent to the distribution line impedance 3 with this power. Therefore, the voltage at the interconnection point is lower than the output voltage of the system power supply 2 by this voltage drop.
When the distributed arrangement type power supply 5 operates in interconnection with the power system and supplies its output to the load 4, the power supplied from the system power supply 2 decreases accordingly, and the voltage drop of the distribution line impedance 3 also decreases. That is, the interconnection point voltage increases. Further, when the supply power of the distributed arrangement type power supply 5 increases and the power flows into a reverse flow state, the interconnection point voltage may become higher than the output voltage of the system power supply 2, and this voltage rise is connected to the interconnection point. May cause damage to equipment. [0007] Such an increase in voltage at the interconnection point is suppressed by leading phase reactive power control or active power control. Generally, both controls are used together. In the advanced phase reactive power control, an advanced reactive power is generated in the inverter 7 and is passed through the reactance of the distribution line impedance 3 (the advanced reactive power generated by the distributed power supply 5 can be viewed from the system power supply 2 side. If the power is slow-phase reactive power), it causes a voltage drop,
This is to suppress the interconnection point voltage. In the active power control, the voltage increase due to the reverse power flow flowing through the resistance of the distribution line impedance 3 is suppressed by limiting the reverse power flow to suppress the interconnection point voltage. [0008] By the way, the "distributed power system interconnection technical guideline" specifies that the power factor should be 85% or more even when the voltage is suppressed by the advanced reactive power control. Control. That is, the active power output from the distributed power supply 5 maintains the same value, and the voltage is first suppressed by the advanced reactive power control. However, even if the power factor is reduced to 85%, the voltage is still insufficiently suppressed. If it is,
Next, control for reducing the effective power is started. FIG. 4 is a flowchart showing a conventional method for suppressing an increase in the interconnection point voltage.
During operation at 100% power factor and maximum output (process 11), if the interconnection point voltage exceeds a predetermined limit value (decision 21), the advanced reactive power control until the power factor reaches 85% ( Processing 12 and judgment 22) are performed. If the connection point voltage is still higher than the limit value (decision 23), the control for reducing the active power (process 13) is performed. However, when the active power is controlled, the power factor also changes, so that the power factor is maintained at 85%. In this way, the leading phase reactive power is adjusted simultaneously with the active power (process 14, determination 24), and the interconnection point voltage is controlled to be equal to or less than the limit value. If the interconnection point voltage becomes equal to or less than the limit value (decision 25), the distributed power supply 5 returns to the original operation state, that is, the state of maximum output operation at a power factor of 100% (process 15). [0010] As described above, when the distributed arrangement type power supply 5 is connected to the power system due to the voltage drop of the distribution line impedance 3, the voltage at the connection point increases. Sometimes. In this case, the power factor is first set to 85% by the advanced phase reactive power control. If the voltage suppression effect is still insufficient, control is performed to reduce the active power. In order to avoid this, the leading reactive power must also be reduced at the same time. Since the reduction in the leading reactive power lowers the voltage suppression effect, the active power must be further reduced to compensate for this. As a result of such control, if the interconnection point voltage is successfully suppressed to the limit value or less, the distributed arrangement type power supply 5 returns to the maximum output operation state with the power factor of 100% again. Start climbing again. If the voltage exceeds the limit value, this voltage is suppressed by the operation described above. When such an operation is repeated, the fluctuation of the power output from the distributed power supply 5 is large, though it depends on the ratio between the reactance component and the resistance component constituting the distribution line impedance 3. That is, the output power of the distributed arrangement type power supply 5 causes a problem of large hunting. FIG. 5 is a time chart showing the operation of each part when the circuit of FIG. 3 is controlled in accordance with the flowchart of the conventional example of FIG. 4, and FIG. 5 shows the voltage change of the system power supply 2 indicated by the solid line A and the solid line. Change in interconnection point voltage indicated by C, FIG.
FIG. 5 shows the change in the active power output from the distributed power source 5, FIG.
Is the change in the leading reactive power output from the distributed power supply 5,
FIG. 5 shows changes in the circuit power factor. [0012] The risen interconnection point voltage with increasing system power supply 2 voltage reaches the limit value at the time point t 1, phase advancing reactive power is increased the power factor starts to drop. t 2 point at a power factor of 85%
When the power factor decreases, the leading reactive power stops increasing, and the active power starts to decrease. Therefore, the leading reactive power also starts decreasing in order to maintain the power factor of 85%. phase advancing reactive power from start to increase the active power if slightly smaller interconnection point voltage than the limit value at t 3 time also starts to increase. But linking point voltage t 4 time reaches the limit value, the active power and the fast reactive power is reduced Futadabi. When this control is repeated, the active power hunts greatly (see FIG. 5). SUMMARY OF THE INVENTION It is an object of the present invention to suppress a large hunting of the output power of a distributed arrangement type power supply operating in interconnection with an electric power system in order to maintain a constant value of an interconnection point voltage. [0014] In order to achieve the above object, the present invention provides a method of controlling a distributed arrangement type power supply linked to an electric power system by supplying power from a system power supply via a distribution line impedance. And a distributed power supply that is normally operated to output maximum power at a 100% power factor at an interconnection point, and supplies power to a load by interconnection operation of both power supplies. When the distributed arrangement type power supply starts supplying reactive power to the interconnection point when the voltage at the interconnection point rises to a predetermined upper limit, the power factor is not less than a predetermined constant value. When the link point voltage reaches the lower limit set below the upper limit, the operation is returned to the normal operation state in which the maximum power of 100% power factor is output, and the power factor is equal to or less than the predetermined constant value. The effective power supplied to the link point is reduced. And at the same time, if the connection point voltage has not reached the lower limit, the control for reducing the active component power supplied to the connection point and adjusting the reactive power is continued. Then, when the connection point voltage reaches the lower limit value, the normal operation state in which the maximum power of 100% power factor is output is restored. [0015] The distributed power supply which is connected to the power system operates normally to output the maximum power at 100% power factor, and is effective only when the connection point voltage exceeds the limit value. Both the power and the advanced reactive power are controlled to suppress the interconnection point voltage. In the present invention, an upper limit value and a lower limit value are provided for the interconnection point voltage, and the interconnection point voltage falls within this range. In the case of, the above control is continued to suppress the interconnection point voltage to be lower than the upper limit value, and only when the interconnection point voltage becomes lower than the lower limit value, the maximum of the 100% power factor This is to return to the normal operation for outputting electric power. FIG. 1 is a flowchart showing an embodiment of the present invention. In the flowchart of the embodiment shown in FIG. 1, five processes 11 to 15 shown in FIG.
The names and roles of the five judgments 21 to 25 are the same as those in the conventional method flowchart described above with reference to FIG. In the flowchart of this embodiment, a lower limit value is set below the upper limit value (or limit value) of the interconnection point voltage, and the leading reactive power is supplied until the interconnection point voltage reaches this lower limit value. Continue (process 31) or continue to reduce the active power (process 32), and finally reach 100% when the lower limit is reached.
By returning to the normal operation state that outputs the maximum power of the power factor,
Hunting of the output power of the distributed arrangement type power supply 5 is suppressed. FIG. 2 is a time chart showing the effect of the present invention by controlling the circuit of FIG. 3 according to the flowchart of the embodiment of FIG. 1. FIG. FIG. 2 shows a change in the active power output from the distributed power supply 5, and FIG. 2 shows a change in the leading reactive power output from the distributed power supply 5. 2
Indicates a change in the circuit power factor, respectively. In the present invention, an upper limit value and a lower limit value are set for the connection point voltage (see FIG. 2), and only when the connection point voltage is within this range, the distributed arrangement type power supply 5 performs the operation of suppressing the connection point voltage. . That is, rise interconnection point voltage with increasing system power supply 2 voltage reaches the upper limit value at the time point t 1, the power factor phase lead reactive power is increased begins to decrease. If t 2 time power factor is reduced to 85% phase advance is increased reactive power stops, the effective power begins to decrease, leading phase reactive power to maintain a 85% power factor also starts to decrease. When linking point voltage t 3 time points is less than the upper limit, the active power and the fast reactive power because maintains the value at that time, remains power factor of 85%. linking point voltage as the voltage of the system power supply 2 is reduced to t 11 time also begins to decrease, the effective power when it reaches the lower limit value at t 12 the time begins to increase, advances to maintain a power factor of 85% The phase reactive power also starts increasing. As a result, interconnection node voltage at t 14 the time is resumed voltage suppressing operation again reaches the upper limit value. As apparent from the time chart of FIG. 2, in the present invention, by providing an upper limit voltage for starting the voltage suppressing operation and a lower limit voltage for terminating the voltage suppressing operation, the output voltage of the distributed arrangement type power supply 5 is reduced. Hunting is greatly reduced (Fig. 2
, See).
【図面の簡単な説明】
【図1】本発明の実施例を表したフローチャート
【図2】図3の回路を図1の実施例フローチャートの制
御により本発明の効果を表したタイムチャート
【図3】分散配置型電源を電力系統と連系して運転する
際の基本的な構成を示した主回路接続図
【図4】連系点電圧の上昇を抑制する従来方法を示した
フローチャート
【図5】図3の回路を図4の従来例フローチャートに従
って制御したときの各部の動作を示したタイムチャート
【符号の説明】
2 系統電源
3 配電線インピーダンス
4 負荷
5 分散配置型電源
6 太陽電池
7 インバータ
11〜15 処理
18,19 論理和素子
21〜25 判断
31,32 判断BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart showing an embodiment of the present invention. FIG. 2 is a time chart showing the effects of the present invention by controlling the circuit of FIG. 3 according to the flowchart of the embodiment of FIG. Main circuit connection diagram showing a basic configuration when a distributed arrangement type power supply is operated in connection with a power system. FIG. 4 is a flowchart showing a conventional method for suppressing an increase in a connection point voltage. 3 is a time chart showing the operation of each part when the circuit of FIG. 3 is controlled in accordance with the flow chart of the conventional example of FIG. 4 [Explanation of the symbols] -15 Processing 18, 19 OR element 21-25 Judgment 31, 32 Judgment
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−24711(JP,A) 特開 平7−20957(JP,A) 特開 昭58−175931(JP,A) 特開 昭58−175932(JP,A) 特開 昭58−136236(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 3/00 - 5/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-24711 (JP, A) JP-A-7-20957 (JP, A) JP-A-58-175931 (JP, A) JP-A-58-1983 175932 (JP, A) JP-A-58-136236 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02J 3/00-5/00
Claims (1)
て電力を供給する電力系統と、通常は100%力率で最
大電力を出力すべく運転される分散配置型電源とを連系
点で接続し、両電源の連系運転で負荷へ電力の供給を行
なうものにおいて、 前記分散配置型電源が、前記連系点の電圧が予め定めた
上限値まで上昇したとき、前記連系点へ無効分電力の供
給を開始し、 力率が予め定めた一定値以下でなく、前記連係点電圧が
前記上限値の下側に設定した下限値に到達すれば、10
0%力率の最大電力を出力する通常運転状態に復帰さ
せ、 力率が予め定めた一定値以下であれば、前記連係点へ供
給している有効分電力を削減するとともに無効電力を調
整し、その際、当該連系点電圧が前記下限値に到達して
いなければ前記連係点へ供給している有効分電力を削減
するとともに無効電力を調整する制御を継続し、当該連
系点電圧が前記下限値に到達したところで、100%力
率の最大電力を出力する通常運転状態に復帰させる よう
にしたことを特徴とする電力系統と連系する分散配置型
電源の制御方法。(57) [Claim 1] An electric power system for supplying electric power from a system power supply via a distribution line impedance, and a distributed arrangement type usually operated to output maximum electric power at a 100% power factor. A power supply is connected at an interconnection point, and power is supplied to a load by interconnection operation of the two power supplies, wherein the distributed arrangement type power supply increases a voltage at the interconnection point to a predetermined upper limit value. Starting the supply of reactive power to the interconnection point, when the power factor is not less than a predetermined constant value,
If the lower limit set below the upper limit is reached, 10
Returned to normal operation state that outputs maximum power of 0% power factor
If the power factor is equal to or less than a predetermined fixed value,
The active power supply is reduced and the reactive power is adjusted.
At this time, when the interconnection point voltage reaches the lower limit value,
If not, reduce the effective power supplied to the link point
Control to adjust the reactive power, and
When the system point voltage reaches the lower limit, 100% force
A method for controlling a distributed power supply linked to a power system, wherein the method returns to a normal operation state in which the maximum power is output .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07922795A JP3407234B2 (en) | 1995-04-05 | 1995-04-05 | Control method of distributed arrangement type power supply linked to power system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07922795A JP3407234B2 (en) | 1995-04-05 | 1995-04-05 | Control method of distributed arrangement type power supply linked to power system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08280136A JPH08280136A (en) | 1996-10-22 |
JP3407234B2 true JP3407234B2 (en) | 2003-05-19 |
Family
ID=13684025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07922795A Expired - Lifetime JP3407234B2 (en) | 1995-04-05 | 1995-04-05 | Control method of distributed arrangement type power supply linked to power system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3407234B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012169013A1 (en) | 2011-06-07 | 2012-12-13 | 東芝三菱電機産業システム株式会社 | Operation control device for photovoltaic power generation system |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL212098B1 (en) | 2001-09-28 | 2012-08-31 | Aloys Wobben | Method for operating a wind farm and wind farm implementing this method |
JP5278414B2 (en) * | 2004-10-29 | 2013-09-04 | 東京電力株式会社 | Distributed power supply, distribution facility, and power supply method |
JP4498247B2 (en) * | 2005-09-08 | 2010-07-07 | 財団法人電力中央研究所 | Distribution system voltage control method, apparatus, and program |
JP5091439B2 (en) * | 2006-07-28 | 2012-12-05 | 一般財団法人電力中央研究所 | Voltage rise suppression device, voltage rise suppression method, and voltage rise suppression program |
JP5426969B2 (en) * | 2009-09-02 | 2014-02-26 | 東京瓦斯株式会社 | Fuel cell device, solar power generation device, and distributed power supply system |
JP5427006B2 (en) * | 2009-11-25 | 2014-02-26 | 東京瓦斯株式会社 | Distributed power system, solar power generation device, fuel cell device, and voltage adjustment method for distributed power system |
JP5389060B2 (en) * | 2011-01-12 | 2014-01-15 | 中国電力株式会社 | Distribution system operation method, distribution system operation apparatus, distribution system operation system, and program |
JP5899478B2 (en) * | 2011-12-28 | 2016-04-06 | パナソニックIpマネジメント株式会社 | Power converter |
JP5899479B2 (en) * | 2011-12-28 | 2016-04-06 | パナソニックIpマネジメント株式会社 | Power converter |
JP5899477B2 (en) * | 2011-12-28 | 2016-04-06 | パナソニックIpマネジメント株式会社 | Power converter |
WO2013099957A1 (en) * | 2011-12-28 | 2013-07-04 | 三洋電機株式会社 | Power conversion apparatus |
JP6846709B2 (en) * | 2017-03-30 | 2021-03-24 | パナソニックIpマネジメント株式会社 | Power converter, power conversion system |
JP7228905B2 (en) * | 2019-03-31 | 2023-02-27 | 株式会社Eems | Voltage regulator, voltage regulation method and program |
-
1995
- 1995-04-05 JP JP07922795A patent/JP3407234B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012169013A1 (en) | 2011-06-07 | 2012-12-13 | 東芝三菱電機産業システム株式会社 | Operation control device for photovoltaic power generation system |
US10033189B2 (en) | 2011-06-07 | 2018-07-24 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Operation control apparatus for solar power system |
Also Published As
Publication number | Publication date |
---|---|
JPH08280136A (en) | 1996-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3577781B2 (en) | Output control device for fuel cell power generator | |
CN113228448B (en) | Electrolysis device and method for providing instantaneous standby power for an AC network | |
US6611438B2 (en) | Power generation apparatus using permanent-magnet generator | |
JP3407234B2 (en) | Control method of distributed arrangement type power supply linked to power system | |
JP2766407B2 (en) | Inverter control device for photovoltaic power generation | |
JP2006226189A (en) | Power generation system | |
CN109888819B (en) | A photovoltaic power generation system and its control method and device | |
JPH08314555A (en) | Power converter for solar power generation | |
CN117117977A (en) | Power supply system of photovoltaic heat pump, heat pump system and control method | |
JP2004260913A (en) | Photovoltaic generation system | |
JP3591244B2 (en) | Grid connection equipment | |
WO2024230131A1 (en) | Power supply system of heat pump and heat pump system | |
CN115065068B (en) | Virtual synchronous machine control method for photovoltaic system without energy storage configuration at source end | |
JP3584628B2 (en) | Solar cell output power control method | |
CN116418040A (en) | Method for controlling energy flow based on bus voltage layering | |
CN116599094A (en) | Energy storage black start system and control method thereof | |
CN112134296B (en) | Three-level static var generator with auxiliary voltage sharing and voltage sharing method thereof | |
Sharma et al. | Decentralized power management and load sharing for parallel operation of diesel generator and PV-battery based autonomous AC microgrid | |
JP2008079439A (en) | Control system of step-up chopper | |
JP2006166683A (en) | Method and system for suppressing voltage fluctuation | |
CN113852116A (en) | Steady-state control quantity calculation method of new energy grid-connected system | |
Merai et al. | Coordinated control of multiple Multi-Function Grid connected Converters for power quality improvement in micro-grid applications | |
CN113708405A (en) | Energy storage off-grid inverter, control method thereof and energy storage off-grid inverter system | |
JP3154336B2 (en) | Inverter control circuit for photovoltaic power generation | |
CN113241802B (en) | Microgrid grid-connected point voltage control system and method based on power cooperative regulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080314 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090314 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090314 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100314 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140314 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |