Nothing Special   »   [go: up one dir, main page]

JP3406390B2 - Deuterium enrichment method and apparatus - Google Patents

Deuterium enrichment method and apparatus

Info

Publication number
JP3406390B2
JP3406390B2 JP18096494A JP18096494A JP3406390B2 JP 3406390 B2 JP3406390 B2 JP 3406390B2 JP 18096494 A JP18096494 A JP 18096494A JP 18096494 A JP18096494 A JP 18096494A JP 3406390 B2 JP3406390 B2 JP 3406390B2
Authority
JP
Japan
Prior art keywords
deuterium
ion exchange
exchange membrane
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18096494A
Other languages
Japanese (ja)
Other versions
JPH0826703A (en
Inventor
正明 斉藤
貴信 林
善則 錦
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Tokyo Metropolitan Government filed Critical Permelec Electrode Ltd
Priority to JP18096494A priority Critical patent/JP3406390B2/en
Publication of JPH0826703A publication Critical patent/JPH0826703A/en
Application granted granted Critical
Publication of JP3406390B2 publication Critical patent/JP3406390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、天然水等に存在するジ
ュウテリウム及びトリチウムの重水素を濃縮するために
使用する電解濃縮装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic concentrator used for concentrating deuterium and deuterium deuterium present in natural water and the like.

【0002】[0002]

【従来技術とその問題点】原子力発電所の安全性の判
断、地殻変動の予測、温泉地下水系の測定等の分野にお
いて、天然水中の重水素特にトリチウムの分析が重要に
なってきている。トリチウム濃度は極低レベルであるた
め、測定精度の向上のため電解濃縮することが一般的で
ある。従来から重水素の電解濃縮は、電解質を溶解させ
た試料溶液を作製し、板状の平板を向かい合わせて電解
する方法が知られている。電解液中に含まれる水にはH
2 Oの他にHODやHOTがあり、これらは通常の水電
解に従って水素と酸素に分解されるが、同位体効果によ
りH2 Oの分解がHODやHOTの分解に対して優先
し、電解液中のジュウテリウムやトリチウムの濃度が上
昇し濃縮が行われる。この電解に使用する陽極としては
ニッケルが、又陰極としては鋼、鉄及びニッケル等が使
用され、これらの電極を洗浄し希薄苛性ソーダを支持塩
として重水を含む水の溶液に添加して調製した試料水を
ガラス容器に入れ通電して電解を行う。電流密度を1〜
10A/dm2 程度とし、発熱による水の蒸発を防止する
ために液温を5℃以下に維持しながら、通常液量が10分
の1以下になるまで電解を継続して重水素の濃縮を行
う。
2. Description of the Related Art Analysis of deuterium in natural water, especially tritium, has become important in the fields of determining the safety of nuclear power plants, predicting crustal movements, measuring hot spring groundwater systems, and the like. Since the tritium concentration is extremely low, it is common to electrolytically concentrate it to improve the measurement accuracy. Conventionally, for the electrolytic concentration of deuterium, a method is known in which a sample solution in which an electrolyte is dissolved is prepared, and plate-like flat plates are opposed to each other for electrolysis. The water contained in the electrolyte is H
In addition to 2 O, there are HOD and HOT, which are decomposed into hydrogen and oxygen according to ordinary water electrolysis. However, due to the isotope effect, the decomposition of H 2 O has priority over the decomposition of HOD and HOT. The concentration of deuterium and tritium in the inside increases and the concentration is performed. Nickel is used as the anode for this electrolysis, and steel, iron, nickel, etc. are used as the cathode, and a sample prepared by washing these electrodes and adding dilute caustic soda as a supporting salt to a water solution containing heavy water. Water is put in a glass container and electricity is applied to carry out electrolysis. Current density from 1
The concentration of deuterium is about 10 A / dm 2, and the temperature of the liquid is kept below 5 ° C to prevent water from evaporating due to heat generation. To do.

【0003】しかしこの従来の重水素濃縮法には次のよ
うな問題点がある。 電解質を重水に溶解して試料水を調製するため、その
調製に手間が掛かる。 電解質等の影響により電極が溶解しやすく、この溶解
により電離係数が変動する。これを防止するためには前
処理が必要であり、手間が掛かる。 発生した水素及び酸素がそれぞれ対極に達し、酸化あ
るいは還元されやすく、電解効率の低下を招きやすい。
又前記水素及び酸素は爆鳴気となり爆発しやすい。
However, this conventional deuterium concentration method has the following problems. Since the sample water is prepared by dissolving the electrolyte in heavy water, the preparation takes time and effort. The electrode is likely to dissolve due to the influence of the electrolyte and the like, and the ionization coefficient fluctuates due to this dissolution. In order to prevent this, pretreatment is necessary, which is troublesome. The generated hydrogen and oxygen reach the opposite electrodes, respectively, and are easily oxidized or reduced, and the electrolysis efficiency is likely to decrease.
Further, the hydrogen and oxygen become explosive and easily explode.

【0004】[0004]

【発明の目的】本発明は、上述の従来の電解による重水
素濃縮の欠点特に電解効率の低下及び爆発の誘発を解消
し、安全にかつ効率良く重水素を含む水の電解を行い重
水素の濃縮を可能にする方法及び装置を提供することを
目的とする。
It is an object of the present invention to eliminate the drawbacks of the above-mentioned conventional deuterium concentration by electrolysis, in particular the reduction of electrolysis efficiency and the induction of explosion, and to safely and efficiently electrolyze water containing deuterium. It is an object to provide a method and a device that enable concentration.

【問題点を解決するための手段】本発明は、イオン交換
膜により陽極室と陰極室に区画されかつ重水素を含む水
である電解液が充填された電解槽に通電して前記電解液
を電解し水素及び酸素を発生させることにより前記重水
素を濃縮する際に、前記電解液に支持塩が溶解しない
水素の濃縮方法、及び重水素を含む水である陽極液が充
填された陽極室、重水素を含む水である陰極液が充填さ
れた陰極室、該両極室を区画しかつ陽極及び陰極に密着
するイオン交換膜及び両電極への給電体を含んで成る重
水素の濃縮装置である。
According to the present invention, the electrolytic solution is divided into an anode chamber and a cathode chamber by an ion exchange membrane, and an electrolytic cell filled with an electrolytic solution which is water containing deuterium is energized to remove the electrolytic solution. A method for concentrating deuterium in which a supporting salt is not dissolved in the electrolytic solution when concentrating the deuterium by electrolyzing to generate hydrogen and oxygen, and an anolyte chamber filled with an anolyte solution containing water containing deuterium. , A cathode chamber filled with catholyte, which is water containing deuterium, partitions the bipolar chamber and adheres to the anode and cathode
And a deuterium concentrating device including an ion exchange membrane and a power supply to both electrodes.

【0005】以下本発明を詳細に説明する。本発明は、
HODやHOTを含む水(H2 O)を電解しH2 Oを選
択的に酸素及び水素に変換することにより前記HODや
HOTを濃縮する。水を電解すると陽極室では水の酸化
により酸素ガスが発生しかつ水素イオンが生成する。生
成した水素イオンは水分子を同伴しながらイオン交換膜
内を通って陰極に達し、陰極で還元されて水素ガスを発
生する。これらの陽極及び陰極反応における電離係数が
1Hと、D( 2H)及びT( 3H)では大きく異なり、
電解条件にもよるが陽極における 1Hイオン及び陰極に
おける 1Hガスの発生に殆どの電流が寄与するため、 1
2 Oが電解の継続により減少して結果的に 2H及び3
Hの濃縮が起こる。
The present invention will be described in detail below. The present invention is
The HOD or HOT is concentrated by electrolyzing water (H 2 O) containing HOD or HOT and selectively converting H 2 O into oxygen and hydrogen. When water is electrolyzed, oxygen gas is generated and hydrogen ions are generated in the anode chamber due to the oxidation of water. The produced hydrogen ions reach the cathode through the ion exchange membrane while entraining water molecules, and are reduced at the cathode to generate hydrogen gas. The ionization coefficient in these anode and cathode reactions is
1 H differs greatly from D ( 2 H) and T ( 3 H),
Since depending on the electrolysis conditions to contribute most of the current generation of the 1 H gas in 1 H ions and the cathode in the anode, 1
H 2 O is reduced by continued electrolysis, resulting in 2 H and 3
Concentration of H occurs.

【0006】この他にもイオン交換膜を通過する際の同
位体間の輸率も若干異なり、 2Hや3Hの濃縮は促進さ
れる。しかし実際の反応の際には 2Hや 3Hが反応によ
り消失し又はガスに同伴する水分として失われる。従っ
て当初の電解液中に存在する重水素が全て濃縮後の濃縮
液中に存在する訳ではないが、電解液の濃縮率より失わ
れる重水素の方が遙かに少ないため、効果的な重水素の
濃縮を達成できる。本発明では従来の重水素濃縮と異な
り、イオン交換膜を使用しているため発生する水素ガス
と酸素ガスが混合したり生成したガスが対極と接触して
それぞれ酸化あるいは還元されて元の水に戻ることが殆
どなく、効率の良い濃縮を達成できるとともに、爆鳴気
が生ずる危険もないため安全性の高い濃縮操作を行うこ
とができる。
In addition to this, the transport number between isotopes when passing through the ion exchange membrane is slightly different, and the concentration of 2 H and 3 H is promoted. However, in the actual reaction, 2 H and 3 H are lost by the reaction or are lost as water accompanying gas. Therefore, not all of the deuterium present in the initial electrolytic solution is present in the concentrated solution after concentration, but deuterium that is lost is far less than the concentration rate of the electrolytic solution, and therefore effective deuterium is not available. Concentration of hydrogen can be achieved. In the present invention, unlike the conventional deuterium concentration, since an ion exchange membrane is used, the generated hydrogen gas and oxygen gas are mixed or the generated gas is contacted with the counter electrode to be oxidized or reduced to the original water. With almost no returning, efficient concentration can be achieved, and since there is no danger of detonation, a highly safe concentration operation can be performed.

【0007】又本発明におけるイオン交換膜に両電極を
接触させるとイオン交換膜に含まれるイオン交換基が電
解質として機能して水の電解を促進するため、従来のよ
うに水の導電率を向上させるための支持塩の添加が不要
になり、従って支持塩を溶解した電解液を準備する必要
がなくなる。更に支持塩の中には電極やイオン交換膜を
劣化させる成分を含むものがあり、従来の重水素濃縮で
は長期運転の際の電極やイオン交換膜の交換が不可欠で
あった。これに対し本発明のイオン交換膜を両電極に接
触する態様では、支持塩の添加が不要で実質的に純水電
解と同一で電極やイオン交換膜を劣化させる成分が存在
しないため、電極等の交換が不要となる。又濃縮された
電解液からの支持塩の除去が必要なく、かつ支持塩によ
り劣化した電極等の不純物が電解液中に混入することも
なくなるため、簡便に高度に濃縮された重水素が溶解し
た溶液を得ることができる。
Further, when both electrodes are brought into contact with the ion exchange membrane of the present invention, the ion exchange groups contained in the ion exchange membrane function as an electrolyte to promote the electrolysis of water, so that the conductivity of water is improved as in the conventional case. It is not necessary to add a supporting salt for the purpose, and thus it is not necessary to prepare an electrolytic solution in which the supporting salt is dissolved. Furthermore, some supporting salts contain components that deteriorate the electrodes and ion exchange membranes, and in conventional deuterium concentration, the exchange of electrodes and ion exchange membranes during long-term operation was essential. On the other hand, in the aspect in which the ion exchange membrane of the present invention is brought into contact with both electrodes, it is not necessary to add a supporting salt, and substantially the same as in pure water electrolysis, there is no component that deteriorates the electrode or the ion exchange membrane. No need to replace. Further, since it is not necessary to remove the supporting salt from the concentrated electrolytic solution and impurities such as electrodes deteriorated by the supporting salt are not mixed into the electrolytic solution, highly concentrated deuterium was easily dissolved. A solution can be obtained.

【0008】本発明でイオン交換膜は垂直方向に設置し
ても水平方向に設置しても良いが、水平方向に設置する
とイオン交換膜表面のガス発生量等の電解条件が一定に
維持され、従って運転条件が安定し効率が更に向上す
る。本発明で使用する陽極は導電性及び化学的安定性に
優れたチタンやステンレス等の金属やカーボンを使用し
これを気液透過性に優れた微細な貫通孔を有する構造と
して形成することが望ましい。繊維、粉末焼結体及び金
属板を加工して孔を開けたメッシュ、多孔板及び織物状
とした市販品を使用しても良い。なお孔径は0.001 〜1
mm、厚さは1〜10mm程度が好ましい。
In the present invention, the ion exchange membrane may be installed vertically or horizontally, but if it is installed horizontally, the electrolysis conditions such as the gas generation amount on the surface of the ion exchange membrane are kept constant, Therefore, the operating conditions are stable and the efficiency is further improved. For the anode used in the present invention, it is desirable to use a metal such as titanium or stainless steel having excellent conductivity and chemical stability or carbon, and to form it as a structure having fine through holes having excellent gas-liquid permeability. . It is also possible to use a mesh, a perforated plate, or a commercially available product in the form of a fabric, which is obtained by processing fibers, a powder sintered body, and a metal plate to make holes. The pore size is 0.001 to 1
mm, and the thickness is preferably about 1 to 10 mm.

【0009】イオン交換膜としては酸素発生及び水素発
生下で安定であるフッ素樹脂系イオン交換膜の使用が望
ましい。市販品としてデュポン社製ナフィオン、旭化成
株式会社製アシプレックス、旭硝子株式会社製フレミオ
ン等がある。本発明で電解液中に支持塩を添加しない場
合には、前記両電極を前記イオン交換膜に密着させる。
その際電解液の抵抗が大きいためなるべく高い圧力で両
電極をイオン交換膜に十分密着させることが望ましく、
そのために必要な圧力は1〜100 kg/cm2程度であ
る。触媒物質としてはニッケル、鉄以外にカーボンや貴
金属等を用いることが可能である。触媒は電極上に担持
しても触媒自体で前記電極を構成しても良く、場合によ
ってはイオン交換膜上に担持しても良い。担持方法とし
ては、PTFE等のフッ素樹脂微粒子と触媒粉末を混練
したペースト状物質を電極等に塗布しホットプレス法で
固着する方法があり、この他に電気めっきや蒸着により
担持しても良い。
As the ion exchange membrane, it is desirable to use a fluororesin type ion exchange membrane which is stable under the generation of oxygen and hydrogen. Examples of commercially available products include Nafion manufactured by DuPont, Aciplex manufactured by Asahi Kasei Corporation, and Flemion manufactured by Asahi Glass Co., Ltd. In the present invention, when the supporting salt is not added to the electrolytic solution, the both electrodes are brought into close contact with the ion exchange membrane.
At that time, since the resistance of the electrolytic solution is large, it is desirable that both electrodes are sufficiently adhered to the ion exchange membrane at a pressure as high as possible.
The pressure required for this is about 1 to 100 kg / cm 2 . As the catalyst substance, carbon, noble metal, or the like can be used in addition to nickel and iron. The catalyst may be supported on the electrode, or the catalyst itself may form the electrode, or may be supported on the ion exchange membrane in some cases. As a supporting method, there is a method in which a paste-like substance obtained by kneading fluororesin fine particles such as PTFE and a catalyst powder is applied to an electrode or the like and fixed by a hot pressing method.

【0010】このような各部材を電解槽内に設置して重
水素の電解濃縮を行う。電解槽本体は耐食性のあるパイ
レックスガラス製とすることが望ましく、又濃縮倍率を
向上させるため、つまり濃縮後の電解液の量があまり少
なくならないように、100 ミリリットル〜10リットル程
度の容量を有することが望ましい。本発明ではイオン交
換膜により水素ガスと酸素ガスの混合が防止されるが、
両ガスが若干混合されてもさほどの問題は生じない。従
ってイオン交換膜以外の陽極室及び陰極室の区画部の密
閉はさほど厳格に行う必要はない。
Each of these members is placed in an electrolytic cell to electrolytically concentrate deuterium. It is desirable that the electrolytic cell body be made of corrosion-resistant Pyrex glass, and that it has a capacity of about 100 ml to 10 liters in order to improve the concentration ratio, that is, to prevent the amount of the electrolyte solution after concentration from becoming too small. Is desirable. In the present invention, the ion exchange membrane prevents the mixing of hydrogen gas and oxygen gas,
A slight problem does not occur even if both gases are mixed slightly. Therefore, it is not necessary to strictly seal the compartments of the anode chamber and the cathode chamber other than the ion exchange membrane.

【0011】本発明装置の電源は特に限定されないが、
定電圧定電流電源を使用することが望ましく、直流の積
算電流計を使用すると電解量や収率を算出するために便
利である。運転時の電流密度は1〜100 A/dm2
し、かつ電解液の蒸発を防止するため、5℃以下の液温
に維持しながら電解を行うことが好ましい。
The power source of the device of the present invention is not particularly limited,
It is desirable to use a constant-voltage constant-current power supply, and a direct current integrating ammeter is convenient for calculating the electrolysis amount and yield. The current density was set to 1 to 100 A / dm 2 during operation, and to prevent evaporation of the electrolytic solution, it is preferred to perform electrolysis while maintaining the below 5 ℃ liquid temperature.

【0012】次に本発明に係わる重水素濃縮装置の一例
を添付図面に基づいて説明するが、該実施例は本発明を
限定するものではない。図1は本発明に係わる重水素濃
縮装置の一例を示す縦断正面図である。重水素濃縮装置
1は、冷却水2が凍結しない程度の液温例えば1℃に維
持された恒温槽3に浸されている。前記重水素濃縮装置
1は、上部が開口する円筒形又は箱型の本体4内に収容
され、かつ前記装置1は水平方向の円板状の陽極5及び
該陽極5より下に位置する陰極6をイオン交換膜7を間
に挟んで上下方向のボルト8により締着することにより
構成されている。前記陽極5の左端及び前記陰極6の右
端にはそれぞれ陽極用給電体9及び陰極用給電体10が接
続され、両給電体9、10は前記本体4の上部開口に嵌合
された蓋体11の孔を通して本体4外に延びている。前記
蓋体11の左端近傍の孔には小径円筒形の水素ガス取出口
12が設置され、かつ前記膜7の上面には酸素ガス取出用
の円筒体13が載置されている。前記本体4内及び前記円
筒体13には、重水素を含む試料水14が満たされている。
Next, an example of a deuterium concentrating apparatus according to the present invention will be described with reference to the accompanying drawings, but the embodiments do not limit the present invention. FIG. 1 is a vertical sectional front view showing an example of a deuterium concentrator according to the present invention. The deuterium concentrator 1 is immersed in a constant temperature bath 3 in which the cooling water 2 is maintained at a liquid temperature such as 1 ° C. at which it does not freeze. The deuterium concentrating device 1 is housed in a cylindrical or box-shaped main body 4 having an open top, and the device 1 is a horizontal disk-shaped anode 5 and a cathode 6 located below the anode 5. Is fastened with bolts 8 in the vertical direction with the ion exchange membrane 7 interposed therebetween. An anode power feed 9 and a cathode power feed 10 are connected to the left end of the anode 5 and the right end of the cathode 6, respectively, and both the power feeds 9 and 10 are lids 11 fitted into the upper opening of the body 4. Through the hole of the main body 4. A small-diameter cylindrical hydrogen gas outlet is provided in the hole near the left end of the lid 11.
12 is installed, and a cylinder 13 for taking out oxygen gas is placed on the upper surface of the membrane 7. The inside of the main body 4 and the cylindrical body 13 are filled with sample water 14 containing deuterium.

【0013】前記恒温槽3の冷却水2の温度を約1℃に
維持しながら、このような構成から成る濃縮装置1の両
給電体9、10間に通電すると、イオン交換膜7の上面に
接触する陽極5下面において試料水14の電解が生じ酸素
ガス及び水素イオンが発生する。発生した酸素ガスは円
筒体13内をそのまま上昇して系外に取り出され、水素イ
オンはイオン交換膜7を透過して該イオン交換膜7の下
面に接触している陰極6面に達する。この陰極6面で水
素イオンが還元されて水素ガスが発生し、この水素ガス
は前記水素ガス取出口12から系外に取り出される。この
ような水電解による水素及び酸素ガスの発生は、イオン
化しやすい(電離係数の大きい)種ほど進行しやすく、
つまり水素の3種類の同位体である 1H、2H及び 3
のうちの 1Hの電解がほぼ選択的に起こって消失し、残
りの試料水中の 2H及び 3H濃度が高くなり、従って重
水素である 2H及び 3Hを含む重水の濃縮が行われる。
When the temperature of the cooling water 2 in the constant temperature bath 3 is maintained at about 1 ° C. and current is applied between the power feeding bodies 9 and 10 of the concentrating device 1 having such a configuration, the upper surface of the ion exchange membrane 7 is exposed. Electrolysis of the sample water 14 occurs on the lower surface of the contacting anode 5, and oxygen gas and hydrogen ions are generated. The generated oxygen gas rises as it is inside the cylindrical body 13 and is taken out of the system, and hydrogen ions pass through the ion exchange membrane 7 and reach the surface of the cathode 6 in contact with the lower surface of the ion exchange membrane 7. Hydrogen ions are reduced on the surface of the cathode 6 to generate hydrogen gas, which is taken out of the system through the hydrogen gas outlet 12. Generation of hydrogen and oxygen gas by such water electrolysis proceeds more easily in species that are more likely to be ionized (having a larger ionization coefficient),
That is, the three isotopes of hydrogen, 1 H, 2 H and 3 H
Of 1 H out of 1 H is almost selectively eliminated and the concentration of 2 H and 3 H in the rest of the sample water is increased, so that heavy water containing deuterium 2 H and 3 H is concentrated. .

【0014】本実施例の装置では両電極5、6がイオン
交換膜7に接触し、該イオン交換膜のイオン交換基を電
解質として利用し、電解反応を進行させられるため、試
料水中には支持塩を添加する必要がなく、試料水調製の
手間が大きく低減する。
In the apparatus of this embodiment, both electrodes 5 and 6 are in contact with the ion-exchange membrane 7 and the ion-exchange groups of the ion-exchange membrane are used as an electrolyte to allow the electrolytic reaction to proceed, so that it is supported in the sample water. salts no need to add, reduce a large labor for water sample preparation.

【0015】図2は他の重水素濃縮装置の給電体と電極
との接続部の拡大図である。図1ではイオン交換膜と両
電極を締着するボルトと両電極への給電体を別個に設け
たが、図2では両部材を兼用する単一部材を使用してい
る。イオン交換膜21を挟んでその上下に位置する陽極22
及び陰極23に穿設された孔24及び25に陽極用給電体26及
び陰極用給電体27のそれぞれの下端部が螺合されて電極
の支持及び給電を行うようになっている。図示の例では
各給電体が陽極及び陰極の両電極に接触するため、他極
との絶縁を行わなければならない。従って両給電体26が
接触する前記両孔24、25の内面にはそれぞれ薄い絶縁層
28及び29が形成され、かつ前記陽極用給電体26が陰極23
と接触する面及び前記陰極用給電体27が陽極22と接触す
る面にそれぞれ絶縁体30及び31が配置されている。図2
の装置では図1の装置より部品点数が少なく、より簡単
な構造の装置を提供できる。
FIG. 2 is an enlarged view of a connecting portion between a power feeder and an electrode of another deuterium concentrator. In FIG. 1, the ion exchange membrane, the bolts for fastening both electrodes, and the power feeds to both electrodes are provided separately, but in FIG. 2, a single member that serves as both members is used. Anodes 22 located above and below the ion exchange membrane 21.
Also, the lower ends of the anode power supply 26 and the cathode power supply 27 are screwed into holes 24 and 25 formed in the cathode 23 to support the electrodes and supply power. In the example shown in the figure, since each power feeding body contacts both the anode and cathode electrodes, it is necessary to insulate the other electrodes. Therefore, a thin insulating layer is formed on the inner surface of each of the holes 24, 25 which are in contact with both the power supply members 26.
28 and 29 are formed, and the power supply 26 for the anode is the cathode 23.
Insulators 30 and 31 are arranged on the surface that contacts with the cathode and the surface that the cathode power supply 27 contacts with the anode 22, respectively. Figure 2
The device of (1) has a smaller number of parts than the device of FIG. 1, and can provide a device having a simpler structure.

【0016】[0016]

【実施例】次に本発明の重水素濃縮装置による重水素濃
縮に関する実施例を記載するが、該実施例は本発明を限
定するものではない。
EXAMPLES Examples of deuterium concentration by the deuterium concentration apparatus of the present invention will be described below, but the examples do not limit the present invention.

【実施例1】イリジウム酸化物粉末(200 メッシュアン
ダー)を触媒とし、PTFE水懸濁液(三井フロロケミ
カル社製)及びナフィオン液(アルドリッチ社117 )を
バインダーとして使用し、これらをナフサを溶媒として
混練しペースト状物質を得た。このペーストをチタン繊
維焼結基体上に塗布した後、120 ℃で5分間、80kg/
cm2 の圧力で固着し陽極とした。
Example 1 Using iridium oxide powder (200 mesh under) as a catalyst, PTFE aqueous suspension (Mitsui Fluorochemical Co., Ltd.) and Nafion liquid (Aldrich 117) were used as binders, and these were used as naphtha as a solvent. The mixture was kneaded to obtain a pasty substance. After applying this paste on a titanium fiber sintered substrate, at 80 ° C for 5 minutes at 80 kg /
It was fixed at a pressure of cm 2 to form an anode.

【0017】白金粒子(100 メッシュアンダー)を触媒
とし、実施例1と同様に、PTFE水懸濁液及びナフィ
オン液をバインダーとして使用し、これらをナフサを溶
媒として混練しペースト状物質を得た。このペーストを
チタン繊維焼結基体上に塗布した後、120 ℃で5分間、
80kg/cm2 の圧力で固着し陰極とした。これらの電
極の電極面積は15cm2 であった。イオン交換膜として
ナフィオン117 を使用し、該イオン交換膜の両側に前記
陽極及び陰極を接触させ、ボルト及びナットを使用して
30kg/cm2 の圧力で締着し圧接させた。
Platinum particles (100 mesh under) were used as a catalyst, and an aqueous PTFE suspension and a Nafion solution were used as a binder as in Example 1, and these were kneaded with naphtha as a solvent to obtain a paste-like substance. After coating this paste on titanium fiber sintered substrate, at 120 ℃ for 5 minutes,
It was fixed at a pressure of 80 kg / cm 2 to form a cathode. The electrode area of these electrodes was 15 cm 2 . Use Nafion 117 as an ion exchange membrane, contact the anode and cathode on both sides of the ion exchange membrane, and use bolts and nuts.
It was fastened and pressure-welded at a pressure of 30 kg / cm 2 .

【0018】図1に示した通り、この締着した電極を内
径5.5 cm、高さ15cmのガラス製本体にセットし、か
つ試料水(トリチウム濃度0.5 Bq/Kg)280 ミリリ
ットルを入れ、更に発生する酸素ガス及び水素ガスを分
離するための円筒体を陽極面上に立てた。この円筒体、
両電極への給電体及び水素ガス取出口を嵌合した蓋体を
前記ガラス製本体にセットして本体内を密閉し、該本体
を恒温槽(1℃)に浸した。
As shown in FIG. 1, this clamped electrode was set in a glass body having an inner diameter of 5.5 cm and a height of 15 cm, and 280 ml of sample water (tritium concentration: 0.5 Bq / Kg) was added to generate further generation. A cylinder for separating oxygen gas and hydrogen gas was erected on the anode surface. This cylinder,
A lid body in which a power feeder to both electrodes and a hydrogen gas outlet were fitted was set in the glass main body, the inside of the main body was sealed, and the main body was immersed in a constant temperature bath (1 ° C.).

【0019】電流計を使用して電流値を計測しながら、
積算電流値が750 AHになるまで連続電解を行ったとこ
ろ、試料水の量が20ミリリットルまで減少した。若干の
蒸発量、電極内保持水量を考慮すると、この水の減少量
は理論値にほぼ匹敵する値であった。濃縮倍率が14であ
り、液体シンチレーションカウンタ(パッカード社2250
A型)によるトリチウム濃度計測から回収率(10回測定
し平均値を求めた)は0.60であることが分かった。この
電解操作を同一条件で更に2回繰り返し、それぞれの回
収率を測定したところ0.62及び0.59であり、良好な再現
性が得られた。
While measuring the current value using an ammeter,
When continuous electrolysis was performed until the integrated current value reached 750 AH, the amount of sample water decreased to 20 ml. Considering a slight amount of evaporation and the amount of water retained in the electrode, the amount of decrease in this water was a value almost equal to the theoretical value. Concentration factor is 14 and liquid scintillation counter (Packard 2250
From the tritium concentration measurement by type A), it was found that the recovery rate (measured 10 times and averaged) was 0.60. This electrolysis operation was repeated twice more under the same conditions, and the respective recovery rates were measured to be 0.62 and 0.59, indicating good reproducibility.

【0020】[0020]

【発明の効果】本発明方法は、イオン交換膜により陽極
室と陰極室に区画されかつ重水素を含む水である電解液
が充填された電解槽に通電して前記電解液を電解し水素
及び酸素を発生させることにより前記重水素を濃縮する
方法において、前記電解液に支持塩が溶解されていない
ことを特徴とする重水素の濃縮方法である。本発明方法
によると、 1H、 2H及び 3Hから成る水素同位体を含
む水のうち1Hの電離係数が他の同位体より大きいため
1Hの水のみがほぼ選択的に電解され水素ガス及び酸素
ガスに変換されて消失するため、 2H及び 3H濃度が増
加し重水素濃縮が達成される。そしてイオン交換膜を使
用しているため、発生した水素ガス及び酸素ガスが対極
に達して酸化又は還元により元の水に戻ることが殆どな
いため濃縮効率を高く維持でき、かつ両ガスの混合によ
る爆鳴気の発生もないため、安全な操業が可能になる。
According to the method of the present invention, the electrolytic cell is divided into an anode chamber and a cathode chamber by an ion exchange membrane and filled with an electrolytic solution which is water containing deuterium, and the electrolytic solution is electrolyzed to produce hydrogen and hydrogen. Concentrate the deuterium by generating oxygen
In the method, the supporting salt is not dissolved in the electrolytic solution, which is a method for concentrating deuterium. According to the method of the present invention, the ionization coefficient of 1 H in water containing hydrogen isotopes consisting of 1 H, 2 H and 3 H is larger than that of other isotopes.
Since only 1 H water is almost selectively electrolyzed and converted into hydrogen gas and oxygen gas to disappear, 2 H and 3 H concentrations increase and deuterium concentration is achieved. Since an ion exchange membrane is used, the generated hydrogen gas and oxygen gas hardly reach the counter electrode and return to the original water by oxidation or reduction, so that the concentration efficiency can be kept high and by mixing both gases. Safe operation is possible because there is no explosion noise.

【0021】本発明方法ではイオン交換膜を電解質とし
て使用して従来のように支持塩を添加する必要をなく
、支持塩の電解液への溶解という手間の掛かる操作が
不要としている。本発明装置は、重水素を含む水である
陽極液が充填された陽極室、重水素を含む水である陰極
液が充填された陰極室、該両極室を区画しかつ陽極及び
陰極に密着するイオン交換膜及び両電極への給電体を含
んで成ることを特徴とする重水素の濃縮装置である。本
発明装置によると、本発明方法の場合と同様に濃縮効率
を高く維持でき、かつ安全な操業が可能になる。
The method of the present invention uses an ion exchange membrane as an electrolyte and eliminates the need for adding a supporting salt as in the conventional case.
And, the operation time-consuming that dissolution into the electrolyte of the support salt it is not required. The apparatus of the present invention comprises an anode chamber filled with an anolyte solution that is water containing deuterium, a cathode chamber filled with a catholyte solution that is water containing deuterium, and an anode and
A concentrator of deuterium, characterized in that it comprises a feeder to the ion exchange membrane and the electrodes in close contact with the cathode. According to the device of the present invention, the concentration efficiency can be maintained high and safe operation can be performed as in the case of the method of the present invention.

【0022】更に陽極及び陰極をイオン交換膜に密着さ
せてイオン交換膜のイオン交換基を電解質として使用で
きるため、支持塩を添加するという手間の掛かる操作が
不要となる。更に支持塩の中には電極やイオン交換膜を
劣化させる成分を含むものがあり、従来の重水素濃縮で
は長期運転の際の電極やイオン交換膜の交換が不可欠で
あったが、イオン交換膜を両電極に接触すると、支持塩
の添加が不要となり電極やイオン交換膜を劣化させる成
分が存在しないため、電極等の交換が不要となる。又濃
縮された電解液からの支持塩の除去が必要なく、かつ支
持塩により劣化した電極等の不純物が電解液中に混入す
ることもなくなるため、簡便に高度に濃縮された重水素
が溶解した溶液を得ることができる。又イオン交換膜を
水平方向に向けて設置すると、イオン交換膜全面での電
解条件がほぼ等しくなり安定した電解を行うことができ
る。
Further, the anode and the cathode are adhered to the ion exchange membrane.
Since the ion-exchange group of the ion-exchange membrane can be used as the electrolyte, the troublesome operation of adding the supporting salt becomes unnecessary. Furthermore, some supporting salts contain components that deteriorate the electrodes and ion-exchange membranes, and in conventional deuterium concentration, it was essential to replace the electrodes and ion-exchange membranes during long-term operation. the contact with the electrodes then, since the component of the addition of the support salt is deteriorating becomes electrode or ion exchange membrane is unnecessary is not present, replacement of the electrodes and the like become unnecessary. Further, since it is not necessary to remove the supporting salt from the concentrated electrolytic solution and impurities such as electrodes deteriorated by the supporting salt are not mixed into the electrolytic solution, highly concentrated deuterium was easily dissolved. A solution can be obtained. When the ion exchange membrane is installed horizontally, the electrolysis conditions on the entire surface of the ion exchange membrane are substantially equal, and stable electrolysis can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる重水素濃縮装置の一例を示す縦
断正面図。
FIG. 1 is a vertical sectional front view showing an example of a deuterium concentrator according to the present invention.

【図2】他の重水素濃縮装置の給電体と電極との接続部
の拡大図。
FIG. 2 is an enlarged view of a connecting portion between a power feeder and an electrode of another deuterium concentrator.

【符号の説明】[Explanation of symbols]

1・・・重水素濃縮装置 2・・・冷却水 3・・・恒
温槽 4・・・本体 5・・・陽極 6・・・陰極 7・・・イオン交換膜
8・・・ボルト 9、10・・・給電体 11・・・蓋体
12・・・水素ガス取出口 13・・・円筒体 14・・・試
料水 21・・・イオン交換膜 22・・・陽極 23・・・
陰極 24、25・・・孔 26・・・陽極用給電体 27・・
・陰極用給電体 28、29・・・絶縁層 30、31・・・絶
縁体
1 ... Deuterium concentrator 2 ... Cooling water 3 ... Constant temperature bath 4 ... Main body 5 ... Anode 6 ... Cathode 7 ... Ion exchange membrane
8 ... Bolt 9, 10 ... Feeder 11 ... Lid
12 ・ ・ ・ Hydrogen gas outlet 13 ・ ・ ・ Cylinder 14 ・ ・ ・ Sample water 21 ・ ・ ・ Ion exchange membrane 22 ・ ・ ・ Anode 23 ・ ・ ・
Cathode 24, 25 ... Hole 26 ... Anode power supply 27 ...
・ Cathode power supply 28, 29 ... Insulating layer 30, 31 ... Insulator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島宗 孝之 東京都町田市本町田3006番地30 (56)参考文献 特開 昭54−49498(JP,A) 特公 昭40−20000(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C01B 5/02 B01D 59/40 B01J 47/12 ─────────────────────────────────────────────────── --- Continuation of front page (72) Inventor Takayuki Shimamune 3006 Hommachida, Machida City, Tokyo 30 (56) References JP 54-49498 (JP, A) JP 40-20000 (JP, B1) (58) Fields surveyed (Int.Cl. 7 , DB name) C01B 5/02 B01D 59/40 B01J 47/12

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 イオン交換膜により陽極室と陰極室に区
画されかつ重水素を含む水である電解液が充填された電
解槽に通電して前記電解液を電解し水素及び酸素を発生
させることにより前記重水素を濃縮する方法において、
前記電解液に支持塩が溶解されていないことを特徴とす
る重水素の濃縮方法。
1. An electrolyzer, which is divided into an anode chamber and a cathode chamber by an ion exchange membrane and is filled with an electrolytic solution which is water containing deuterium, is electrolyzed to electrolyze the electrolytic solution to generate hydrogen and oxygen. In the method of concentrating the deuterium according to
A method for concentrating deuterium, wherein a supporting salt is not dissolved in the electrolytic solution .
【請求項2】 重水素を含む水である陽極液が充填され
た陽極室、重水素を含む水である陰極液が充填された陰
極室、該両極室を区画し、陽極及び陰極に密着するイオ
ン交換膜及び両電極への給電体を含んで成ることを特徴
とする重水素の濃縮装置。
2. An anode chamber filled with an anolyte solution containing water containing deuterium, a cathode chamber filled with a catholyte solution containing water containing deuterium, and both electrode chambers are defined so as to adhere to the anode and the cathode. Characterized by comprising an ion exchange membrane and a power supply to both electrodes
Deuterium enrichment equipment to.
【請求項3】 イオン交換膜が水平に位置している請求
に記載の重水素の濃縮装置。
3. The deuterium concentrator according to claim 2 , wherein the ion exchange membrane is horizontally positioned.
【請求項4】 陽極及び陰極をイオン交換膜に密着させ
る圧力が1〜100 kg/cm 2 である請求項2又は3に
記載の重水素の濃縮装置
4. Adhering the anode and cathode to the ion exchange membrane
The pressure according to claim 2 or 3 is 1 to 100 kg / cm 2.
The deuterium concentrator described .
JP18096494A 1994-07-08 1994-07-08 Deuterium enrichment method and apparatus Expired - Lifetime JP3406390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18096494A JP3406390B2 (en) 1994-07-08 1994-07-08 Deuterium enrichment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18096494A JP3406390B2 (en) 1994-07-08 1994-07-08 Deuterium enrichment method and apparatus

Publications (2)

Publication Number Publication Date
JPH0826703A JPH0826703A (en) 1996-01-30
JP3406390B2 true JP3406390B2 (en) 2003-05-12

Family

ID=16092367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18096494A Expired - Lifetime JP3406390B2 (en) 1994-07-08 1994-07-08 Deuterium enrichment method and apparatus

Country Status (1)

Country Link
JP (1) JP3406390B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9818496B2 (en) 2014-08-18 2017-11-14 De Nora Permelec Ltd Method for treating tritium-water-containing raw water

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010001690A (en) * 1999-06-08 2001-01-05 정흥섭 Electrochemical System And Method For Producing Heavy Water
US6190531B1 (en) 1999-07-27 2001-02-20 University Of North Carolina Concentration and removal of tritium and/or deuterium from water contaminated with tritium and/or deuterium
JP3457306B1 (en) * 2002-12-13 2003-10-14 スガ試験機株式会社 Water electrolyzer for measuring water stable isotope ratio and water stable isotope ratio mass spectrometry
JP4803699B2 (en) * 2004-12-06 2011-10-26 独立行政法人日本原子力研究開発機構 Polymer electrolysis cell degradation assessment method
JP5897512B2 (en) 2013-07-31 2016-03-30 デノラ・ペルメレック株式会社 Method for electrolytic concentration of heavy water
JP7359409B2 (en) * 2019-02-28 2023-10-11 国立大学法人北海道大学 Method and apparatus for producing water enriched with D2O and/or HDO

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9818496B2 (en) 2014-08-18 2017-11-14 De Nora Permelec Ltd Method for treating tritium-water-containing raw water

Also Published As

Publication number Publication date
JPH0826703A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
Wohlfahrt-Mehrens et al. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry
US9890062B2 (en) Electrolytic enrichment method for heavy water
US4416747A (en) Process for the synthetic production of ozone by electrolysis and use thereof
US5258241A (en) Rebalance cell for a Cr/Fe redox storage system
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US6254762B1 (en) Process and electrolytic cell for producing hydrogen peroxide
FI79145C (en) Bipolar electrolysis device with gas diffusion cathode.
CA1053177A (en) Bipolar system electrolytic cell
JP3406390B2 (en) Deuterium enrichment method and apparatus
Schuetz et al. Electrolysis of hydrobromic acid
US20030106805A1 (en) Method of producing alkali alcoholates
US3775272A (en) Mercury diaphragm chlor-alkali cell and process for decomposing alkali metal halides
US4357224A (en) Energy efficient electrolyzer for the production of hydrogen
JP3977446B2 (en) Deuterium concentrator
CA2503244C (en) One-step electrosynthesis of borohydride
JPH08246178A (en) Electrochemical recovering method of salts and device therefor
US20040020785A1 (en) Magnetically-enhanced electrolytic cells for generating chlor-alkali and methods related thereto
JP3493242B2 (en) Method and apparatus for electrochemical recovery of nitrate
JPS63250480A (en) Improvement of method for generating ozone by electrolysis
GAVACH et al. 32 Applications of perfluorinated proton conductors (Nafions)
CA1152451A (en) Electrolytic membrane and electrode structure including reduced platinum group metal oxide
Yazici et al. Effect of thiourea on the hydrogen yield in electrolysis
England Hydrogen-Bromine Secondary Battery
Takayasu et al. A New Anode for Chromium Electroplating F. Hine Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya 466
JPH1111903A (en) Production of light water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term