Nothing Special   »   [go: up one dir, main page]

JP3488763B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3488763B2
JP3488763B2 JP16187095A JP16187095A JP3488763B2 JP 3488763 B2 JP3488763 B2 JP 3488763B2 JP 16187095 A JP16187095 A JP 16187095A JP 16187095 A JP16187095 A JP 16187095A JP 3488763 B2 JP3488763 B2 JP 3488763B2
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor heat
indoor
auxiliary
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16187095A
Other languages
Japanese (ja)
Other versions
JPH0914725A (en
Inventor
隆夫 星
宏二 和田
秀明 鈴木
孝 柿木
博之 時田
渡辺  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Japan Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP16187095A priority Critical patent/JP3488763B2/en
Publication of JPH0914725A publication Critical patent/JPH0914725A/en
Application granted granted Critical
Publication of JP3488763B2 publication Critical patent/JP3488763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、除湿運転の機能を有
する空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a dehumidifying operation function.

【0002】[0002]

【従来の技術】空気調和機は、圧縮機、室外熱交換器、
膨脹機構、室内熱交換器を順次接続して冷媒を循環させ
る冷凍サイクルを備え、室外熱交換器を凝縮器、室内熱
交換器を蒸発器として機能させることにより、室内を冷
房することができる。また、冷房に伴い、空気中の水分
が室内熱交換器で凝縮するので、室内を除湿することが
できる。
2. Description of the Related Art Air conditioners include compressors, outdoor heat exchangers,
It is possible to cool the room by providing a refrigeration cycle in which an expansion mechanism and an indoor heat exchanger are sequentially connected to circulate a refrigerant, and the outdoor heat exchanger functions as a condenser and the indoor heat exchanger functions as an evaporator. In addition, since water in the air is condensed in the indoor heat exchanger with cooling, it is possible to dehumidify the room.

【0003】ただし、室温はあまり高くなくて湿気が多
くなる時期は、冷房よりも除湿そのものが望まれる。冷
房運転とは別に除湿運転の機能を独立して有する空気調
和機として、次の例がある。
However, when the room temperature is not so high and the humidity is high, dehumidification itself is desired rather than cooling. There is the following example as an air conditioner that independently has a dehumidifying operation function in addition to the cooling operation.

【0004】(1)弱冷房の運転をオン,オフすること
により、室内温度をあまり低下させずに除湿作用を得
る。 (2)冷房運転によって室内空気を冷却および除湿し、
冷却による温度低下を電気ヒータの発熱で相殺する。
(1) By turning on / off the operation of the weak cooling, a dehumidifying action can be obtained without significantly lowering the indoor temperature. (2) Cooling and dehumidifying indoor air by cooling operation,
The temperature drop due to cooling is offset by the heat generated by the electric heater.

【0005】(3)室内熱交換器を二分して両熱交換器
の間に膨張弁を介在させることにより、一方の熱交換器
を蒸発器、もう一方の熱交換器を室外熱交換器と同じく
凝縮器(再熱器)として機能させ、蒸発器側で冷却およ
び除湿した空気を凝縮器側で暖めて室内に吹出す。
(3) The indoor heat exchanger is divided into two and an expansion valve is interposed between the two heat exchangers, so that one heat exchanger is an evaporator and the other heat exchanger is an outdoor heat exchanger. Similarly, it also functions as a condenser (reheater), warms the air cooled and dehumidified on the evaporator side and blows it out into the room.

【0006】[0006]

【発明が解決しようとする課題】(1)の除湿運転で
は、弱冷房であるために室内熱交換器における冷媒の蒸
発温度が高めとなり、蒸発温度と吸込み空気の露点温度
との差が小さくなって十分な除湿能力が得られない。
In the dehumidifying operation of (1), the evaporation temperature of the refrigerant in the indoor heat exchanger becomes high because of the weak cooling, and the difference between the evaporation temperature and the dew point temperature of the intake air becomes small. Cannot obtain sufficient dehumidifying ability.

【0007】(2)の除湿運転では、冷却能力に見合う
ヒータ発熱が必要であるため、大形の電気ヒータを用意
しなければならず、また消費電力が大きくなるという問
題がある。
In the dehumidifying operation of (2), since it is necessary to generate heat from the heater corresponding to the cooling capacity, it is necessary to prepare a large-sized electric heater, and there is a problem that power consumption increases.

【0008】(3)の除湿運転では、室内ユニットに膨
脹弁があるため、冷媒の急激な膨脹音が室内に漏れて住
人が不快を感じてしまう。また、凝縮器(室外熱交換器
+再熱器)が大きくて蒸発器が小さいというアンバラン
スなサイクルとなるため、凝縮器で液化した冷媒が蒸発
器で蒸発しきれないまま圧縮機に吸い込まれてしまう液
バックを生じたり、凝縮器に冷媒が溜まり込んで圧縮機
が異常過熱するなどの心配がある。
In the dehumidifying operation of (3), since the indoor unit has an expansion valve, a sudden expansion noise of the refrigerant leaks into the room and the residents feel uncomfortable. In addition, the unbalanced cycle of the condenser (outdoor heat exchanger + reheater) is large and the evaporator is small, so the refrigerant liquefied in the condenser is sucked into the compressor without being completely evaporated in the evaporator. There is a concern that liquid back will occur and that the compressor will overheat due to the accumulation of refrigerant in the condenser.

【0009】この発明は上記の事情を考慮したもので、
第1の発明の空気調和機は、電気ヒータを要することな
く、消費電力の増大を生じることなく、室内に不快音を
漏らすことなく、さらには液バックや圧縮機の異常過熱
を生じることなく、室内温度低下のない除湿を行なうこ
とができ、とくに室内ユニットの大形化を避けながら補
助室内熱交換器および主室内熱交換器に対する良好な通
風経路を確保することができ、これにより冷媒と吸込み
空気との熱交換効率が向上し、ひいては省エネルギ効果
が得られることを目的とする。
The present invention takes the above circumstances into consideration,
The air conditioner of the first invention does not require an electric heater, does not increase power consumption, does not leak an unpleasant noise in the room, and further does not cause liquid bag or abnormal overheating of the compressor, Dehumidification can be performed without lowering the indoor temperature, and a good ventilation path for the auxiliary indoor heat exchanger and the main indoor heat exchanger can be secured, especially while avoiding an increase in the size of the indoor unit. The purpose of the invention is to improve the efficiency of heat exchange with air, and eventually to achieve an energy saving effect.

【0010】[0010]

【0011】第2の発明の空気調和機は、第1の発明の
目的に加え、居住域に風を到達させることなく除湿を続
けることができ、冷風感を受けない快適除湿が可能なこ
とを目的とする。
In addition to the object of the first aspect of the invention, the air conditioner of the second aspect of the invention is capable of continuing dehumidification without allowing the wind to reach the living area, and is capable of comfortable dehumidification without the feeling of cold wind. To aim.

【0012】第3の発明の空気調和機は、第1の発明の
目的に加え、高い除湿能力が得られることを目的とす
る。第4の発明の空気調和機は、第1の発明の目的に加
え、室内ユニット内の限られたスペースに補助室内熱交
換器を確実に収容できることを目的とする。
An air conditioner according to a third aspect of the present invention is intended to obtain a high dehumidifying capacity in addition to the object of the first aspect of the invention. An air conditioner of a fourth aspect of the present invention is, in addition to the object of the first aspect of the invention, an object of being able to reliably accommodate the auxiliary indoor heat exchanger in a limited space in the indoor unit.

【0013】[0013]

【課題を解決するための手段】第1の発明の空気調和機
は、圧縮機、室外熱交換器、膨張弁、補助室内熱交換
器、主室内熱交換器を順次接続した冷凍サイクルと、前
面および上面に吸込口を形成するとともに、内部に室内
熱交換器と横流型の室内ファンとを収容し、室内熱交換
器を、補助室内熱交換器と主室内熱交換器とから構成
し、さらに主室内熱交換器を第1熱交換器と第2熱交換
器とに分けてその両熱交換器を室内ファンを囲むように
逆V字状に配置し、かつ第1熱交換器を前面の吸込口に
対向させ、第2熱交換器を上面の吸込口に対向させ、主
室内熱交換器と吸込口との間に補助室内熱交換器を配置
して構成した室内ユニットと、主室内熱交換器の温度T
cおよび補助室内熱交換器の温度Tjを検知する温度検
知手段と、圧縮機の吐出冷媒が室外熱交換器、膨張弁、
補助室内熱交換器、主室内熱交換器を通って圧縮機に戻
る除湿サイクルを形成し、かつ検知温度Tcと検知温度
Tjとの差ΔTcjが補助室内熱交換器で冷媒の蒸発が完
了し、残りの部分では過熱域になる所定値ΔTcj1 にな
るよう膨張弁の開度を制御して除湿運転を実行する制御
手段と、を設けている。
The air conditioner of the first invention comprises a refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion valve, an auxiliary indoor heat exchanger and a main indoor heat exchanger are sequentially connected, and
A suction port is formed on the top and
A heat exchanger and a cross-flow type indoor fan are housed to exchange heat in the room.
The equipment consists of an auxiliary indoor heat exchanger and a main indoor heat exchanger
In addition, the main indoor heat exchanger is exchanged with the first heat exchanger and the second heat exchanger.
Separate the heat exchangers so that they surround the indoor fan.
Arranged in an inverted V shape, and the first heat exchanger at the front suction port
The second heat exchanger to the suction port on the upper surface,
An auxiliary indoor heat exchanger is placed between the indoor heat exchanger and the suction port
And the temperature T of the main indoor heat exchanger
c, the temperature detecting means for detecting the temperature Tj of the auxiliary indoor heat exchanger, the refrigerant discharged from the compressor is the outdoor heat exchanger, the expansion valve,
A dehumidification cycle that returns to the compressor through the auxiliary indoor heat exchanger and the main indoor heat exchanger is formed, and the difference ΔTcj between the detected temperature Tc and the detected temperature Tj is equal to the completion of evaporation of the refrigerant in the auxiliary indoor heat exchanger.
Ryoshi, and a control means for performing the dehumidifying operation by controlling the opening degree of the expansion valve so that a predetermined value DerutaTcj 1 comprising the superheat region in the remaining part, the provided.

【0014】[0014]

【0015】[0015]

【0016】第2の発明の空気調和機は、第1の発明
構成において、室内ユニットの前面下部の吹出口に上下
方向ルーバがあり除湿運転時にショートサーキットを
形成するよう上下方向ルーバを操作する制御手段を設け
ている。
In the air conditioner of the second aspect of the invention, in the configuration of the first aspect of the invention , there is a vertical louver at the air outlet at the lower front portion of the indoor unit, and the vertical louver is operated to form a short circuit during dehumidifying operation. There is provided a control means for controlling.

【0017】第3の発明の空気調和機は、第1の発明の
構成において、補助室内熱交換器は、第2熱交換器と上
面の吸込口との間に配置されるとともに、主室内熱交換
器から熱的に分離されている。第4の発明の空気調和機
は、第1の発明の構成において、補助室内熱交換器の熱
交換パイプの径が主室内熱交換器の熱交換パイプの径よ
り細い。
In the air conditioner of the third invention, in the structure of the first invention, the auxiliary indoor heat exchanger is arranged between the second heat exchanger and the suction port on the upper surface, and the main indoor heat Thermally separated from the exchanger. In the air conditioner of the fourth invention, in the configuration of the first invention, the diameter of the heat exchange pipe of the auxiliary indoor heat exchanger is smaller than the diameter of the heat exchange pipe of the main indoor heat exchanger.

【0018】[0018]

【作用】第1の発明の空気調和機では、室内ユニットの
前面の吸込口および上面の吸込口からそれぞれ室内空気
が吸込まれ、主室内熱交換器および補助室内熱交換器を
通る。除湿運転時、補助室内熱交換器に入る冷媒が吸込
み空気から熱を奪って蒸発する。これにより、吸込み空
気が冷却および除湿される。補助室内熱交換器を経た冷
媒は次の主室内熱交換器に流れるが、主室内熱交換器の
温度Tcが補助室内熱交換器の温度Tjより所定値ΔT
cj1 高いため、冷媒は主室内熱交換器では過熱域となっ
て空気とほとんど熱交換しない。こうして、吸込み空気
は、補助室内熱交換器でのみ冷却および除湿がなされ、
主室内熱交換器では冷却も除湿もなされない。冷却作用
は補助室内熱交換器のみで行なわれるため、吸込み空気
はあまり温度低下せずに室内へ吹出される。
In the air conditioner of the first aspect of the present invention, the indoor air is sucked through the front inlet and the upper inlet of the indoor unit, and passes through the main indoor heat exchanger and the auxiliary indoor heat exchanger. During the dehumidifying operation, the refrigerant entering the auxiliary indoor heat exchanger takes in heat from the sucked air and evaporates. As a result, the sucked air is cooled and dehumidified. The refrigerant passing through the auxiliary indoor heat exchanger flows to the next main indoor heat exchanger, but the temperature Tc of the main indoor heat exchanger is a predetermined value ΔT from the temperature Tj of the auxiliary indoor heat exchanger.
Since cj 1 is high, the refrigerant is in the overheated region in the main indoor heat exchanger and hardly exchanges heat with air. Thus, the intake air is cooled and dehumidified only in the auxiliary indoor heat exchanger,
There is no cooling or dehumidification in the main room heat exchanger. Since the cooling action is performed only by the auxiliary indoor heat exchanger, the intake air is blown out into the room without the temperature lowering so much.

【0019】[0019]

【0020】第2の発明の空気調和機では、第1の発明
において、除湿運転時、室内ユニットの前面下部にある
吹出口の上下方向ルーバが、吹出風がそのまま吸込口に
流れるショートサーキットを形成するよう操作される。
In the air conditioner of the second invention, in the first invention, during dehumidification operation, the vertical louver of the air outlet at the lower front portion of the indoor unit forms a short circuit in which the blown air flows directly to the air inlet. Is operated.

【0021】第3の発明の空気調和機では、第1の発明
において、上面の吸込口を経た空気が、まず補助室内熱
交換器を通り主室内熱交換器を通るので、効率的に除湿
が行なえるとともに、補助室内熱交換器と主室内熱交換
器との間の熱移動がない。第4の発明の空気調和機で
は、第1の発明において、補助室内熱交換器が薄形形状
となる。
In the air conditioner of the third invention, in the first invention, the air having passed through the suction port on the upper surface first passes through the auxiliary indoor heat exchanger and the main indoor heat exchanger, so that dehumidification is efficiently performed. In addition, there is no heat transfer between the auxiliary indoor heat exchanger and the main indoor heat exchanger. In the air conditioner of the fourth invention, in the first invention, the auxiliary indoor heat exchanger has a thin shape.

【0022】[0022]

【実施例】以下、この発明の一実施例について図面を参
照して説明する。図2において、1は室内ユニットで、
前面に室内空気の吸込口2を有し、上面にも室内空気の
吸込口3を有し、さらに前面下部に空調用空気(冷房空
気、除湿空気、暖房空気など)の吹出口4を有してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, 1 is an indoor unit,
The room has a suction port 2 for indoor air on the front surface, a suction port 3 for indoor air on the upper surface, and further has a discharge port 4 for air for air conditioning (cooling air, dehumidified air, heating air, etc.) on the lower front surface. ing.

【0023】室内ユニット1内には、上記吸込口2,3
から吹出口4にかけて通風路5が形成される。この通風
路5において、吸込口2,3の内側に防塵用(および消
臭用)のフィルタ6が設けられ、そのフィルタ6の内側
に主室内熱交換器8および補助室内熱交換器7が配設さ
れる。そして、両熱交換器7,8の内側に横流型の室内
ファン9が配設される。
In the indoor unit 1, the suction ports 2 and 3 are provided.
From this to the air outlet 4, the ventilation path 5 is formed. In this ventilation path 5, a dustproof (and deodorant) filter 6 is provided inside the suction ports 2 and 3, and a main indoor heat exchanger 8 and an auxiliary indoor heat exchanger 7 are arranged inside the filter 6. Set up. Then, a cross-flow type indoor fan 9 is arranged inside both heat exchangers 7, 8.

【0024】主室内熱交換器8は第1熱交換器8aと第
2熱交換器8bの二つに分けられ、両熱交換器8a,8
bが室内ファン9を囲むように逆V字状に配置される。
第1熱交換器8aは前面の吸込口2に対向し、第2熱交
換器8bは上面の吸込口3に対向する。そして、第2熱
交換器8bと吸込口3との間、すなわち室内空気の吸込
み流路において第2熱交換器8bより上方の風上側とな
る位置に、補助室内熱交換器7が配置される。
The main indoor heat exchanger 8 is divided into two, a first heat exchanger 8a and a second heat exchanger 8b.
b is arranged in an inverted V shape so as to surround the indoor fan 9.
The first heat exchanger 8a faces the suction port 2 on the front surface, and the second heat exchanger 8b faces the suction port 3 on the upper surface. The auxiliary indoor heat exchanger 7 is arranged between the second heat exchanger 8b and the suction port 3, that is, at a position on the windward side above the second heat exchanger 8b in the indoor air intake passage. .

【0025】第1熱交換器8aの下方にドレン受け部1
9が形成される。第2熱交換器8bおよび補助室内熱交
換器7の下方にも、ドレン受け部19が形成される。第
1熱交換器8aの放熱フィンと第2熱交換器8bの放熱
フィンとは互いに接触しているが、第2熱交換器8bの
放熱フィンと補助室内熱交換器7の放熱フィンとの間に
は図3に示す寸法Lの隙間が確保されて両放熱フィンが
非接触つまり熱的に分離された状態にある。また、図3
に示すように、補助室内熱交換器7の熱交換パイプの径
1 は、主室内熱交換器8の熱交換パイプの径M2 より
細くなっている。
A drain receiving portion 1 is provided below the first heat exchanger 8a.
9 is formed. A drain receiver 19 is also formed below the second heat exchanger 8b and the auxiliary indoor heat exchanger 7. The radiating fins of the first heat exchanger 8a and the radiating fins of the second heat exchanger 8b are in contact with each other, but between the radiating fins of the second heat exchanger 8b and the radiating fins of the auxiliary indoor heat exchanger 7. In FIG. 3, a gap having a dimension L shown in FIG. 3 is secured, and both heat radiation fins are in non-contact with each other, that is, they are thermally separated. Also, FIG.
As shown in, the diameter M 1 of the heat exchange pipe of the auxiliary indoor heat exchanger 7 is smaller than the diameter M 2 of the heat exchange pipe of the main indoor heat exchanger 8.

【0026】なお、図4に示すように、第2熱交換器8
bの放熱フィンと補助室内熱交換器7の放熱フィンとの
隙間を下方側において拡げる構成としてもよい。室内フ
ァン9が回転すると、室内空気が吸込口2および吸込口
3をそれぞれ通して室内ユニット1内に吸込まれる。吸
込口2からの吸込み空気は、フィルタ6を通り、さらに
第1熱交換器8aを通って室内ファン9側に流れる。吸
込口3からの吸込み空気は、フィルタ6を通った後、先
ず補助室内熱交換器7を通り、次に第2熱交換器8bを
通って室内ファン9側に流れる。
As shown in FIG. 4, the second heat exchanger 8
The gap between the heat radiation fin of b and the heat radiation fin of the auxiliary indoor heat exchanger 7 may be widened on the lower side. When the indoor fan 9 rotates, indoor air is sucked into the indoor unit 1 through the suction port 2 and the suction port 3, respectively. The suction air from the suction port 2 flows through the filter 6, the first heat exchanger 8a, and the indoor fan 9 side. After passing through the filter 6, the suction air from the suction port 3 first flows through the auxiliary indoor heat exchanger 7 and then through the second heat exchanger 8b toward the indoor fan 9 side.

【0027】通風路5において、室内ファン9の下流側
の吹出口4を臨む位置に、左右方向ルーバ10が設けら
れる。この左右方向ルーバ10は、吹出し風の方向を室
内ユニット1の左右方向において設定するためのもの
で、手動式である。
A left-right louver 10 is provided in the ventilation passage 5 at a position facing the outlet 4 on the downstream side of the indoor fan 9. The left-right louver 10 is for manually setting the direction of the blowing air in the left-right direction of the indoor unit 1.

【0028】左右方向ルーバ10より下流側には、吹出
口4の位置に、複数たとえば一対の上下方向ルーバ1
1,11が上下に並べて設けられる。この上下方向ルー
バ11,11は、互いに連動して単一のモータによって
駆動され、運転時は図示左方向に回動して吹出口4を開
放し、吹出し風の方向を室内ユニット1の上下方向にお
いて設定するとともに、運転停止時は図示右方向に回動
して吹出口4を閉成し、埃塵が室内ユニット1内に入り
込むのを防ぐ働きをする。
A plurality of, for example, a pair of vertical louvers 1 is provided at the position of the air outlet 4 on the downstream side of the horizontal louvers 10.
1, 11 are provided side by side vertically. The vertical louvers 11 and 11 are driven by a single motor in conjunction with each other, and during operation, rotate to the left in the drawing to open the air outlet 4 and change the direction of the blown air in the vertical direction of the indoor unit 1. In addition, when the operation is stopped, it rotates to the right in the drawing to close the air outlet 4 to prevent dust from entering the indoor unit 1.

【0029】一方、図1に示すように、圧縮機21の吐
出口に四方弁22を介して室外熱交換器23が配管接続
され、その室外熱交換器23に膨脹機構たとえば電動膨
張弁24が配管接続される。この電動膨張弁24は、入
力される駆動パルスの数に応じて開度が連続的に変化す
る。
On the other hand, as shown in FIG. 1, an outdoor heat exchanger 23 is connected to the discharge port of the compressor 21 via a four-way valve 22, and an expansion mechanism such as an electric expansion valve 24 is connected to the outdoor heat exchanger 23. Connected by piping. The opening degree of the electric expansion valve 24 continuously changes according to the number of input drive pulses.

【0030】電動膨張弁24に補助室内熱交換器7の一
端が配管接続され、その補助室内熱交換器7の他端に主
室内熱交換器8(第1熱交換器8aおよび第2熱交換器
8b)が配管接続される。そして、主室内熱交換器8
に、上記四方弁2を介して圧縮機1の吸込口が配管接続
される。
One end of the auxiliary indoor heat exchanger 7 is connected to the electric expansion valve 24 by piping, and the other end of the auxiliary indoor heat exchanger 7 is connected to the main indoor heat exchanger 8 (the first heat exchanger 8a and the second heat exchanger). The device 8b) is piped. And the main indoor heat exchanger 8
The suction port of the compressor 1 is connected to the pipe via the four-way valve 2.

【0031】こうして、冷房、除湿、および暖房が可能
なヒートポンプ式冷凍サイクルが構成される。冷房時
は、図示実線矢印で示すように、圧縮機1から吐出され
る冷媒が四方弁22から室外熱交換器23、電動膨張弁
24、補助室内熱交換器7、主室内熱交換器8へと順次
に流れ、主室内熱交換器8を経た冷媒が四方弁22を通
って圧縮機1に戻る冷房サイクルが形成される。すなわ
ち、室外熱交換器23が凝縮器、補助室内熱交換器7お
よび主室内熱交換器8が蒸発器として機能する。
Thus, a heat pump type refrigeration cycle capable of cooling, dehumidifying and heating is constructed. During cooling, the refrigerant discharged from the compressor 1 flows from the four-way valve 22 to the outdoor heat exchanger 23, the electric expansion valve 24, the auxiliary indoor heat exchanger 7, and the main indoor heat exchanger 8 during cooling. A cooling cycle is formed in which the refrigerant that has flowed through the main indoor heat exchanger 8 returns to the compressor 1 through the four-way valve 22. That is, the outdoor heat exchanger 23 functions as a condenser, and the auxiliary indoor heat exchanger 7 and the main indoor heat exchanger 8 function as an evaporator.

【0032】除湿時は、冷房時と同方向に冷媒が流れる
除湿サイクルが形成される。暖房時は、四方弁22が切
換わることにより、図示破線矢印で示すように、圧縮機
1から吐出される冷媒が四方弁22から主室内熱交換器
8、補助室内熱交換器7、電動膨張弁24、室外熱交換
器23へと順次に流れ、室外熱交換器23を経た冷媒が
四方弁22を通って圧縮機1に戻るサイクルが形成され
る。すなわち、補助室内熱交換器7および主室内熱交換
器8が凝縮器、室外熱交換器23が蒸発器として機能す
る。
During dehumidification, a dehumidification cycle in which the refrigerant flows in the same direction as during cooling is formed. During heating, the four-way valve 22 is switched so that the refrigerant discharged from the compressor 1 flows from the four-way valve 22 to the main indoor heat exchanger 8, the auxiliary indoor heat exchanger 7, and the electric expansion as shown by the broken line arrow in the figure. A cycle is formed in which the refrigerant sequentially flows to the valve 24 and the outdoor heat exchanger 23, and the refrigerant passing through the outdoor heat exchanger 23 returns to the compressor 1 through the four-way valve 22. That is, the auxiliary indoor heat exchanger 7 and the main indoor heat exchanger 8 function as a condenser, and the outdoor heat exchanger 23 functions as an evaporator.

【0033】図2にも示しているように、補助室内熱交
換器7の出口側の熱交換パイプに熱交換器温度センサ1
3が取付けられ、第1熱交換器8aの中間部の熱交換パ
イプに熱交換器温度センサ14が取付けられる。
As shown in FIG. 2, the heat exchanger temperature sensor 1 is attached to the heat exchange pipe on the outlet side of the auxiliary indoor heat exchanger 7.
3 is attached, and the heat exchanger temperature sensor 14 is attached to the heat exchange pipe in the middle of the first heat exchanger 8a.

【0034】吸込口2から主室内熱交換器8にかけての
室内空気の吸込み流路に、室内温度センサ15が設けら
れる。室外熱交換器23に熱交換器温度センサ16が取
付けられる。また、室外熱交換器23の近傍に室外ファ
ン25が設けられる。この室外ファン25は、室外空気
を室外熱交換器23に供給する。
An indoor temperature sensor 15 is provided in the indoor air intake passage from the intake port 2 to the main indoor heat exchanger 8. The heat exchanger temperature sensor 16 is attached to the outdoor heat exchanger 23. An outdoor fan 25 is provided near the outdoor heat exchanger 23. The outdoor fan 25 supplies outdoor air to the outdoor heat exchanger 23.

【0035】商用交流電源30に、インバータ回路3
1、速度制御回路32,33、および制御部40が接続
される。そして、制御部40に、インバータ回路31、
速度制御回路32,33、上下方向ルーバ用モータ11
M、熱交換器温度センサ13,14、室内温度センサ1
5、熱交換器温度センサ16、四方弁22、電動膨張弁
24、および受光部41が接続される。
The commercial AC power supply 30 is connected to the inverter circuit 3
1, the speed control circuits 32 and 33, and the control unit 40 are connected. Then, in the control unit 40, the inverter circuit 31,
Speed control circuits 32 and 33, vertical louver motor 11
M, heat exchanger temperature sensors 13 and 14, indoor temperature sensor 1
5, the heat exchanger temperature sensor 16, the four-way valve 22, the electric expansion valve 24, and the light receiving unit 41 are connected.

【0036】インバータ回路31は、電源電圧を整流
し、それを制御部40の指令に応じた周波数F(および
電圧)の交流に変換し、出力する。この出力は、圧縮機
21の駆動モータ(圧縮機モータ)の駆動電力となる。
The inverter circuit 31 rectifies the power supply voltage, converts it into an alternating current of a frequency F (and voltage) according to a command from the control unit 40, and outputs it. This output serves as drive power for the drive motor (compressor motor) of the compressor 21.

【0037】速度制御回路32は、室外ファンモータ2
5Mに対する電源電圧の供給制御(たとえば通電位相制
御)により、室外ファンモータ25Mの速度(室外ファ
ン25の送風量)を制御部40の指令に応じた速度に設
定する。速度制御回路33は、室内ファンモータ9Mに
対する電源電圧の供給制御(たとえば通電位相制御)に
より、室内ファンモータ9Mの速度(室内ファン9の送
風量)を制御部40の指令に応じた速度に設定する。
The speed control circuit 32 is used for the outdoor fan motor 2
By controlling the supply of the power supply voltage to 5M (for example, energization phase control), the speed of the outdoor fan motor 25M (the amount of air blown by the outdoor fan 25) is set to the speed according to the command from the control unit 40. The speed control circuit 33 sets the speed of the indoor fan motor 9M (amount of air blown by the indoor fan 9) to a speed according to a command from the control unit 40 by controlling the supply of the power supply voltage to the indoor fan motor 9M (for example, energization phase control). To do.

【0038】受光部42は、リモートコントロール式の
操作器(以下、リモコンと略称する)から送出される赤
外線光を受光する。制御部40は、空気調和機の全般に
わたる制御を行なうもので、主要な機能手段として次の
[1]から[5]を備える。
The light receiving section 42 receives infrared light emitted from a remote control type operation device (hereinafter abbreviated as a remote controller). The control unit 40 performs overall control of the air conditioner, and includes the following [1] to [5] as main functional means.

【0039】[1]リモコン42で冷房運転モードが設
定されると、冷房サイクルを形成して室外熱交換器23
を凝縮器、補助室内熱交換器7および主室内熱交換器8
を共に蒸発器として機能させる制御手段。
[1] When the cooling operation mode is set by the remote controller 42, the cooling cycle is formed to form the outdoor heat exchanger 23.
The condenser, the auxiliary indoor heat exchanger 7 and the main indoor heat exchanger 8
And control means that both function as an evaporator.

【0040】[2]リモコン42で除湿運転モードが設
定されると、除湿サイクルを形成し、とくに補助室内熱
交換器7で冷媒が蒸発して主室内熱交換器8では冷媒が
過熱域になるよう、電動膨張弁24の開度を制御する制
御手段。
[2] When the dehumidifying operation mode is set by the remote controller 42, a dehumidifying cycle is formed, and in particular, the refrigerant in the auxiliary indoor heat exchanger 7 evaporates and the refrigerant in the main indoor heat exchanger 8 becomes an overheat region. So as to control the opening degree of the electric expansion valve 24.

【0041】[3]除湿運転時、室内温度センサ15の
検知温度Taに応じて圧縮機21の運転周波数(インバ
ータ回路31の出力周波数)Fを制御する制御手段。 [4]除湿運転時、上下方向ルーバ11,11を操作
し、吹出口4から吹出される空気が吸込口2に流れるシ
ョートサーキットを形成する操作手段。
[3] Control means for controlling the operating frequency (output frequency of the inverter circuit 31) F of the compressor 21 in accordance with the temperature Ta detected by the indoor temperature sensor 15 during the dehumidifying operation. [4] Operation means for operating the vertical louvers 11 and 11 during dehumidification operation to form a short circuit in which air blown from the outlet 4 flows to the inlet 2.

【0042】[5]除湿運転時、室内ファン9を低速度
運転(冷房時より低い速度)させる制御手段。つぎに、
上記構成の作用を図5のフローチャートを参照しながら
説明する。
[5] Control means for operating the indoor fan 9 at a low speed during the dehumidifying operation (lower speed than during cooling). Next,
The operation of the above configuration will be described with reference to the flowchart of FIG.

【0043】リモコン42で除湿運転モードが設定さ
れ、かつ運転開始操作がなされると、圧縮機21が起動
されて除湿サイクルが形成されるとともに、室内ファン
9および室外ファン25の運転が開始され、除湿運転の
開始となる。とくに、室内ファン9については、冷房時
より低い速度で運転される。
When the dehumidifying operation mode is set by the remote controller 42 and the operation start operation is performed, the compressor 21 is activated to form a dehumidifying cycle, and the operation of the indoor fan 9 and the outdoor fan 25 is started. Dehumidification operation starts. In particular, the indoor fan 9 is operated at a lower speed than during cooling.

【0044】また、吹出口4の上下方向ルーバ11,1
1は図2に破線で示すように、水平吹出位置より上の位
置に回動され、吹出口4から吹出される空気がそのまま
吸込口2に流れるショートサーキットが形成され、吹出
風が居住域に届かないようにする。
The vertical louvers 11, 1 of the outlet 4 are
As shown by the broken line in FIG. 2, 1 is rotated to a position above the horizontal blowing position to form a short circuit in which the air blown from the blowout port 4 flows to the suction port 2 as it is, and blown air blows to the living area. Try not to reach it.

【0045】除湿運転時、室内ユニット1に吸込まれる
空気の温度Taが室内温度センサ15で検知され、その
検知温度Taに応じて圧縮機21の運転周波数Fが制御
される。すなわち、図8に示すように、検知温度Taが
大きいほど、運転周波数Fが高く設定されて圧縮機21
の能力が増大される。
During the dehumidifying operation, the temperature Ta of the air taken into the indoor unit 1 is detected by the indoor temperature sensor 15, and the operating frequency F of the compressor 21 is controlled according to the detected temperature Ta. That is, as shown in FIG. 8, as the detected temperature Ta is higher, the operating frequency F is set higher and the compressor 21
Ability is increased.

【0046】なお、除湿運転時の運転周波数Fの実際値
としては冷房運転時などよりもはるかに低い値が選択さ
れるので、消費電力の低減が図れ、省エネルギ効果が得
られる。
Since the actual value of the operating frequency F during the dehumidifying operation is selected to be much lower than that during the cooling operation, the power consumption can be reduced and the energy saving effect can be obtained.

【0047】この運転周波数制御と同時に、補助室内熱
交換器7で冷媒の蒸発が完了して主室内熱交換器8では
冷媒が過熱域になるよう、電動膨張弁24の開度が制御
される。
Simultaneously with this operation frequency control, the opening degree of the electric expansion valve 24 is controlled so that the evaporation of the refrigerant in the auxiliary indoor heat exchanger 7 is completed and the refrigerant in the main indoor heat exchanger 8 is in the overheat region. .

【0048】具体的には、熱交換器温度センサ14で検
知される主室内熱交換器8の温度Tcと熱交換器温度セ
ンサ13で検知される補助室内熱交換器7の温度Tjと
の差ΔTcj(=Tc−Tj)が所定値ΔTcj1 になるよ
う、しかも検知温度Tjが吸込み空気の露点温度以下に
なるよう、電動膨張弁24の開度が制御される。所定値
ΔTcj1 は、圧縮機21の運転周波数Fに比例する値で
ある。
Specifically, the difference between the temperature Tc of the main indoor heat exchanger 8 detected by the heat exchanger temperature sensor 14 and the temperature Tj of the auxiliary indoor heat exchanger 7 detected by the heat exchanger temperature sensor 13. The opening degree of the electric expansion valve 24 is controlled so that ΔTcj (= Tc-Tj) becomes a predetermined value ΔTcj 1 and the detected temperature Tj becomes equal to or lower than the dew point temperature of the intake air. The predetermined value ΔTcj 1 is a value proportional to the operating frequency F of the compressor 21.

【0049】たとえば、温度差ΔTcjが所定値ΔTcj1
より大きければ、電動膨張弁24の開度が制御ループご
とに所定値ずつ縮小される。温度差ΔTcjが所定値ΔT
cj1より小さければ、電動膨張弁24の開度が制御ルー
プごとに所定値ずつ増大される。温度差ΔTcjが所定値
ΔTcj1 に一致すると、そのときの電動膨張弁24の開
度がそのまま保持される。
For example, the temperature difference ΔTcj is a predetermined value ΔTcj 1
If it is larger, the opening degree of the electric expansion valve 24 is reduced by a predetermined value for each control loop. The temperature difference ΔTcj is a predetermined value ΔT
If it is smaller than cj 1, the opening degree of the electric expansion valve 24 is increased by a predetermined value for each control loop. When the temperature difference ΔTcj matches the predetermined value ΔTcj 1 , the opening degree of the electric expansion valve 24 at that time is maintained as it is.

【0050】この開度制御により、吸込み空気は、ほと
んど補助室内熱交換器7でのみ冷却および除湿され、主
室内熱交換器8では熱交換しないまま室内に吹出され
る。補助室内熱交換器7に付着する水分は、同熱交換器
7の熱交換パイプおよび放熱フィンを伝わってドレン受
け部19に滴下する。
By this opening degree control, the intake air is cooled and dehumidified only in the auxiliary indoor heat exchanger 7, and is blown out into the room without heat exchange in the main indoor heat exchanger 8. Water adhering to the auxiliary indoor heat exchanger 7 travels through the heat exchange pipes and the heat radiation fins of the heat exchanger 7 and drops into the drain receiving portion 19.

【0051】ここで、補助室内熱交換器7による除湿作
用について説明しておく。運転周波数Fが上昇すると、
冷媒の循環量が増える。仮に、いかなる運転周波数Fに
対しても温度差ΔTcjの目標値であるΔTcj1 が一定で
あったならば、冷媒循環量が増えることによって、補助
室内熱交換器7だけで冷媒の蒸発が終了せずに、主室内
熱交換器8でも冷媒の蒸発が起こることになる。こうな
ると、除湿の機能だけでなく、冷房(つまり室内空気の
温度を下げる)の機能も発揮されてしまう。
Here, the dehumidifying action of the auxiliary indoor heat exchanger 7 will be described. When the operating frequency F rises,
The circulation amount of the refrigerant increases. If the target value ΔTcj 1 of the temperature difference ΔTcj is constant for any operating frequency F, the refrigerant circulation amount increases, and the evaporation of the refrigerant is completed only by the auxiliary indoor heat exchanger 7. Instead, the refrigerant also evaporates in the main room heat exchanger 8. In this case, not only the function of dehumidifying but also the function of cooling (that is, lowering the temperature of indoor air) is exerted.

【0052】運転周波数Fの変化に応じて温度差ΔTcj
を変えることができれば、たとえ冷媒循環量が増えて
も、補助室内熱交換器7だけで冷媒の蒸発を終わらせる
ことができる。そこで、所定値ΔTcj1 を運転周波数F
に比例した値に設定するようにしている。これにより、
圧縮機能力の変化にかかわらず、除湿作用を補助室内熱
交換器7のみに与えて室内温度の低下を確実に抑制でき
る。
The temperature difference ΔTcj according to the change of the operating frequency F
Can be changed, even if the refrigerant circulation amount increases, the evaporation of the refrigerant can be completed only by the auxiliary indoor heat exchanger 7. Therefore, the predetermined value ΔTcj 1 is set to the operating frequency F
It is set to a value proportional to. This allows
It is possible to reliably suppress the decrease in the indoor temperature by giving the dehumidifying action only to the auxiliary indoor heat exchanger 7 regardless of the change in the compression function force.

【0053】図6はモリエル線図で、補助室内熱交換器
7の温度Tj、主室内熱交換器8の温度Tc、および温
度差ΔTcjの関係を示している。温度差ΔTcjが所定値
ΔTcj1 より小さいならば、補助室内熱交換器7の温度
(つまり蒸発温度)Tjが高めの状態にあると判断され
るので、電動膨張弁24の開度を絞る方向に制御する。
FIG. 6 is a Mollier diagram showing the relationship between the temperature Tj of the auxiliary indoor heat exchanger 7, the temperature Tc of the main indoor heat exchanger 8 and the temperature difference ΔTcj. If the temperature difference ΔTcj is smaller than the predetermined value ΔTcj 1, it is determined that the temperature (that is, the evaporation temperature) Tj of the auxiliary indoor heat exchanger 7 is in a high state, so that the opening degree of the electric expansion valve 24 is narrowed. Control.

【0054】電動膨張弁24の開度が絞られると、蒸発
圧力が下がって蒸発温度Tjが低下し、蒸発温度Tjと
吸込み空気温度Taとの差が大きくなる。これにより、
補助室内熱交換器7での冷媒と空気の熱交換が促進さ
れ、冷媒の蒸発は補助室内熱交換器7だけで終わること
になる。このとき、冷媒の過熱域が大きくなり、主室内
熱交換器8は全てが過熱域となって、主室内熱交換器8
の温度Tcが吸込み空気温度Taに近付く。すなわち、
主室内熱交換器8では冷房作用が起こらない。
When the opening degree of the electric expansion valve 24 is reduced, the evaporation pressure is lowered and the evaporation temperature Tj is lowered, and the difference between the evaporation temperature Tj and the intake air temperature Ta becomes large. This allows
The heat exchange between the refrigerant and the air in the auxiliary indoor heat exchanger 7 is promoted, and the evaporation of the refrigerant ends only in the auxiliary indoor heat exchanger 7. At this time, the overheat region of the refrigerant becomes large, and the entire main indoor heat exchanger 8 becomes the overheat region, and the main indoor heat exchanger 8
Temperature Tc approaches the intake air temperature Ta. That is,
No cooling action occurs in the main room heat exchanger 8.

【0055】また、この制御によれば、冷房時のように
室内熱交換器全体(補助室内熱交換器7+主室内熱交換
器8)で冷媒を蒸発させる場合に比べ、蒸発温度Tjを
大きく下げることができる。
Further, according to this control, the evaporation temperature Tj is greatly lowered compared with the case where the refrigerant is evaporated in the entire indoor heat exchanger (auxiliary indoor heat exchanger 7 + main indoor heat exchanger 8) as in the case of cooling. be able to.

【0056】すなわち、仮に室内熱交換器全体で冷媒が
蒸発する場合について考えると、除湿能力を得ようとし
て蒸発温度を吸込み空気の露点温度以下に大きく下げた
場合、室内への吹出し空気温度まで大きく下がってしま
う。図7の空気線図に吸込み空気温度をA点で示してお
り、吹出し空気温度の低下を防ぐためには、蒸発温度の
低下はたとえば図7のC点(15度)までが限度となる。
That is, supposing that the refrigerant evaporates in the entire indoor heat exchanger, when the evaporation temperature is greatly lowered to the dew point temperature of the intake air or lower in order to obtain the dehumidifying capacity, the temperature of the air blown into the room is increased. Will fall. The intake air temperature is shown at the point A in the air diagram of FIG. 7, and in order to prevent the decrease of the blown air temperature, the decrease of the evaporation temperature is limited to the point C (15 degrees) of FIG. 7, for example.

【0057】これに対し、補助室内熱交換器7のみによ
る除湿であれば、吸込み空気温度Aに対し、C´点まで
蒸発温度を下げても、補助室内熱交換器7を除く主室内
熱交換器8の温度Tcが空気温度であるため、しかも室
内ファン9が低速度運転してこともあって、室内空気温
度が下がりにくい。つまり、室内空気温度の低下を招く
ことなく、除湿能力の増大が図れる。
On the other hand, in the case of dehumidification by only the auxiliary indoor heat exchanger 7, the main indoor heat exchange excluding the auxiliary indoor heat exchanger 7 is reduced even if the evaporating temperature is lowered to the point C ′ with respect to the intake air temperature A. Since the temperature Tc of the container 8 is the air temperature and the indoor fan 9 is operating at a low speed, the indoor air temperature is unlikely to drop. That is, the dehumidifying ability can be increased without lowering the indoor air temperature.

【0058】なお、補助室内熱交換器7のように熱交換
器面積が小さいと、蒸発温度を大きく下げたとしても、
十分な除湿能力が得られないのではないかと思われる
が、たとえば、補助室内熱交換器7と主室内熱交換器8
との熱交換器面積の比が1:5であるとすれば、室内熱
交換器全体の面積に占める補助室内熱交換器7の面積の
割合は1/6であり、その1/6のほぼ逆数に相当する
値に露点温度と蒸発温度との差があれば、室内熱交換器
全体で除湿する場合とほぼ同等の量の水分が結露する。
つまり、室内熱交換器全体で除湿する場合とほぼ同等の
除湿能力が得られる。
When the heat exchanger area is small like the auxiliary indoor heat exchanger 7, even if the evaporation temperature is greatly lowered,
It seems that a sufficient dehumidifying capacity may not be obtained. For example, the auxiliary indoor heat exchanger 7 and the main indoor heat exchanger 8 are
Assuming that the ratio of the heat exchanger area to and the heat exchanger area is 1: 5, the ratio of the area of the auxiliary indoor heat exchanger 7 to the total area of the indoor heat exchanger is 1/6, which is almost 1/6 of that ratio. If there is a difference between the dew point temperature and the evaporation temperature in the value corresponding to the reciprocal number, almost the same amount of moisture will be condensed as in the case of dehumidifying the entire indoor heat exchanger.
That is, a dehumidifying capacity that is almost the same as the case of dehumidifying the entire indoor heat exchanger can be obtained.

【0059】図7の空気線図において、A−B線とA−
B´線の各々の等エンタルピー線に直角な成分XとX´
は潜熱冷却能力(空気中の水分が水蒸気から水滴に変化
するための熱量)を示し、B−C線とB−C´線の各々
の等エンタルピー線に直角な成分YとY´は顕熱冷却能
力(空気が温度を下げるための熱量)を示す。
In the psychrometric chart of FIG. 7, the line AB and the line A-
Components X and X'perpendicular to each isenthalpic line of B'line
Represents the latent heat cooling capacity (heat quantity for changing the moisture in the air from water vapor to water droplets), and the components Y and Y'perpendicular to the isenthalpic lines of the BC line and the BC line are sensible heat. It shows the cooling capacity (the amount of heat that air takes to lower the temperature).

【0060】この図から判るように、本実施例における
潜熱と顕熱の比の潜熱割合は、室内熱交換器全体で熱交
換する場合の潜熱と顕熱の比の潜熱割合に比べ、大きく
なる。(X/Y)<(X´/Y´)。
As can be seen from this figure, the latent heat ratio of the ratio of latent heat to sensible heat in this embodiment is larger than the latent heat ratio of latent heat to sensible heat when heat is exchanged in the entire indoor heat exchanger. . (X / Y) <(X '/ Y').

【0061】したがって、冷房時のように吹出し空気温
度の低下を生じることなく、十分な除湿能力が得られ
る。とくに、従来のような再熱用の電気ヒータが不要で
あり、よって消費電力の増大も生じない。従来のよう
に、室内ユニットに膨張弁(室内熱交換器を蒸発器と再
熱器とに分けるため)を設けないので、冷媒の急激な膨
脹音が室内に漏れる不具合がない。また、室内ユニット
に膨張弁を設けるタイプでは、凝縮器(室外熱交換器+
再熱器)が大きくて蒸発器が小さいというアンバランス
なサイクルとなって、凝縮器で液化した冷媒が蒸発器で
蒸発しきれないまま圧縮機に吸い込まれてしまう液バッ
クを生じたり、凝縮器に冷媒が溜まり込んで圧縮機が異
常過熱するなどの心配があったが、そのような心配も解
消される。
Therefore, a sufficient dehumidifying capacity can be obtained without lowering the temperature of the blown air unlike during cooling. In particular, there is no need for an electric heater for reheating as in the prior art, so that power consumption does not increase. Unlike the conventional case, since the expansion valve (to divide the indoor heat exchanger into the evaporator and the reheater) is not provided in the indoor unit, there is no problem that the rapid expansion noise of the refrigerant leaks into the room. In addition, in the type in which the expansion valve is installed in the indoor unit, the condenser (outdoor heat exchanger +
It becomes an unbalanced cycle in which the reheater) is large and the evaporator is small, resulting in a liquid bag in which the refrigerant liquefied in the condenser is sucked into the compressor without being completely evaporated in the evaporator, or in the condenser. There was a concern that the refrigerant would accumulate in the compressor, causing abnormal overheating of the compressor, but such concern would be eliminated.

【0062】さらに、本実施例では、補助室内熱交換器
7の放熱フィンと主室内熱交換器8の放熱フィンとの間
に隙間が確保されて両放熱フィンが非接触つまり熱的に
分離されたの状態にあるので、補助室内熱交換器7と主
室内熱交換器8との間の熱移動が極力防止されて、除湿
領域と過熱領域との間に十分な温度差を確保することが
でき、冷媒の蒸発温度を十分に低くすることができ、高
い除湿能力を確保できる。
Further, in this embodiment, a gap is secured between the heat radiation fins of the auxiliary indoor heat exchanger 7 and the heat radiation fins of the main indoor heat exchanger 8 so that both heat radiation fins are not in contact with each other, that is, they are thermally separated. Since it is in the other state, heat transfer between the auxiliary indoor heat exchanger 7 and the main indoor heat exchanger 8 is prevented as much as possible, and a sufficient temperature difference can be secured between the dehumidifying area and the overheating area. Therefore, the evaporation temperature of the refrigerant can be sufficiently lowered, and a high dehumidifying capacity can be secured.

【0063】室内ユニット1の構成に関しては、前面に
吸込口2があり、上面にも吸込口3があり、これら吸込
口2,3に主室内熱交換器8の第1熱交換器8aと第2
熱交換器8bとをそれぞれ対向させ、しかも室内ファン
9を囲むように両熱交換器8a,8bを逆V字状に配置
し、さらに第2熱交換器8bと上面の吸込口3との間に
補助室内熱交換器7を配置した構成であるから、室内ユ
ニット1の大形化を避けながら補助室内熱交換器7およ
び主室内熱交換器8に対する良好な通風経路を確保する
ことができ、これにより冷媒と吸込み空気との熱交換効
率が向上し、ひいては省エネルギ効果が得られる。
With respect to the structure of the indoor unit 1, there is a suction port 2 on the front surface and a suction port 3 on the upper surface. The suction ports 2 and 3 are connected to the first heat exchanger 8a of the main indoor heat exchanger 8 and the first heat exchanger 8a. Two
The heat exchangers 8a and 8b are opposed to each other, and both heat exchangers 8a and 8b are arranged in an inverted V shape so as to surround the indoor fan 9, and further between the second heat exchanger 8b and the suction port 3 on the upper surface. Since the auxiliary indoor heat exchanger 7 is arranged in the above, it is possible to secure a good ventilation path for the auxiliary indoor heat exchanger 7 and the main indoor heat exchanger 8 while avoiding upsizing of the indoor unit 1. As a result, the heat exchange efficiency between the refrigerant and the sucked air is improved, and the energy saving effect is obtained.

【0064】補助室内熱交換器7は、熱交換パイプの径
が細いので(主室内熱交換器8の熱交換パイプの径M2
より細い径M1 )、薄形形状となる。したがって、室内
ユニット1内の限られたスペース、つまり吸込口3と第
2熱交換器8bとの間の狭い空間に対し、補助室内熱交
換器7を確実に収容することができる。
In the auxiliary indoor heat exchanger 7, since the diameter of the heat exchange pipe is small (the diameter M 2 of the heat exchange pipe of the main indoor heat exchanger 8).
Thinner shape with thinner diameter M 1 ). Therefore, the auxiliary indoor heat exchanger 7 can be reliably accommodated in the limited space in the indoor unit 1, that is, the narrow space between the suction port 3 and the second heat exchanger 8b.

【0065】なお、補助室内熱交換器7を薄形化する構
成としては、熱交換パイプの径を細くする構成に限ら
ず、補助室内熱交換器7の放熱フィンの形状を変えた
り、補助室内熱交換器7の放熱フィンの相互間ピッチを
変えるなどがある。
The construction for thinning the auxiliary indoor heat exchanger 7 is not limited to the construction in which the diameter of the heat exchange pipe is thin, but the shape of the radiation fins of the auxiliary indoor heat exchanger 7 may be changed, or the auxiliary indoor heat exchanger 7 may be changed. For example, the pitch between the radiation fins of the heat exchanger 7 may be changed.

【0066】また、除湿運転時は、上下方向ルーバ1
1,11がショートサーキット位置に操作されることに
よって、吹出風がそのまま吸込口2に流れるショートサ
ーキットが形成され、吹出風が居住域に届かない。
During the dehumidifying operation, the vertical louver 1
When 1 and 11 are operated to the short circuit position, a short circuit in which the blown air flows directly to the suction port 2 is formed, and the blown air does not reach the living area.

【0067】したがって、居住域に風を到達させること
なく除湿を続けることができ、冷風感を受けない快適除
湿が可能である。ショートサーキットによって一部の空
気が連続して除湿されることになるが、空気中の水分拡
散速度は十分に大きいので、居住域の空気は拡散により
十分に除湿される。なお、この発明は上記実施例に限定
されるものではなく、要旨を変えない範囲で種々変形実
施可能である。
Therefore, the dehumidification can be continued without allowing the wind to reach the living area, and the comfortable dehumidification without the feeling of cold wind can be achieved. Although a part of the air is continuously dehumidified by the short circuit, since the moisture diffusion rate in the air is sufficiently high, the air in the living area is sufficiently dehumidified by diffusion. The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

【0068】[0068]

【発明の効果】以上述べたように、第1の発明の空気調
和機は電気ヒータを要することなく、消費電力の増大
を生じることなく、室内に不快音を漏らすことなく、さ
らには液バックや圧縮機の異常過熱を生じることなく、
室内温度低下のない除湿を行なうことができ、とくに室
内ユニットの大形化を避けながら補助室内熱交換器およ
び主室内熱交換器に対する良好な通風経路を確保するこ
とができ、これにより冷媒と吸込み空気との熱交換効率
が向上し、ひいては省エネルギ効果が得られる。
As described above, the air conditioner according to the first aspect of the present invention does not require an electric heater, does not increase power consumption, does not cause unpleasant noise in the room, and further does not cause liquid backing. And without abnormal overheating of the compressor,
Dehumidification can be performed without lowering the indoor temperature, and a good ventilation path for the auxiliary indoor heat exchanger and the main indoor heat exchanger can be secured, especially while avoiding an increase in the size of the indoor unit. The efficiency of heat exchange with the air is improved, and thus the energy saving effect is obtained.

【0069】[0069]

【0070】[0070]

【0071】第2の発明の空気調和機は、第1の発明
おいてさらに、居住域に風を到達させることなく除湿
を続けることができ、冷風感を受けない快適除湿が可能
である。
[0071] The air conditioner of the second invention, <br/> Oite to the first invention, further, the occupied zone can continue dehumidification without reaching the wind, comfortable dehumidification without undergoing cold feeling Is possible.

【0072】[0072]

【0073】第3の発明の空気調和機は、第1の発明に
おいて、補助室内熱交換器は第2熱交換器と上面の吸込
口との間に配置されるともに、主室内熱交換器から熱的
に分離されているので、さらに、高い除湿能力が得られ
る。
The air conditioner of the third invention is the air conditioner of the first invention, wherein the auxiliary indoor heat exchanger is arranged between the second heat exchanger and the suction port on the upper surface, and Furthermore, since it is thermally separated, a high dehumidifying capacity is obtained.

【0074】第4の発明の空気調和機は、第1の発明に
おいて、補助室内熱交換器の熱交換パイプの径が主室内
熱交換器の熱交換パイプの径より細いので、室内ユニッ
ト内の限られたスペースに補助室内熱交換器を確実に収
容できる。
In the air conditioner of the fourth invention, in the first invention, the diameter of the heat exchange pipe of the auxiliary indoor heat exchanger is smaller than the diameter of the heat exchange pipe of the main indoor heat exchanger. The auxiliary indoor heat exchanger can be reliably accommodated in the limited space.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の冷凍サイクルの構成および制御回路
の構成を示す図。
FIG. 1 is a diagram showing a configuration of a refrigeration cycle and a configuration of a control circuit according to an embodiment.

【図2】同実施例の室内ユニットの内部構成を断面して
示す図。
FIG. 2 is a cross-sectional view showing the internal configuration of the indoor unit of the embodiment.

【図3】同実施例の補助室内熱交換器および主室内熱交
換器の構成を示す図。
FIG. 3 is a diagram showing configurations of an auxiliary indoor heat exchanger and a main indoor heat exchanger of the same embodiment.

【図4】図3の変形例の構成を示す図。FIG. 4 is a diagram showing a configuration of a modified example of FIG.

【図5】同実施例の作用を説明するためのフローチャー
ト。
FIG. 5 is a flowchart for explaining the operation of the embodiment.

【図6】同実施例の冷凍サイクルのモリエル線図。FIG. 6 is a Mollier diagram of the refrigeration cycle of the same embodiment.

【図7】同実施例の冷凍サイクルによる空気線図。FIG. 7 is a psychrometric diagram of the refrigeration cycle of the example.

【図8】同実施例の吸込み空気温度Taと運転周波数F
との関係を示す図。
FIG. 8: Intake air temperature Ta and operating frequency F of the same embodiment
FIG.

【符号の説明】[Explanation of symbols]

1…室内ユニット、2…吸込口、3…吸込口、4…吹出
口、5…通風路、7…補助室内熱交換器、8…主室内熱
交換器、8a…第1熱交換器、8b…第2熱交換器、9
…室内ファン、11,11…上下方向ルーバ、13,1
4…熱交換器温度センサ、15…室内温度センサ、21
…圧縮機、22…四方弁、23…室外熱交換器、24…
電動膨張弁、31…インバータ回路、40…制御部。
DESCRIPTION OF SYMBOLS 1 ... Indoor unit, 2 ... Suction port, 3 ... Suction port, 4 ... Outlet port, 5 ... Ventilation path, 7 ... Auxiliary indoor heat exchanger, 8 ... Main indoor heat exchanger, 8a ... 1st heat exchanger, 8b … Second heat exchanger, 9
... Indoor fan, 11, 11 ... Vertical louver, 13, 1
4 ... Heat exchanger temperature sensor, 15 ... Indoor temperature sensor, 21
... Compressor, 22 ... Four-way valve, 23 ... Outdoor heat exchanger, 24 ...
Electric expansion valve, 31 ... Inverter circuit, 40 ... Control part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柿木 孝 静岡県富士市蓼原336番地 株式会社東 芝富士工場内 (72)発明者 時田 博之 静岡県富士市蓼原336番地 株式会社東 芝富士工場内 (72)発明者 渡辺 誠 静岡県富士市蓼原336番地 東芝エフ・ イー・シー株式会社内 (56)参考文献 特開 平6−34184(JP,A) 特開 平6−18074(JP,A) 特開 平5−5547(JP,A) 特開 平5−79679(JP,A) 実開 平5−42924(JP,U) 実開 平2−131170(JP,U) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Kakiki 336 Tatehara Fuji Co., Ltd., Fuji City, Shizuoka Prefecture, within the Toshiba Fuji Factory (72) Inventor Hiroyuki Tokita 336 Tatehara Fuji City, Shizuoka Prefecture, inside the Toshiba Fuji Factory (72) 72) Inventor Makoto Watanabe, 336 Tatehara, Fuji City, Shizuoka Prefecture, Toshiba FEC Corporation (56) References JP-A-6-34184 (JP, A) JP-A-6-18074 (JP, A) Special Kaihei 5-5547 (JP, A) JP-A 5-79679 (JP, A) Actual Kaihei 5-42924 (JP, U) Actual Kaihei 2-131170 (JP, U) (58) Fields investigated ( Int.Cl. 7 , DB name) F24F 11/02 102

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、室外熱交換器、膨張弁、補助室
内熱交換器、主室内熱交換器を順次接続した冷凍サイク
と、 前面および上面に吸込口を形成するとともに、内部に室
内熱交換器と横流型の室内ファンとを収容し、室内熱交
換器を、補助室内熱交換器と主室内熱交換器とから構成
し、さらに主室内熱交換器を第1熱交換器と第2熱交換
器とに分けてその両熱交換器を室内ファンを囲むように
逆V字状に配置し、かつ第1熱交換器を前面の吸込口に
対向させ、第2熱交換器を上面の吸込口に対向させ、主
室内熱交換器と吸込口との間に補助室内熱交換器を配置
して構成した室内ユニットと、 前記主室内熱交換器の温度Tcおよび前記補助室内熱交
換器の温度Tjを検知する温度検知手段と、 前記圧縮機の吐出冷媒が室外熱交換器、膨張弁、補助室
内熱交換器、主室内熱交換器を通って圧縮機に戻る除湿
サイクルを形成し、かつ前記検知温度Tcと前記検知温
度Tjとの差ΔTcjが前記補助室内熱交換器で冷媒の蒸
発が完了し、残りの部分では過熱域になる所定値ΔTcj
1 になるよう前記膨張弁の開度を制御して除湿運転を実
行する制御手段と、 を設けた ことを特徴とする空気調和機。
1. A refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion valve, an auxiliary indoor heat exchanger, and a main indoor heat exchanger are sequentially connected, and a suction port is formed on a front surface and an upper surface, and a chamber is internally formed.
It accommodates an internal heat exchanger and a cross-flow type indoor fan to provide indoor heat exchange.
The exchanger consists of an auxiliary indoor heat exchanger and a main indoor heat exchanger
In addition, the main indoor heat exchanger is exchanged with the first heat exchanger and the second heat exchanger.
Separate the heat exchangers so that they surround the indoor fan.
Arranged in an inverted V shape, and the first heat exchanger at the front suction port
The second heat exchanger to the suction port on the upper surface,
An auxiliary indoor heat exchanger is placed between the indoor heat exchanger and the suction port
An indoor unit which is to configure, the main indoor heat exchanger temperature Tc and the auxiliary temperature detection means for detecting the temperature Tj of the indoor heat exchanger, the refrigerant discharged the outdoor heat exchanger of the compressor, an expansion valve, A dehumidification cycle that returns to the compressor through the auxiliary indoor heat exchanger and the main indoor heat exchanger is formed, and the difference ΔTcj between the detected temperature Tc and the detected temperature Tj is the vaporization of the refrigerant in the auxiliary indoor heat exchanger.
Predetermined value ΔTcj in which the emission is completed and the remaining part becomes overheated
Air conditioner, wherein the control means controls the opening degree of the expansion valve so as to be 1 to perform the dehumidifying operation, that was provided.
【請求項2】 請求項1に記載の空気調和機において、 室内ユニットは、前面下部の吹出口に上下方向ルーバを
有し、 除湿運転時に吹出口から出た空気が吸込側に送られる
ョートサーキットを形成するよう前記上下方向ルーバを
操作する制御手段を設けた、 ことを特徴とする空気調和機。
2. The air conditioner according to claim 1 , wherein the indoor unit has a vertical louver at the air outlet at the lower part of the front surface, and air discharged from the air outlet is sent to the suction side during dehumidifying operation. An air conditioner characterized by comprising control means for operating the vertical louvers so as to form a short circuit.
【請求項3】 請求項1に記載の空気調和機において、 前記補助室内熱交換器は、前記第2熱交換器と前記上面
の吸込口との間で且つ前記主室内熱交換器から熱的に分
離されて配置されるとともに、主室内熱交換器から熱的
に分離されていること、 を特徴とする空気調和機。
3. The air conditioner according to claim 1, wherein the auxiliary indoor heat exchanger is thermally connected between the second heat exchanger and the suction port on the upper surface and from the main indoor heat exchanger. Minutes
An air conditioner characterized by being placed separately and thermally separated from the main indoor heat exchanger.
【請求項4】 請求項1に記載の空気調和機において、 前記補助室内熱交換器の熱交換パイプの径は、前記主室
内熱交換器の熱交換パイプの径より細いこと、 を特徴とする空気調和機。
4. The air conditioner according to claim 1, wherein the diameter of the heat exchange pipe of the auxiliary indoor heat exchanger is smaller than the diameter of the heat exchange pipe of the main indoor heat exchanger. Air conditioner.
JP16187095A 1995-06-28 1995-06-28 Air conditioner Expired - Fee Related JP3488763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16187095A JP3488763B2 (en) 1995-06-28 1995-06-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16187095A JP3488763B2 (en) 1995-06-28 1995-06-28 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0914725A JPH0914725A (en) 1997-01-17
JP3488763B2 true JP3488763B2 (en) 2004-01-19

Family

ID=15743541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16187095A Expired - Fee Related JP3488763B2 (en) 1995-06-28 1995-06-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP3488763B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100504479B1 (en) * 2002-11-09 2005-08-01 엘지전자 주식회사 Indoor unit for air conditioner
JP5817803B2 (en) * 2013-10-17 2015-11-18 ダイキン工業株式会社 Air conditioner
JP6828720B2 (en) * 2018-06-29 2021-02-10 ダイキン工業株式会社 Outdoor air conditioner
DE112019006833T5 (en) * 2019-02-05 2021-11-11 Mitsubishi Electric Corporation air conditioning

Also Published As

Publication number Publication date
JPH0914725A (en) 1997-01-17

Similar Documents

Publication Publication Date Title
US5678417A (en) Air conditioning apparatus having dehumidifying operation function
US6918263B2 (en) Air conditioning system
JP3410859B2 (en) Air conditioner
JPH0814389B2 (en) Clean room with direct expansion heat exchanger
JP3379864B2 (en) Air conditioner
JP3488763B2 (en) Air conditioner
JP3526367B2 (en) Air conditioner
JP3170556B2 (en) Air conditioner
JP2003139436A (en) Air conditioner
JP3480870B2 (en) Air conditioner
JP3410860B2 (en) Air conditioner
WO2003036179A1 (en) Air conditioner
JPH1089748A (en) Air conditioner
JP7189472B2 (en) air conditioning system
JP3480871B2 (en) Air conditioner
JP3480869B2 (en) Air conditioner
JPH10103791A (en) Refrigeration cycle device and air conditioner
JP3297105B2 (en) Air conditioner
JP2001082759A (en) Indoor unit of air conditioner
JPH10318592A (en) Air conditioner
JP7648889B2 (en) Air conditioner indoor unit
JP3443159B2 (en) Air conditioner
JPH10103735A (en) Air conditioner
JP3476980B2 (en) Air conditioner
JP2002323232A (en) Ceiling-type heat pump air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees