Nothing Special   »   [go: up one dir, main page]

JP3465561B2 - Under-film corrosion inspection method - Google Patents

Under-film corrosion inspection method

Info

Publication number
JP3465561B2
JP3465561B2 JP28978897A JP28978897A JP3465561B2 JP 3465561 B2 JP3465561 B2 JP 3465561B2 JP 28978897 A JP28978897 A JP 28978897A JP 28978897 A JP28978897 A JP 28978897A JP 3465561 B2 JP3465561 B2 JP 3465561B2
Authority
JP
Japan
Prior art keywords
reflected
dose rate
angle
corrosion
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28978897A
Other languages
Japanese (ja)
Other versions
JPH11125608A (en
Inventor
浩司 山田
利明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP28978897A priority Critical patent/JP3465561B2/en
Publication of JPH11125608A publication Critical patent/JPH11125608A/en
Application granted granted Critical
Publication of JP3465561B2 publication Critical patent/JP3465561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、例えば塗装または
ライニングを施された鋼板等の塗膜下腐食を塗膜あるい
はライニング皮膜上から検査する方法に関する。 【0002】 【従来の技術】金属材料の腐食を金属表面の粗さを計測
することにより検査するには、従来は目視検査や触針式
検査および光学的検査が行われているが、金属材料の上
に塗膜などがある場合には、剥がして検査を行ってい
る。塗膜を剥がさずに検査するには、渦流法や磁気を使
う方法がある。また、X線の反射を使う方法として、X
線回析法や蛍光X線法がある。 【0003】 【発明が解決しようとする課題】従来の目視検査や触針
式検査および光学的検査方法では、塗膜やライニング皮
膜を通して検査することができず、塗膜下の金属材料の
腐食の検出には適用できない。これらの検査方法では塗
膜などを剥がす必要があり、金属表面を検査できる程度
にまで、剥がすには多大な労力と時間を要する。 【0004】また、上記した塗膜やライニング皮膜上か
ら鋼板やパイプの表面欠陥を検出する渦流法や磁気的な
方法は割れや凹みの段差等でできるコーナー部を検出し
ており、腐食減肉の検出や腐食による表面粗さの増加を
計測することはできない。 【0005】また、X線の反射・散乱を利用する方法と
しては、上記したX線回析や蛍光X線法(特開平4−3
40407号公報等)があるが、これらの方法は結晶構
造段階のミクロ的な利用で、表面のマクロ的な検査とは
相容れないものである。本発明の目的は、上記課題を解
決するために、X線反射を利用することにより、塗膜や
ライニング皮膜上から鋼板やパイプなどの金属材料の表
面の腐食状態を検査する方法を提供することにある。 【0006】 【課題を解決するための手段】前記課題を解決し目的を
達成するために、本発明は以下に示す手段を用いてい
る。 (1)本発明の方法は、塗装またはライニングが施され
た金属の塗膜またはライニング皮膜下の金属面に対し
て、X線を、反射線量強度比率で70〜100%となる
角度で入射する工程と、入射X線に対する反射線量率を
計測する工程と、この線量率から、予め求めたX線の反
射線量率と金属表面粗さとの関係に基づいて、金属表面
の粗さを計測する工程と、この金属表面の粗さから、予
め求めた金属表面粗さと腐食の程度との関係に基づい
て、塗膜下の金属表面の腐食発生の有無及び腐食の程度
を検査する工程と、を備えたことを特徴とする、塗膜下
腐食検査方法である。 【0007】(2)本発明の方法は、前記反射線量率計
測工程において、X線の入射角度に対して、X線反射線
量率を計測する角度を変えて複数の線量率を計測し、そ
の線量率が最大となる計測角度に設定して、反射線量率
を計測することを特徴とする、上記(1)に記載の塗膜
下腐食検査方法である。 【0008】 【発明の実施の形態】本発明者らは、X線反射を利用す
ることにより、塗膜やライニング皮膜上から鋼板やパイ
プなどの金属材料の表面の腐食状態を検査する方法を得
るために、鋭意研究を重ねた。 【0009】その結果、本発明者らは適用X線と反射す
る金属で決まる全反射角度またはこの角度に近い角度で
X線を入射し、反射強度を上げ、X線を鋼板等の金属表
面で反射させ、表面での散乱度合(反射線量率)から表
面粗さを計測するようにして、塗膜やライニング皮膜上
から鋼板やパイプなどの金属材料の表面粗さを計測し、
この表面粗さに相当する腐食の程度を検査する方法を見
出し、本発明を完成させた。 【0010】本発明のX線反射による塗膜下腐食検査方
法は、塗装またはライニングが施された金属の塗膜また
はライニング皮膜下の金属面に対して、X線を、反射線
量強度比率で70〜100%となる角度で入射する工程
と、前記X線の入射角度に対して、X線反射線量率を計
測する角度を変えて複数の線量率を計測し、その線量率
が最大となる計測角度に設定して、反射線量率を計測す
る工程と、この線量率から、予め求めたX線の反射線量
率と金属表面粗さとの関係に基づいて、金属表面の粗さ
を検査する工程と、この金属表面の粗さから、予め求め
た金属表面粗さと腐食の程度との関係に基づいて、塗膜
下の金属表面の腐食発生の有無及び腐食の程度を検査す
る工程とを備える。 【0011】X線を、反射線量強度比率で70〜100
%となる角度で入射する理由は、入射X線の大部分を全
反射させるためである。即ち、この時、放射したX線の
大部分が金属表面で反射し、金属内部に透過しないた
め、金属内部や金属裏面からのX線の反射が、放射線モ
ニター(線量計)に影響を及ぼし、誤差を生じさせるこ
とを防ぐことができる。 【0012】また、反射線量率を、その線量率が最大と
なる計測角度に設定して計測する理由は、反射線量率の
最大値を測定して、反射線量率の測定精度を向上させる
ためである。 【0013】以上のようにして、測定した反射線量率か
ら、予め求めたX線の反射線量率と表面粗さとの関係に
基づいて、金属の表面粗さを同定して計測し、さらに、
予め求めた金属表面粗さと腐食の程度との関係に基づい
て、塗膜下の金属表面の腐食発生の有無及び腐食の程度
を検査することができる。以下に本発明の実施例を挙
げ、本発明の効果を立証する。 【0014】 【実施例】本発明の塗膜下腐食検査方法を図1を用いて
説明する。金属1に施された塗膜またはライニング被膜
2の表面に、制御装置3により制御されたX線発生器4
から入射X線5が放射される。入射X線5は金属1の表
面で反射する反射強度が最大になる角度またはその近傍
(±5°の範囲)の角度に入射角7を設定され、反射X
線6は反射角8で反射し、放射線モニター(線量計)9
と制御装置10により計測される。放射線モニター(線
量計)9に入射X線5が直接入らないように、遮蔽板
(鉛板)11を金属1面上に設ける。 【0015】入射X線5が金属1の表面で反射する反射
強度が最大になる角度は対象の金属1の種類および入射
X線5の種類により定められるものである。鋼板を対象
として、入射角7を変化させ、反射線量を計測したとこ
ろ、入射角7が10°の時に、最大反射線量を示した。
反射X線6の反射線量の強度比率を最大反射線量を示す
入射角7が10°の時の値を100%として、入射角7
との関係を図2に示す。入射角7を10°またはその近
傍(±5°の範囲)の角度に設定することにより、放射
したX線(軟X線)の大部分が反射する。この時、放射
したX線の大部分が金属表面で反射し、金属内部に透過
しないため、金属内部や金属裏面からのX線の反射が、
放射線モニター(線量計)9に影響を及ぼし、誤差を生
じさせることを防ぐことができる。この様に、X線の入
射角7を金属1の表面で反射する反射強度が最大になる
角度またはその近傍(±5°の範囲)の角度に設定す
る。 【0016】さらに、塗装を施した鋼板を種々の環境と
期間で暴露し、塗膜下の鋼板表面に程度の異なる腐食の
発生した数種類の鋼板を作成した。これらの鋼板に対し
て、X線を入射角7を10°で入射し、反射X線6の反
射線量率を放射線モニター(線量計)9の計測する角度
を変化させて計測した。 【0017】一方、前記塗装鋼板の塗膜を、鋼板表面の
腐食による錆、表面凹凸を損なわないように留意して除
去し、鋼板の表面粗さを触針式計測器で計測し、平均粗
さで求めた。 【0018】表1に鋼板の腐食状況と鋼板表面の平均粗
さとの関係を示すごとく、腐食の程度が高くなるほど、
鋼板の表面粗さが増加することが明らかである。そのた
め、表面粗さを計測することにより、腐食の発生の有
無、程度を同定することができる。 【0019】 【表1】 【0020】図3に放射線モニター(線量計)9の計測
角度と前記の方法により計測した表面粗さに対応する反
射線量率の関係を示す。金属表面の粗さに相当して、放
射線モニター(線量計)9の計測する角度それぞれにつ
いて、反射線量率の数値に差違があることが明らかであ
る。また、放射線モニター(線量計)9の反射線量率を
計測する角度が入射角7と同じ10°で反射線量率が最
大になっていることが、明らかである。放射線モニター
(線量計)9の反射線量率を計測する角度を10°で計
測することが、反射線量率の計測精度を高めることとな
り、適当である。 【0021】また、放射線モニター(線量計)9の計測
する角度が10°の時の反射線量率と表面粗さとの関係
を図4に示す。表面粗さに対して、反射線量率が直線的
に変化していることが明らかである。この様にして、金
属表面の粗さに相当するX線(軟X線)の散乱の程度
を、反射線量を計測することにより求め、表面粗さを求
めることができ、その表面粗さの数値から金属表面の腐
食の有無、腐食の程度を検査することができる。 【0022】本発明の方法により、塗装またはライニン
グが施された、橋梁、桟橋、鉄塔などの鋼構造物や煙
突、タンク、各種プラントなどの建築物、及びガス、石
油、上下水道などのパイプラインなど(の金属)に対し
て、塗膜またはライニング皮膜の表面から金属表面の表
面粗さを計測し、その後、塗膜またはライニング皮膜を
剥がして、金属表面の表面粗さを触針式検査法で計測し
たところ、同じ表面粗さの値か、あるいは、5%程度の
誤差であることが確認でき、さらに表面粗さの数値から
腐食の検査を行うことができ、十分に実用に供すること
ができた。 【0023】 【発明の効果】本発明によれば、全反射に近い角度でX
線を入射し、反射強度を上げるとともに、反射X線の強
度を測定することにより、鋼板やパイプなどの金属材料
に施された塗膜またはライニング皮膜の上から、塗膜ま
たはライニング被膜を剥がすことなく、金属表面の粗さ
を計測することができ、腐食発生の有無、腐食の程度を
判定する検査方法を提供することができる。 【0024】本発明の検査方法を用いることにより、従
来法で必要であった塗膜を剥がす労力や時間、さらに、
復旧塗装などを不要にすることができるなど、産業上の
利用価値は大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting under-film corrosion of, for example, a coated or lined steel sheet from a film or a lining film. [0002] In order to inspect the corrosion of a metal material by measuring the roughness of the metal surface, a visual inspection, a stylus inspection and an optical inspection have conventionally been performed. If there is a coating on the surface, it is peeled off and inspected. To inspect without removing the coating, there are methods using eddy current method and magnetism. As a method of using X-ray reflection, X
There are a line diffraction method and a fluorescent X-ray method. [0003] In the conventional visual inspection, stylus-type inspection and optical inspection method, it is not possible to inspect through a coating film or a lining film, and the corrosion of a metal material under the coating film cannot be inspected. Not applicable for detection. In these inspection methods, it is necessary to peel off the coating film and the like, and it takes a lot of labor and time to peel off the metal surface to the extent that it can be inspected. In addition, the eddy current method and the magnetic method for detecting surface defects of steel plates and pipes from the above-mentioned coating film or lining film detect corners formed by cracks or dents, thereby reducing corrosion. Detection and measurement of the increase in surface roughness due to corrosion cannot be performed. Further, as a method utilizing the reflection and scattering of X-rays, the above-mentioned X-ray diffraction and X-ray fluorescence methods (Japanese Patent Laid-Open No.
No. 40407), these methods use microscopically at the stage of crystal structure and are incompatible with macroscopic inspection of the surface. An object of the present invention is to provide a method for inspecting the corrosion state of the surface of a metal material such as a steel plate or a pipe from a coating film or a lining film by utilizing X-ray reflection in order to solve the above-mentioned problems. It is in. Means for Solving the Problems In order to solve the above problems and achieve the object, the present invention uses the following means. (1) In the method of the present invention, an X-ray is incident on a metal film under a coated or coated metal coating film or a lining film at an angle at which a reflected dose intensity ratio becomes 70 to 100%. A step of measuring a reflected dose rate with respect to the incident X-ray, and a step of measuring the roughness of the metal surface based on a relationship between the reflected dose rate of the X-ray and the metal surface roughness obtained in advance from the dose rate. And inspecting the presence or absence of corrosion and the degree of corrosion of the metal surface under the coating film based on the relationship between the metal surface roughness and the degree of corrosion determined in advance from the roughness of the metal surface. A method for inspecting corrosion under a coating film, characterized in that: (2) In the method of the present invention, in the reflected dose rate measuring step, a plurality of dose rates are measured by changing an angle at which the X-ray reflected dose rate is measured with respect to an incident angle of the X-ray. The method for inspecting corrosion under a coating film according to the above (1), wherein the reflected dose rate is measured by setting a measurement angle at which the dose rate is maximized. DETAILED DESCRIPTION OF THE INVENTION The present inventors have obtained a method for inspecting the corrosion state of the surface of a metal material such as a steel plate or a pipe from a coating film or a lining film by utilizing X-ray reflection. In order to do so, we conducted intensive research. As a result, the inventors of the present invention apply X-rays at an angle of total reflection determined by the applied X-rays and the metal to be reflected or at an angle close to this angle, increase the reflection intensity, and apply the X-rays to a metal surface such as a steel plate. Reflect and measure the surface roughness from the degree of scattering (reflection dose rate) on the surface, measure the surface roughness of metal materials such as steel plates and pipes from the coating or lining film,
A method for inspecting the degree of corrosion corresponding to the surface roughness was found, and the present invention was completed. The method for inspecting corrosion under a coating film by X-ray reflection according to the present invention comprises applying a X-ray to a metal film under a coated or coated metal coating film or a lining film at a reflected dose intensity ratio of 70%. And a step of measuring a plurality of dose rates by changing the angle at which the X-ray reflected dose rate is measured with respect to the X-ray incident angle, and measuring the dose rate to be the maximum. Setting the angle, measuring the reflected dose rate, and inspecting the metal surface roughness based on the relationship between the X-ray reflected dose rate and the metal surface roughness obtained in advance from the dose rate. And inspecting the presence or absence of corrosion on the metal surface under the coating film and the degree of corrosion based on the relationship between the metal surface roughness and the degree of corrosion determined in advance from the roughness of the metal surface. X-rays are reflected at a reflected dose intensity ratio of 70 to 100.
The reason for incidence at an angle of% is that most of the incident X-rays are totally reflected. In other words, at this time, most of the emitted X-rays are reflected on the metal surface and do not penetrate into the metal, so that the reflection of the X-rays from the metal inside or the metal back surface affects the radiation monitor (dosimeter), An error can be prevented from occurring. The reason why the reflected dose rate is set at a measurement angle at which the dose rate is maximized and measured is to measure the maximum value of the reflected dose rate and improve the measurement accuracy of the reflected dose rate. is there. As described above, from the measured reflected dose rate, the surface roughness of the metal is identified and measured based on the relationship between the X-ray reflected dose rate and the surface roughness obtained in advance.
Based on the previously determined relationship between the metal surface roughness and the degree of corrosion, the presence or absence of corrosion and the degree of corrosion on the metal surface under the coating film can be inspected. Hereinafter, examples of the present invention will be described to demonstrate the effects of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for inspecting corrosion under a coating film according to the present invention will be described with reference to FIG. An X-ray generator 4 controlled by a controller 3 is provided on the surface of the coating or lining coating 2 applied to the metal 1.
Radiate incident X-rays 5. The incident X-ray 5 has an incident angle 7 set at an angle at which the reflection intensity reflected on the surface of the metal 1 is maximized or at an angle in the vicinity thereof (range of ± 5 °).
The line 6 is reflected at a reflection angle 8 and a radiation monitor (dosimeter) 9
Is measured by the controller 10. A shielding plate (lead plate) 11 is provided on one metal surface so that the incident X-ray 5 does not directly enter the radiation monitor (dosimeter) 9. The angle at which the reflection intensity at which the incident X-ray 5 is reflected on the surface of the metal 1 is maximized is determined by the type of the target metal 1 and the type of the incident X-ray 5. When the incident angle 7 was changed for the steel sheet and the reflected dose was measured, the maximum reflected dose was shown when the incident angle 7 was 10 °.
The intensity ratio of the reflected dose of the reflected X-ray 6 is defined as 100% when the incident angle 7 indicating the maximum reflected dose is 10 °.
2 is shown in FIG. By setting the incident angle 7 to 10 ° or an angle in the vicinity thereof (range of ± 5 °), most of the emitted X-rays (soft X-rays) are reflected. At this time, most of the emitted X-rays are reflected on the metal surface and do not penetrate inside the metal, so that the reflection of the X-rays from the metal inside or the metal back surface
It is possible to prevent the radiation monitor (dosimeter) 9 from being affected and causing an error. In this manner, the incident angle 7 of the X-ray is set to an angle at which the reflection intensity reflected on the surface of the metal 1 is maximized or an angle in the vicinity thereof (a range of ± 5 °). Further, the coated steel sheet was exposed in various environments and periods to prepare several kinds of steel sheets having different degrees of corrosion on the steel sheet surface under the coating film. X-rays were incident on these steel plates at an incident angle 7 of 10 °, and the reflected dose rate of the reflected X-rays 6 was measured by changing the angle measured by a radiation monitor (dosimeter) 9. On the other hand, the coating film of the coated steel sheet is removed with care so as not to impair rust and surface irregularities due to corrosion of the steel sheet surface, and the surface roughness of the steel sheet is measured with a stylus type measuring instrument, and the average roughness is measured. I asked for it. Table 1 shows the relationship between the corrosion state of the steel sheet and the average roughness of the steel sheet surface.
It is clear that the surface roughness of the steel sheet increases. Therefore, by measuring the surface roughness, it is possible to identify the presence or absence and the degree of corrosion. [Table 1] FIG. 3 shows the relationship between the measurement angle of the radiation monitor (dosimeter) 9 and the reflected dose rate corresponding to the surface roughness measured by the above method. It is apparent that there is a difference in the numerical value of the reflected dose rate for each angle measured by the radiation monitor (dosimeter) 9 corresponding to the roughness of the metal surface. In addition, it is clear that the reflected dose rate is maximized when the angle at which the radiation monitor (dosimeter) 9 measures the reflected dose rate is 10 °, which is the same as the incident angle 7. It is appropriate to measure the reflected dose rate of the radiation monitor (dosimeter) 9 at 10 ° because the measurement accuracy of the reflected dose rate is increased. FIG. 4 shows the relationship between the reflected dose rate and the surface roughness when the angle measured by the radiation monitor (dosimeter) 9 is 10 °. It is clear that the reflected dose rate changes linearly with the surface roughness. In this way, the degree of scattering of X-rays (soft X-rays) corresponding to the roughness of the metal surface can be obtained by measuring the reflected dose to obtain the surface roughness, and the numerical value of the surface roughness can be obtained. It is possible to inspect the presence or absence of corrosion on the metal surface and the degree of corrosion. According to the method of the present invention, steel structures such as bridges, piers, towers and the like, buildings such as chimneys, tanks and various plants, and pipelines such as gas, oil, water and sewage, which have been painted or lined by the method of the present invention. For (metals) etc., measure the surface roughness of the metal surface from the surface of the coating or lining film, and then peel off the coating or lining film and use a stylus inspection method for the surface roughness of the metal surface As a result, the same surface roughness value or an error of about 5% can be confirmed, and the corrosion can be inspected from the numerical value of the surface roughness. did it. According to the present invention, X is set at an angle close to total internal reflection.
Injecting rays, increasing the reflection intensity, and measuring the intensity of the reflected X-rays, peeling off the coating or lining coating from the coating or lining coating applied to metal materials such as steel plates and pipes In addition, it is possible to measure the roughness of the metal surface, and to provide an inspection method for determining whether or not corrosion has occurred and the degree of corrosion. By using the inspection method of the present invention, the labor and time required for removing the coating film required by the conventional method, and
The industrial utility value is great, for example, the need for restoration painting is eliminated.

【図面の簡単な説明】 【図1】本発明の実施例に係る表面粗さ検査法を示す
図。 【図2】本発明の実施例に係る入射角と反射線量の強度
比率の関係を示す図。 【図3】本発明の実施例に係る放射モニター計測角度と
表面粗さに対応する反射線量の関係を示す図。 【図4】本発明の実施例に係る表面粗さと反射線量の関
係を示す図。 【符号の説明】 1…金属、2…塗膜またはライニング皮膜、3…制御装
置、4…X線発生器、5…入射X線、6…反射X線、7
…入射角、8…反射角、9…放射線モニター(線量
計)、10…制御装置、11…遮蔽板(鉛板)。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a surface roughness inspection method according to an embodiment of the present invention. FIG. 2 is a diagram illustrating a relationship between an incident angle and an intensity ratio of a reflected dose according to the embodiment of the present invention. FIG. 3 is a diagram showing a relationship between a radiation monitor measurement angle and a reflected dose corresponding to a surface roughness according to the embodiment of the present invention. FIG. 4 is a diagram showing a relationship between a surface roughness and a reflected dose according to an example of the present invention. [Description of Signs] 1 ... metal, 2 ... coating or lining coating, 3 ... control device, 4 ... X-ray generator, 5 ... incident X-ray, 6 ... reflection X-ray, 7
... incident angle, 8 ... reflection angle, 9 ... radiation monitor (dosimeter), 10 ... control device, 11 ... shield plate (lead plate).

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 23/00 - 23/227 JOIS、PATOLIS──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G01N 23/00-23/227 JOIS, PATOLIS

Claims (1)

(57)【特許請求の範囲】 【請求項1】 塗装またはライニングが施された金属の
塗膜またはライニング皮膜下の金属面に対して、X線
を、反射線量強度比率で70〜100%となる角度で入
射する工程と、 入射X線に対する反射線量率を計測する工程と、 この線量率から、予め求めたX線の反射線量率と金属表
面粗さとの関係に基づいて、金属表面の粗さを計測する
工程と、 この金属表面の粗さから、予め求めた金属表面粗さと腐
食の程度との関係に基づいて、塗膜下の金属表面の腐食
発生の有無及び腐食の程度を検査する工程と、 を備えた塗膜下腐食検査方法であって、 反射線量率を計測する際に、X線の入射角度に対して、
X線反射線量率を計測する角度を変えて複数の線量率を
計測し、その線量率が最大となる計測角度を設定して、
反射線量率を計測することを特徴とする 塗膜下腐食検査
方法。
(57) [Claims 1] X-rays are applied to a metal coating under coating or lining or a metal surface under the lining coating in a reflected dose intensity ratio of 70 to 100%. Incident at an angle, measuring the reflected dose rate with respect to the incident X-rays, and calculating the roughness of the metal surface from the dose rate based on the relationship between the X-ray reflected dose rate and the metal surface roughness determined in advance. And measuring the degree of corrosion of the metal surface under the coating based on the relationship between the metal surface roughness and the degree of corrosion determined in advance from the roughness of the metal surface. A method for inspecting corrosion under a coating film comprising the steps of: when measuring a reflected dose rate, with respect to an incident angle of an X-ray,
By changing the angle for measuring the X-ray reflection dose rate, multiple dose rates
Measure, set the measurement angle at which the dose rate becomes the maximum,
A method for inspecting corrosion under coating , characterized by measuring the reflected dose rate .
JP28978897A 1997-10-22 1997-10-22 Under-film corrosion inspection method Expired - Fee Related JP3465561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28978897A JP3465561B2 (en) 1997-10-22 1997-10-22 Under-film corrosion inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28978897A JP3465561B2 (en) 1997-10-22 1997-10-22 Under-film corrosion inspection method

Publications (2)

Publication Number Publication Date
JPH11125608A JPH11125608A (en) 1999-05-11
JP3465561B2 true JP3465561B2 (en) 2003-11-10

Family

ID=17747785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28978897A Expired - Fee Related JP3465561B2 (en) 1997-10-22 1997-10-22 Under-film corrosion inspection method

Country Status (1)

Country Link
JP (1) JP3465561B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003289079A1 (en) 2002-12-20 2004-07-14 Mitsubishi Chemical Corporation Optical recording medium, method recording optical recording medium, and recorder
JP5807303B2 (en) * 2011-09-02 2015-11-10 一般財団法人電力中央研究所 Detection method, detection device and detection program for corrosion of steel under coating film
US10317349B2 (en) * 2015-11-30 2019-06-11 The Boeing Company X-ray scatter systems and methods for detecting structural variations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電子情報通信学会技術研究報告 ,1996年 7月 5日, VOL. 96 NO. 143 ,PAGE. 7−12

Also Published As

Publication number Publication date
JPH11125608A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
McGonnagle Nondestructive testing
JPS62162949A (en) Detecting method for corrosion speed of steel material
JP3465561B2 (en) Under-film corrosion inspection method
CN110057850A (en) A kind of the X-ray non-destructive testing device and method of metal component surface holiday
JP2014194382A (en) Residual average thickness estimation method based on estimation of average corrosion depth in ground-level corrosion impairment part
JP3079920B2 (en) Defect inspection method for painted covering materials
JP4714646B2 (en) Sample for end surface corrosion resistance evaluation of plated steel sheet, end surface corrosion resistance evaluation apparatus, and end surface corrosion resistance evaluation method
JP2949329B2 (en) Rust detection method, rust detection liquid and rust repair method under coating film
JPH11125515A (en) Inspection device for corrosion under coating film
Draper et al. Effect of Steel Surface Roughness on FBE Coating Performance
JP2594835B2 (en) A method of extracting the thinned part of a double-walled pipe made of dissimilar materials and measuring the thickness of the thinned part
JP2000046778A (en) Mimic electrode for monitoring local corrosion and method for monitoring local corrosion using the electrode
Kamde et al. Performance indicators and specifications for fusion-bonded-epoxy (FBE)-coated steel rebars in concrete exposed to chlorides
Pei et al. Development and application of guided wave technology for buried piping inspection in nuclear power plant
Harara Corrosion evaluation and wall thickness measurement on large-diameter pipes by tangential radiography using a Co-60 gamma-ray source
JP3501948B2 (en) Ultrasonic corrosion diagnostic method and its equipment.
JPS61162737A (en) Checking method of performance for foreign matter inspection device
JP2000241340A (en) Method and apparatus for measuring corrosion rate of weatherable steel material
JPS593205A (en) Method for measuring speed of corrosion
van Aalst et al. Recommendations for Controlling the Application of Organic Protective Coatings: Report of Working Party No. 2 of the European Federation of Corrosion
JP2000055890A (en) Method for inspection of outer-surface corrosion of pipe
Naus et al. Detection of Aging of Nuclear Power Plant Structures
Aalst et al. Recommendations for Controlling the Application of Organic Protective Coatings: Report of Working Party No. 2 of the European Federation of Corrosion
Agarwala In-Service Techniques—Damage Detection and Monitoring
Annila Non-destructive testing of pipelines

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees