Nothing Special   »   [go: up one dir, main page]

JP3464769B2 - Membrane separation device - Google Patents

Membrane separation device

Info

Publication number
JP3464769B2
JP3464769B2 JP07965099A JP7965099A JP3464769B2 JP 3464769 B2 JP3464769 B2 JP 3464769B2 JP 07965099 A JP07965099 A JP 07965099A JP 7965099 A JP7965099 A JP 7965099A JP 3464769 B2 JP3464769 B2 JP 3464769B2
Authority
JP
Japan
Prior art keywords
membrane
treated water
water tank
membrane separation
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP07965099A
Other languages
Japanese (ja)
Other versions
JP2000271453A (en
Inventor
三生男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13696011&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3464769(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP07965099A priority Critical patent/JP3464769B2/en
Publication of JP2000271453A publication Critical patent/JP2000271453A/en
Application granted granted Critical
Publication of JP3464769B2 publication Critical patent/JP3464769B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば下水、工場
廃水等の有機性廃水を浄化する膜分離装置に係り、より
詳細には処理水槽内の被処理水中に浸漬された膜ユニッ
トの洗浄も行う膜分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separation apparatus for purifying organic wastewater such as sewage and industrial wastewater, and more particularly to cleaning a membrane unit immersed in water to be treated in a treated water tank. The present invention relates to a membrane separation device.

【0002】[0002]

【従来の技術】従来から、下水、工場廃水などの有機性
廃水を固液分離する装置として膜分離装置がよく知られ
ている。膜分離装置は、投入される有機性廃水をその廃
水中に浸漬配置された膜ユニットによって膜分離して浄
化する装置である。こうした膜分離装置としては、例え
ば特開平8−257581号公報に開示されるものが知
られている。この装置においては、膜ユニットは、ケー
シングと、その内部に適当な間隔で複数配列された平板
状の膜エレメントとを備えている。さらに、有機性廃水
には顆粒状の活性炭等の浮遊体が投入され、膜エレメン
トの下方で有機性廃水に空気が供給される。そうする
と、膜ユニットの内側で上昇流、外側で下降流が形成さ
れ、これに伴って浮遊体が有機性廃水中で循環流動する
ようになり、膜分離処理と同時に浮遊体による膜エレメ
ントの洗浄が図られる。
2. Description of the Related Art Membrane separation devices have been well known as devices for solid-liquid separation of organic wastewater such as sewage and industrial wastewater. The membrane separation device is a device that separates and purifies the input organic wastewater by a membrane unit that is immersed in the wastewater. As such a membrane separation device, for example, one disclosed in Japanese Patent Laid-Open No. 8-257581 is known. In this device, the membrane unit includes a casing and a plurality of flat plate-shaped membrane elements arranged inside the casing at appropriate intervals. Further, a floating material such as granular activated carbon is put into the organic wastewater, and air is supplied to the organic wastewater below the membrane element. Then, an ascending flow is formed inside the membrane unit and a descending flow is formed outside, so that the floating body circulates and flows in the organic wastewater, and at the same time, the membrane element is cleaned by the floating body at the same time as the membrane separation process. Planned.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述し
た従来の公報に記載の膜分離装置においては、膜エレメ
ントの膜が比較的短期間で閉塞し、膜分離処理を長時間
にわたって継続することができない場合があった。
However, in the membrane separation device described in the above-mentioned conventional publication, the membrane of the membrane element is clogged in a relatively short period of time, and the membrane separation process cannot be continued for a long time. There were cases.

【0004】そこで、本発明は、上記事情に鑑み、膜の
閉塞を十分に防止することができる膜分離装置を提供す
ることを目的とする。
In view of the above circumstances, an object of the present invention is to provide a membrane separation device capable of sufficiently preventing the clogging of the membrane.

【0005】[0005]

【発明が解決しようとする手段】本発明者らは、前述し
た従来の問題点について検討した結果、浮遊体として、
有機性廃水中で浮上するものを用いた場合、一旦上昇し
た浮遊体の中に下降しないで上部にとどまる浮遊体が存
在する場合があり、こうした浮遊体が増加すると、有機
性廃水中で循環流動する浮遊体の量が減少し、膜エレメ
ントの洗浄が十分に行われなくなり、結果として膜が比
較的短期間で閉塞することを見出した。そこで、本発明
者らは、さらに鋭意研究を進めた結果、処理槽を横切る
平面における開口面積と膜ユニットの占有面積の比を特
定範囲とすることで浮遊体を十分に循環流動させること
ができ、膜面の閉塞を十分に防止できることを見出し
た。
DISCLOSURE OF THE INVENTION As a result of studying the above-mentioned conventional problems, the present inventors have found that
When a floating material that floats in organic wastewater is used, there may be floating bodies that remain in the upper part without rising in the floating body that has once risen.If such floating bodies increase, circulating flow in organic wastewater It was found that the amount of suspended solids decreased, the membrane element was not sufficiently washed, and as a result, the membrane was clogged in a relatively short period of time. Therefore, as a result of further intensive research, the present inventors have made it possible to sufficiently circulate and float the floating body by setting the ratio of the opening area in the plane crossing the treatment tank to the occupied area of the membrane unit within a specific range. It was found that the film surface can be sufficiently blocked.

【0006】即ち、本発明は、被処理水を受容する処理
水槽と、処理水槽内の被処理水中に浸漬配置される膜ユ
ニットと、処理水槽内の被処理水中で浮上する浮遊固体
と、被処理水中で浮遊固体を散気によって循環流動させ
る散気装置とを備える膜分離装置において、処理水槽を
横切る平面における処理水槽の開口面積T(m2)と膜
ユニットの占有面積M(m2)との比が下記式: 0.15≦M/T≦0.9 (1) を満たすことを特徴とする。
That is, according to the present invention, a treated water tank for receiving treated water, a membrane unit immersed in the treated water in the treated water tank, a floating solid floating in the treated water in the treated water tank, and In a membrane separation device provided with an air diffuser that circulates and flows suspended solids in treated water, the opening area T (m 2 ) of the treated water tank and the occupied area M (m 2 ) of the membrane unit in a plane that crosses the treated water tank. And a ratio satisfying the following formula: 0.15 ≦ M / T ≦ 0.9 (1).

【0007】この場合、散気装置によって浮遊固体が被
処理水中で循環流動する。通常は、浮遊固体は膜ユニッ
ト内で上昇し、膜ユニットの外側で下降して循環流動す
る。このとき、循環流によって、膜ユニットの外側では
浮遊固体に十分な下降速度が与えられる。このため、膜
分離を継続しても、循環流動する浮遊固体の減少が防止
され、浮遊固体による膜面洗浄が十分に行われる。
In this case, suspended solids circulate and flow in the water to be treated by the air diffuser. Usually, suspended solids rise in the membrane unit and descend outside the membrane unit to circulate. At this time, the circulating flow provides a sufficient descending speed to the suspended solids outside the membrane unit. Therefore, even if the membrane separation is continued, the reduction of the suspended solids that circulate and flow is prevented, and the membrane surface is sufficiently washed with the suspended solids.

【0008】[0008]

【発明の実施の形態】以下、本発明の膜分離装置の実施
形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the membrane separation device of the present invention will be described below.

【0009】図1は、本発明の膜分離装置の一実施形態
を概略的に示す縦断面図、図2は、図1の膜分離装置の
横断面図である。図1に示すように、膜分離装置は、被
処理水流入ラインL1と、被処理水流入ラインL1に設
置される流入ポンプ1と、被処理水流入ラインL1を通
して被処理水2を受容する処理水槽3とを備えている。
処理水槽3内には被処理水2が収容され、活性汚泥が投
入されるようになっている。処理水槽3の被処理水2中
には、膜ユニット4が浸漬されている。
FIG. 1 is a longitudinal sectional view schematically showing an embodiment of the membrane separation apparatus of the present invention, and FIG. 2 is a transverse sectional view of the membrane separation apparatus of FIG. As shown in FIG. 1, the membrane separation apparatus receives the treated water 2 through the treated water inflow line L1, the inflow pump 1 installed in the treated water inflow line L1, and the treated water inflow line L1. The water tank 3 is provided.
The treated water 2 is stored in the treated water tank 3 and activated sludge is put therein. The membrane unit 4 is immersed in the treated water 2 in the treated water tank 3.

【0010】図2に示すように、膜ユニット4は、適当
な間隔で並設される複数の平板状の膜エレメント4a
と、これらの四方を囲む角筒状のケース4bとを備えて
いる。膜エレメント4aとしては、被処理水2を処理水
と固形物とに分離するものであれば特に制限されず、例
えば逆浸透膜、ナノ膜、限外ろ過又はミクロろ過膜、中
空糸膜等が用いられる。なお、膜ユニット4は、ケース
4bに代えて、角材等により膜エレメント4aを支持す
るように組み立てられるエレメント支持枠(図示せず)
を備えてもよい。
As shown in FIG. 2, the membrane unit 4 comprises a plurality of flat plate-shaped membrane elements 4a arranged in parallel at appropriate intervals.
And a rectangular cylindrical case 4b surrounding these four sides. The membrane element 4a is not particularly limited as long as it can separate the water to be treated 2 into treated water and solid matter, and examples thereof include reverse osmosis membranes, nano membranes, ultrafiltration or microfiltration membranes, and hollow fiber membranes. Used. In addition, the membrane unit 4 is an element support frame (not shown) assembled so as to support the membrane element 4a by a square member or the like instead of the case 4b.
May be provided.

【0011】図1に示すように、膜エレメント4aのそ
れぞれには集水管が接続され、集水管は1本の排出ライ
ンL2に接続されている。排出ラインL2には吸引ポン
プ5が取り付けられている。また、膜分離装置は散気装
置6を備えている。散気装置6は、膜エレメント4aの
エアスクラビングを行うと共に処理水槽3の被処理水2
の槽内循環流を形成するものである。散気装置6は、例
えば膜エレメント4aの下方に配設されて気泡7を発生
させる散気管8と、散気管8にラインL3を介して接続
されるブロワ9とからなる。
As shown in FIG. 1, a water collecting pipe is connected to each of the membrane elements 4a, and the water collecting pipe is connected to one discharge line L2. A suction pump 5 is attached to the discharge line L2. Further, the membrane separation device includes an air diffuser 6. The air diffuser 6 performs the air scrubbing of the membrane element 4a and the treated water 2 in the treated water tank 3.
To form a circulating flow in the tank. The air diffuser 6 is composed of, for example, an air diffuser 8 arranged below the membrane element 4a to generate bubbles 7, and a blower 9 connected to the air diffuser 8 via a line L3.

【0012】被処理水2中には浮遊固体10が存在す
る。浮遊固体10としては、被処理水2中で浮上するも
の、即ち流動化し易くかつ比重が1より小さいものが用
いられる。被処理水2中で浮上した浮遊固体10を用い
るのは、浮上しない浮遊固体を用いる場合に比べて、処
理水槽の底部での滞留がなく、また分離、回収が容易で
あるからである。但し、比重は0.3以上のもの、好ま
しくは0.5以上のものが用いられる。比重が0.3未
満では、浮遊固体10が循環流動しにくくなる傾向があ
るからである。浮遊固体10の粒径は、隣り合う膜エレ
メント4a間での閉塞を起こさない大きさであれば特に
制限されないが、回収や流出防止の点からは0.5〜3
mm程度が好ましい。浮遊固体10の形状は、例えばビ
ーズ状、粒状、柱状、中空状でもよいが、膜表面の損傷
を小さくする観点からはビーズ状であることが好まし
い。浮遊固体10の材質としては、例えばポリプロピレ
ン、ポリエチレン等のプラスチックが用いられる。ま
た、浮遊固体10の処理水槽3への添加量は例えば容積
比で3〜10%程度である。
Floating solids 10 are present in the water 2 to be treated. As the floating solids 10, those that float in the water 2 to be treated, that is, those that are easily fluidized and have a specific gravity of less than 1, are used. The floating solids 10 floating in the water to be treated 2 are used because they are not retained at the bottom of the treated water tank and are easy to separate and collect, as compared with the case where floating solids that do not float are used. However, one having a specific gravity of 0.3 or more, preferably 0.5 or more is used. This is because if the specific gravity is less than 0.3, the suspended solid 10 tends to be difficult to circulate and flow. The particle size of the suspended solid 10 is not particularly limited as long as it does not cause blockage between the adjacent membrane elements 4a, but from the viewpoint of recovery and outflow prevention, it is 0.5 to 3 inclusive.
About mm is preferable. The shape of the floating solid 10 may be, for example, a bead shape, a granular shape, a columnar shape, or a hollow shape, but a bead shape is preferable from the viewpoint of reducing damage to the membrane surface. As the material of the floating solid 10, for example, plastic such as polypropylene or polyethylene is used. The amount of the suspended solid 10 added to the treated water tank 3 is, for example, about 3 to 10% by volume.

【0013】こうした構成の膜分離装置では、まず流入
ポンプ1が作動され、被処理水流入ラインL1を通して
被処理水2が処理水槽3内に流入される。一方、吸引ポ
ンプ5が作動され、膜エレメント4aによって被処理水
2が膜分離され、膜分離による処理水は、膜エレメント
4aから集水管及び排出ラインL2を通して排出され
る。他方、ブロワ9が作動されラインL3に空気が供給
され散気管8から気泡7が発生させられる。すると、気
泡7が膜ユニット4のケース4b内を上昇して被処理水
2の上昇流を形成し、ケース4bの外側では下降流を形
成し、これに伴って浮遊固体10が膜ユニット4のケー
ス4b内を上昇し、上昇した浮遊固体10は、ケース4
bの外側を下降する。こうして浮遊固体10は被処理水
2中で循環流動する。浮遊固体10は、上昇時に膜エレ
メント4a間を通過しながら膜面を擦りつけて洗浄し、
膜面の閉塞を防止する。
In the membrane separation device having such a structure, first, the inflow pump 1 is operated, and the treated water 2 flows into the treated water tank 3 through the treated water inflow line L1. On the other hand, the suction pump 5 is operated, the water to be treated 2 is membrane-separated by the membrane element 4a, and the treated water by membrane separation is discharged from the membrane element 4a through the water collecting pipe and the discharge line L2. On the other hand, the blower 9 is operated, air is supplied to the line L3, and bubbles 7 are generated from the air diffuser 8. Then, the bubbles 7 rise in the case 4b of the membrane unit 4 to form an upward flow of the water 2 to be treated, and form a downward flow outside the case 4b, and the floating solids 10 of the membrane unit 4 are accordingly formed. The floating solids 10 that have risen in the case 4b are raised in the case 4
It goes down outside b. In this way, the floating solid 10 circulates and flows in the water 2 to be treated. The floating solid 10 is cleaned by rubbing the membrane surface while passing between the membrane elements 4a when rising.
Prevents clogging of the membrane surface.

【0014】このとき、被処理水2の循環流速が不十分
であると、浮遊固体10の比重は1よりも小さいため、
一旦上昇した浮遊固体10の中には下降しないで上部に
とどまる浮遊固体10が存在する場合がある。こうした
浮遊固体10が増加すると、被処理水2中で循環流動す
る浮遊固体10が減少し、膜エレメント4aの洗浄が十
分に行われなくなり、結果として膜が比較的短期間で閉
塞する場合がある。
At this time, if the circulation velocity of the water to be treated 2 is insufficient, the specific gravity of the suspended solids 10 is smaller than 1, so that
In some cases, the floating solids 10 that have once risen may remain in the upper portion without falling. When such suspended solids 10 increase, the suspended solids 10 that circulate and flow in the water to be treated 2 decrease, the membrane element 4a is not sufficiently washed, and as a result, the membrane may be blocked in a relatively short period of time. .

【0015】そこで、図2に示すように、膜分離装置
は、処理水槽3を横切る水平面11における開口面積T
(m2)と同平面11における膜ユニット4の占有面積
M(m2)との比(M/T)が下記式: M/T≧0.15 (1) の関係を満たすように構成されている。
Therefore, as shown in FIG. 2, in the membrane separation device, the opening area T in the horizontal plane 11 that traverses the treated water tank 3 is shown.
(M 2) and the ratio of the occupied area M (m 2) of the membrane unit 4 in the same plane 11 (M / T) is the following formula: is configured to satisfy the relation of M / T ≧ 0.15 (1) ing.

【0016】ここで、処理水槽3の開口面積とは、平面
11と処理水槽3の内壁面3aとの交線で囲まれた開口
領域12の面積をいう。例えば、処理水槽3が直方体形
状である場合、平面11と処理水槽3の開口領域12の
形状は矩形又は正方形となり、その場合には直交する二
辺の長さをそれぞれA(m),B(m)とすると、T=
A×B(m2)となる。
Here, the opening area of the treated water tank 3 refers to the area of the opening region 12 surrounded by the line of intersection between the flat surface 11 and the inner wall surface 3a of the treated water tank 3. For example, when the treated water tank 3 has a rectangular parallelepiped shape, the shape of the flat surface 11 and the opening area 12 of the treated water tank 3 is a rectangle or a square, and in that case, the lengths of two orthogonal sides are A (m) and B (, respectively). m), T =
It becomes A × B (m 2 ).

【0017】一方、膜ユニット4の占有面積とは、処理
水槽3を横切る平面11内での膜ユニット4の占有領域
13の面積、即ちケース4bの外周で囲まれる領域の面
積をいう。例えば膜ユニット4の占有領域13の形状が
矩形又は正方形となる場合には直交する二辺の長さをそ
れぞれa(m),b(m)とすると、M=a×b
(m 2)となる。
On the other hand, the area occupied by the membrane unit 4 means the processing
Occupied area of the membrane unit 4 within the plane 11 that crosses the water tank 3.
13 area, that is, the surface of the area surrounded by the outer periphery of the case 4b
Say product. For example, the shape of the occupied area 13 of the membrane unit 4 is
When it becomes a rectangle or a square, the length of two sides that intersect at right angles
Letting a (m) and b (m) respectively, M = a × b
(M 2).

【0018】このようにすると、浮遊固体10が被処理
水2の上部に止まることなく、循環流動する浮遊固体1
0の減少が十分に防止されるので、膜面の閉塞が十分に
防止される。なお、上記比(M/T)は、浮遊固体10
の有効利用の観点から、0.15以上であることが好ま
しい。更に、上記比(M/T)は、浮遊固体10を円滑
に循環流動させる点から、0.9以下であることが好ま
しい。
By doing so, the floating solids 10 do not stop on the upper part of the water 2 to be treated, but the floating solids 1 circulate and flow.
Since the decrease of 0 is sufficiently prevented, the clogging of the membrane surface is sufficiently prevented. The above ratio (M / T) is 10
From the viewpoint of effective use of the above, it is preferably 0.15 or more. Further, the above ratio (M / T) is preferably 0.9 or less from the viewpoint of smoothly circulating and flowing the suspended solid 10.

【0019】なお、上記(1)式は以下のようにして導
出される。
The above equation (1) is derived as follows.

【0020】即ち、被処理水2中で循環流が形成されな
いときの浮遊固体10の浮上速度を約0.09m/秒と
すると、一旦被処理水2の上部まで上昇した浮遊固体1
0が膜ユニット4の外側で下降するためには、膜ユニッ
ト4の外側での被処理水2の循環流速が0.09m/秒
以上であることが必要である。ここで、循環流速は散気
装置6からの吹出し空気の流量で決まり、空気の流量
は、膜エレメント4aの膜面洗浄に十分な流量であるこ
とを必要とする。そうすると、膜ユニット4内を通る空
気の流量は約1.5M(m3/分)となる。この空気に
よって循環する被処理水2の流速は約0.5(m/秒)
であり、従って、被処理水2の循環流量は0.5Mとな
る。
That is, when the floating speed of the floating solids 10 when a circulating flow is not formed in the water 2 to be treated is about 0.09 m / sec, the floating solids 1 once raised to the upper part of the water 2 to be treated.
In order for 0 to fall outside the membrane unit 4, the circulation flow velocity of the water to be treated 2 outside the membrane unit 4 needs to be 0.09 m / sec or more. Here, the circulation flow velocity is determined by the flow rate of the air blown out from the air diffuser 6, and the flow rate of the air needs to be a sufficient flow rate for cleaning the membrane surface of the membrane element 4a. Then, the flow rate of the air passing through the membrane unit 4 is about 1.5 M (m 3 / min). The flow velocity of the treated water 2 circulated by this air is about 0.5 (m / sec)
Therefore, the circulation flow rate of the water to be treated 2 is 0.5M.

【0021】この循環流量は、膜ユニット4の外側でも
同じであるから、膜ユニット4の外側での循環流速は、
上記の循環流量を膜ユニット4の外側の流路面積で除し
た値となる。ここで、膜ユニット4の外側の流路面積
は、処理水槽3を横切る平面における開口面積T
(m2)と膜ユニット4の占有面積M(m2)との差(T
−M)(m2)で表される。
Since this circulation flow rate is the same outside the membrane unit 4, the circulation flow velocity outside the membrane unit 4 is
It is a value obtained by dividing the above circulation flow rate by the flow passage area outside the membrane unit 4. Here, the flow passage area on the outer side of the membrane unit 4 is the opening area T in the plane crossing the treated water tank 3.
(M 2) and the difference between the area occupied by M membrane unit 4 (m 2) (T
-M) represented by (m 2).

【0022】従って、下向きの循環流速は0.5M/
(T−M)で表され、循環流動する浮遊固体10の減少
を防止するためには、0.5M/(T−M)≧0.09
であることを要する。この式を整理すると、上記(1)
式M/T≧0.15が導出されることになる。
Therefore, the downward circulation flow rate is 0.5 M /
In order to prevent the reduction of the suspended solid 10 which is represented by (TM) and circulates, 0.5M / (TM) ≧ 0.09
Is required. When this formula is arranged, the above (1)
The formula M / T ≧ 0.15 will be derived.

【0023】本発明は、前述した実施形態に限定される
ものではない。例えば前述の実施形態では、処理水槽3
内に膜ユニット4が1つだけ配置されているが、図4に
示すように、処理水槽3内に複数の膜ユニット14が配
置されてもよい。この場合、膜ユニット4の占有面積M
(m2)は、処理水槽3を横切る平面11における各膜
ユニット14の占有面積をM’(m2)とすると、M’
×(膜ユニット14の数)で表される。
The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the treated water tank 3
Although only one membrane unit 4 is arranged inside, a plurality of membrane units 14 may be arranged inside the treated water tank 3 as shown in FIG. 4. In this case, the occupied area M of the membrane unit 4
(M 2) is the area occupied by the membrane unit 14 in the plane 11 transverse to the process water tank 3 M 'When (m 2), M'
It is represented by x (the number of membrane units 14).

【0024】また、本発明の膜分離装置は、有機性廃水
等の処理に適用することが可能であり、例えば産業廃水
の生物処理、農村集落廃水及び小規模下水の生物処理、
CP(コミュニティプラントないし団地汚水処理施設)
の生物処理、浸出水処理等に適用可能である。
The membrane separation device of the present invention can be applied to the treatment of organic wastewater, for example, biological treatment of industrial wastewater, biological treatment of rural settlement wastewater and small-scale sewage,
CP (community plant or housing wastewater treatment facility)
It can be applied to biological treatment, leachate treatment, etc.

【0025】次に、本発明の内容を実施例を用いてより
具体的に説明する。
Next, the contents of the present invention will be described more specifically with reference to examples.

【0026】[0026]

【実施例】(実施例1)膜分離装置の処理水槽内に合成
下水を投入し、合成下水で活性汚泥(MLSS1.2重
量%)を順養させた。また、処理水槽の合成下水中に
は、A4サイズの平膜エレメント5枚からなる膜ユニッ
ト(占有面積M=0.01725m2)をそれぞれ浸漬
配置し、さらに処理水槽の合成下水中には、粒径3mm
でポリプロピレンからなるビーズ状の浮遊固体を処理水
槽の容量に対し容積比で3%添加した。処理水槽として
は、M/Tが0.15となるものを用いた。
Example (Example 1) Synthetic sewage was put into a treated water tank of a membrane separation device, and activated sludge (MLSS 1.2% by weight) was acclimated with the synthetic sewage. Further, in the synthetic sewage of the treated water tank, a membrane unit (occupied area M = 0.01725 m 2 ) consisting of five A4 size flat membrane elements was immersed and arranged. Diameter 3 mm
Then, 3% by volume of a beaded floating solid made of polypropylene was added to the volume of the treated water tank. The treated water tank used had an M / T of 0.15.

【0027】こうして用意した膜分離装置について、膜
の透過流束を1.5m3/m2/日、吹込み空気の流量を
26l/分として膜分離を行った。そして、この膜分離
装置について200時間後の膜差圧〔kPa〕をプロッ
トした。その結果を図5に示す。図5に示すように、膜
差圧の上昇は見られず、浮遊固体による膜面洗浄が十分
に行われていることが分かった。
The membrane separation apparatus thus prepared was subjected to membrane separation with a permeation flux of the membrane of 1.5 m 3 / m 2 / day and a flow rate of blown air of 26 l / min. Then, the membrane pressure difference [kPa] after 200 hours was plotted for this membrane separation device. The result is shown in FIG. As shown in FIG. 5, no increase in transmembrane pressure was observed, and it was found that the membrane surface was sufficiently cleaned with the suspended solids.

【0028】(実施例2)M/Tを0.3とした以外は
実施例1と同様の膜分離装置を用意し、この膜分離装置
を用いて実施例1と同様にして膜分離を行い、膜差圧を
測定した。その結果を図5に示す。図5に示すように、
膜差圧の上昇は見られず、浮遊固体による膜面洗浄が十
分に行われていることが分かった。
(Example 2) A membrane separator similar to that of Example 1 was prepared except that M / T was set to 0.3, and this membrane separator was used to perform membrane separation in the same manner as in Example 1. The transmembrane pressure was measured. The result is shown in FIG. As shown in FIG.
No increase in transmembrane pressure was observed, and it was found that the membrane surface was sufficiently cleaned with suspended solids.

【0029】(実施例3)M/Tを0.5とした以外は
実施例1と同様の膜分離装置を用意し、この膜分離装置
を用いて実施例1と同様にして膜分離を行い、膜差圧を
測定した。その結果を図5に示す。図5に示すように、
膜差圧の上昇は見られず、浮遊固体による膜面洗浄が十
分に行われていることが分かった。
(Example 3) A membrane separator similar to that of Example 1 was prepared except that M / T was set to 0.5, and this membrane separator was used to perform membrane separation in the same manner as in Example 1. The transmembrane pressure was measured. The result is shown in FIG. As shown in FIG.
No increase in transmembrane pressure was observed, and it was found that the membrane surface was sufficiently cleaned with suspended solids.

【0030】(比較例1)M/Tを0.05とした以外
は実施例1と同様の膜分離装置を用意し、この膜分離装
置を用いて実施例1と同様にして膜分離を行い、膜差圧
を測定した。その結果を図5に示す。図5に示すよう
に、膜差圧が相当に上昇しており、浮遊固体による膜面
洗浄が十分に行われていないことが分かった。また、浮
遊固体は循環流に乗らず、その大半が浮上してしまっ
た。
(Comparative Example 1) A membrane separator similar to that of Example 1 was prepared except that M / T was set to 0.05, and the membrane separation was performed in the same manner as in Example 1 using this membrane separator. The transmembrane pressure was measured. The result is shown in FIG. As shown in FIG. 5, it was found that the transmembrane pressure was considerably increased, and the membrane surface was not sufficiently washed with the suspended solids. In addition, suspended solids did not ride on the circulating flow, and most of them floated.

【0031】(比較例2)M/Tを0.1とした以外は
実施例1と同様の膜分離装置を用意し、この膜分離装置
を用いて実施例1と同様にして膜分離を行い、膜差圧を
測定した。その結果を図5に示す。図5に示すように、
膜差圧は相当に上昇しており、浮遊固体による膜面洗浄
が十分に行われていないことが分かった。また、浮遊固
体は循環流に乗らず、その大半が浮上してしまった。
(Comparative Example 2) A membrane separator similar to that of Example 1 was prepared except that M / T was set to 0.1, and this membrane separator was used to perform membrane separation in the same manner as in Example 1. The transmembrane pressure was measured. The result is shown in FIG. As shown in FIG.
The transmembrane pressure increased considerably, and it was found that the membrane surface was not sufficiently washed with suspended solids. In addition, suspended solids did not ride on the circulating flow, and most of them floated.

【0032】[0032]

【発明の効果】以上説明したように本発明の膜分離装置
によれば、膜ユニットの外側で浮遊固体には循環流によ
り十分な下降速度が与えられるため、膜分離を継続して
も循環流動する浮遊固体の減少が防止され、浮遊固体に
よる膜面洗浄が十分に行われる。その結果、膜の閉塞を
十分に防止することができる。
As described above, according to the membrane separation apparatus of the present invention, a sufficient descending speed is given to the suspended solids outside the membrane unit by the circulation flow, so that the circulation flow is continued even when the membrane separation is continued. As a result, the floating solids are prevented from decreasing, and the film surface is sufficiently cleaned with the floating solids. As a result, the clogging of the membrane can be sufficiently prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の膜分離装置の一実施形態を概略的に示
す縦断面図である。
FIG. 1 is a vertical sectional view schematically showing an embodiment of a membrane separation device of the present invention.

【図2】図1の膜分離装置を概略的に示す横断面図であ
る。
2 is a cross-sectional view schematically showing the membrane separation device of FIG.

【図3】図1の膜分離装置における膜ユニット、処理水
槽の寸法を示す横断面図である。
FIG. 3 is a cross-sectional view showing dimensions of a membrane unit and a treated water tank in the membrane separation device of FIG.

【図4】本発明の膜分離装置の他の実施形態を示す横断
面図である。
FIG. 4 is a cross-sectional view showing another embodiment of the membrane separation device of the present invention.

【図5】実施例1〜3及び比較例1,2についての膜分
離装置のM/Tと膜差圧との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between M / T and transmembrane pressure difference of the membrane separators of Examples 1 to 3 and Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

2…被処理水、3…処理水槽、4…膜ユニット、6…散
気装置、10…浮遊固体、11…平面。
2 ... Treated water, 3 ... Treated water tank, 4 ... Membrane unit, 6 ... Air diffuser, 10 ... Floating solid, 11 ... Plane.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被処理水を受容する処理水槽と、前記処
理水槽内の前記被処理水中に浸漬配置される膜ユニット
と、前記処理水槽内の前記被処理水中で浮上する浮遊固
体と、前記被処理水中で前記浮遊固体を散気によって循
環流動させる散気装置とを備える膜分離装置において、 前記処理水槽を横切る平面における前記処理水槽の開口
面積T(m2)と前記膜ユニットの占有面積M(m2)と
の比が下記式: 0.15≦M/T≦0.9 を満たすことを特徴とする膜分離装置。
1. A treated water tank for receiving treated water, a membrane unit immersed in the treated water in the treated water tank, a floating solid floating in the treated water in the treated water tank, and In a membrane separation device comprising an air diffuser that circulates and flows the suspended solids in the water to be treated, an opening area T (m 2 ) of the treated water tank in a plane that crosses the treated water tank and an occupied area of the membrane unit. A membrane separation device characterized in that the ratio with M (m 2 ) satisfies the following formula: 0.15 ≦ M / T ≦ 0.9.
【請求項2】 前記浮遊固体の粒径が0.5〜3mmで
あることを特徴とする請求項1に記載の膜分離装置。
2. The membrane separation apparatus according to claim 1, wherein the suspended solid has a particle diameter of 0.5 to 3 mm.
【請求項3】 前記浮遊固体の比重が0.3以上であっ
て1より小さいことを特徴とする請求項1又は2に記載
の膜分離装置。
3. The membrane separation apparatus according to claim 1, wherein the specific gravity of the suspended solid is 0.3 or more and less than 1.
JP07965099A 1999-03-24 1999-03-24 Membrane separation device Ceased JP3464769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07965099A JP3464769B2 (en) 1999-03-24 1999-03-24 Membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07965099A JP3464769B2 (en) 1999-03-24 1999-03-24 Membrane separation device

Publications (2)

Publication Number Publication Date
JP2000271453A JP2000271453A (en) 2000-10-03
JP3464769B2 true JP3464769B2 (en) 2003-11-10

Family

ID=13696011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07965099A Ceased JP3464769B2 (en) 1999-03-24 1999-03-24 Membrane separation device

Country Status (1)

Country Link
JP (1) JP3464769B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1382377A1 (en) * 2002-07-15 2004-01-21 TUCHENHAGEN GmbH Joint filtering and filter cleaning
JP2004243248A (en) * 2003-02-14 2004-09-02 Hitachi Plant Eng & Constr Co Ltd Nitrogen removing device
DE102006008453A1 (en) * 2006-02-17 2007-08-23 Itn Nanovation Ag Cleaning process for wastewater
JP2013132602A (en) * 2011-12-27 2013-07-08 Hitachi Plant Technologies Ltd Flat membrane type membrane separation device

Also Published As

Publication number Publication date
JP2000271453A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
JP4635666B2 (en) Water treatment method
US20090127176A1 (en) Modular Water Treatment Unit
JPH07155758A (en) Waste water treating device
JP6381412B2 (en) Seawater desalination apparatus and method
JP3464769B2 (en) Membrane separation device
US10040030B2 (en) Filtration device having internal recirculation
JP4119997B2 (en) Wastewater septic tank
JP4475924B2 (en) Filtration device
JP2001038177A (en) Solid-liquid separation process and separation membrane module for the same
JP2000185279A (en) Sewage treatment method and apparatus
JPH06285484A (en) Soil water purifying tank
JPH0822371B2 (en) Membrane filtration device
JP6667188B2 (en) Water treatment equipment, water treatment method
JP2021122756A (en) Sedimentation basin
JP2004122080A (en) Septic tank with chambers having prescribed volume ratio
JP4022815B2 (en) Solid-liquid separation tank and sewage septic tank having a filter medium layer in the second chamber
JP2004243199A (en) Contaminated water purification facility
JP4310953B2 (en) Septic tank
JP4454825B2 (en) Wastewater purification tank and wastewater purification method
JP2002159804A (en) Sedimentation and separation chamber, sludge concentration tank and sewage cleaning tank equipped therewith
JP2002357200A (en) Air lift pump, flow regulating tank and septic tank provided with the same, and method for operating air lift pump
JP3737015B2 (en) Aeration depth changeable membrane separation unit
JP2001096287A (en) Private sewage treatment tank
JPH0790151B2 (en) Throwing type solid-liquid separator
JP2001121143A (en) Membrane separator

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition