Nothing Special   »   [go: up one dir, main page]

JP3445941B2 - Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same - Google Patents

Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same

Info

Publication number
JP3445941B2
JP3445941B2 JP35866998A JP35866998A JP3445941B2 JP 3445941 B2 JP3445941 B2 JP 3445941B2 JP 35866998 A JP35866998 A JP 35866998A JP 35866998 A JP35866998 A JP 35866998A JP 3445941 B2 JP3445941 B2 JP 3445941B2
Authority
JP
Japan
Prior art keywords
evaporator
absorber
refrigerant
stage
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35866998A
Other languages
Japanese (ja)
Other versions
JP2000179975A (en
Inventor
達郎 藤居
雄宏 佐藤
富久 大内
聡 三宅
Original Assignee
株式会社 日立インダストリイズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立インダストリイズ filed Critical 株式会社 日立インダストリイズ
Priority to JP35866998A priority Critical patent/JP3445941B2/en
Publication of JP2000179975A publication Critical patent/JP2000179975A/en
Application granted granted Critical
Publication of JP3445941B2 publication Critical patent/JP3445941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収冷温水機及び
それを用いた大温度差空調システムに係り、特にビル空
調や地域冷暖房システムに好適な多段蒸発吸収型の吸収
冷温水機及びそれを用いた大温度差空調システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller-heater and a large temperature difference air-conditioning system using the same, and more particularly to a multi-stage evaporative absorption-type absorption chiller-heater suitable for building air-conditioning and district heating and cooling systems. It relates to a large temperature difference air conditioning system used.

【0002】[0002]

【従来の技術】吸収式冷凍機は、フロン系の冷媒を使用
しないこと、電力使用量が僅かであること等の理由か
ら、ビル空調や地域冷暖房システムの熱源機として広く
用いられている。そして、暖房機能も有する吸収冷温水
機は、空調用熱源機として広く普及している。この吸収
式冷凍機や吸収冷温水機のさらなる効率向上を図って、
蒸発器と吸収器を複数組備えた、いわゆる、多段蒸発吸
収型の吸収冷温水機があり、その一例が、特開平2−7
8866号公報に記載されている。この公報に記載の収
式冷凍機では、蒸発器、吸収器、凝縮器及び再生器がそ
れぞれ第1および第2の要素に2分割されている。そし
て、冷水を温度の高い第2の蒸発器、第1の蒸発器の順
に通水している。
2. Description of the Related Art Absorption refrigerators are widely used as heat sources for building air conditioning and district heating / cooling systems because they do not use CFC-based refrigerants and consume little electricity. The absorption chiller / heater having a heating function is widely used as a heat source unit for air conditioning. To further improve the efficiency of this absorption refrigerator and absorption chiller-heater,
There is a so-called multi-stage evaporative absorption-type absorption chiller-heater equipped with a plurality of evaporators and absorbers, one example of which is JP-A-2-7.
It is described in Japanese Patent No. 8866. In the storage refrigerator described in this publication, an evaporator, an absorber, a condenser and a regenerator are each divided into two parts, a first element and a second element. Then, cold water is passed through the second evaporator having the highest temperature and the first evaporator in this order.

【0003】2段蒸発吸収型の吸収冷凍機で、上部熱交
換器側と下部熱交換器側との差圧を適正に保ち、下部熱
交換器の伝熱管に均等に液体を滴下させ、能力を向上さ
せるために隔壁と液封トレーを改良したものが特開平9
−14792号に開示されている。
In a two-stage evaporative absorption type absorption refrigerator, the pressure difference between the upper heat exchanger side and the lower heat exchanger side is properly maintained, and the liquid is evenly dropped into the heat transfer tubes of the lower heat exchanger to achieve the capability. Patent Document 9: Improvement of partition wall and liquid sealing tray for improving
No. 14792.

【0004】ところで、吸収冷温水機を用いた空調シス
テムにおいて、冷温水機と空調負荷系統を循環する冷水
の最大温度差を従来の5K〜5.5Kよりさらに大きく
し、冷水の循環量を小さくする大温度差空調システムが
ある。この大温度差空調システムの例が、「産業機械」
1997年10月号 第32頁〜35頁、特にその表1
に記載されている。この大温度差空調システムは、冷水
の搬送動力の低減や配管サイズの小型化を可能にする利
点や、既設の空調システムを利用したときに、冷水ポン
プおよび配管サイズを変更しなくても冷暖房の容量を増
大させることができる利点を有している。
By the way, in an air conditioning system using an absorption chiller-heater, the maximum temperature difference of the chilled water circulating between the chiller-heater and the air conditioning load system is made larger than the conventional 5K to 5.5K, and the chilled water circulation amount is reduced. There is a large temperature difference air conditioning system. An example of this large temperature difference air conditioning system is "industrial machinery".
October 1997, pp. 32-35, especially Table 1
It is described in. This large-temperature-difference air-conditioning system has the advantage that it can reduce the transport power of chilled water and downsize the piping size, and that it can be used for heating and cooling without changing the chilled water pump and piping size when using the existing air-conditioning system. It has the advantage that the capacity can be increased.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
2−78866号公報に記載の多段蒸発吸収型の吸収冷
凍機では、冷水温度の低い第1の蒸発器に凝縮器から4
0℃程度の冷媒液が流入するので自己蒸発が生じ、蒸発
器内の圧力が上昇する。その結果、特に蒸発温度および
圧力が低い第1の蒸発器において冷水の冷却が不十分に
なる。また、自己蒸発に伴って微細なミストが発生し、
その一部が蒸発器から吸収器への冷媒蒸気の流れに伴っ
て吸収器に流入するので、冷凍能力に寄与しない無効冷
媒を生じる恐れがある。
However, in the absorption refrigerating machine of the multi-stage evaporative absorption type disclosed in Japanese Patent Application Laid-Open No. 2-78866, the first evaporator having a low cold water temperature is connected to the condenser 4 to the first evaporator.
Since the refrigerant liquid of about 0 ° C. flows in, self-evaporation occurs and the pressure in the evaporator rises. As a result, the cooling of the cold water becomes insufficient, especially in the first evaporator where the evaporation temperature and pressure are low. In addition, fine mist is generated due to self-evaporation,
Since a part of the refrigerant flows into the absorber along with the flow of the refrigerant vapor from the evaporator to the absorber, there is a risk of producing ineffective refrigerant that does not contribute to the refrigerating capacity.

【0006】また、特開平9-14792号公報に記載
のものは、性能の向上は可能なものの、構造が複雑であ
る。そして、この公報に記載のものでは、上部熱交換器
側の圧力と下部熱交換器側との圧力との差圧を適正に保
てるものの、下部熱交換器側の伝熱管に冷媒を均一に滴
下させるための適正ヘッドについては、考慮されていな
い。
Further, the structure described in Japanese Patent Laid-Open No. 9-14792 can improve the performance, but has a complicated structure. And, in the one described in this publication, although the differential pressure between the pressure on the upper heat exchanger side and the pressure on the lower heat exchanger side can be appropriately maintained, the refrigerant is uniformly dropped onto the heat transfer tube on the lower heat exchanger side. The proper head for making it do not consider.

【0007】一方、「産業機械」1997年10月号に
記載のものは、冷却水の出口温度を上げても凝縮器の圧
力が上昇しないようにして、冷水の温度と冷却水の温度
を大温度差にし、その結果、搬送動力を低減できるとい
う利点を有している。しかしながら、蒸発器を単一の空
間で構成して一様な圧力下で動作させているので、冷水
低温部において蒸発温度と冷水温度の差が小さくなり、
伝熱面積が必ずしも十分に活用されているわけではな
い。
On the other hand, the one described in the October 1997 issue of "Industrial Machinery" prevents the pressure of the condenser from rising even if the outlet temperature of the cooling water is raised so that the temperature of the cooling water and the temperature of the cooling water are increased. This has the advantage that the temperature difference is used and, as a result, the transport power can be reduced. However, since the evaporator is configured with a single space and operated under uniform pressure, the difference between the evaporation temperature and the cold water temperature in the cold water low temperature part becomes small,
The heat transfer area is not always fully utilized.

【0008】本発明は、上記従来技術における不具合に
鑑みなされたものであり、その目的は上下方向に分割さ
れた多段蒸発吸収型の吸収冷温水機において、下段の蒸
発吸収器へ冷媒を均一に滴下することにある。本発明の
他の目的は、多段蒸発吸収型の吸収冷温水機において、
構造を簡単化し、安価にすることにある。本発明のさら
に他の目的は多段蒸発吸収型の吸収冷温水機において、
信頼性を向上させることにある。
The present invention has been made in view of the above-mentioned problems in the prior art, and its object is to evenly distribute the refrigerant to the lower evaporative absorber in a vertically divided multi-stage evaporative absorption-type absorption chiller-heater. It is to drip. Another object of the present invention is to provide a multistage evaporative absorption type absorption chiller / heater,
The purpose is to simplify the structure and reduce the cost. Still another object of the present invention is a multi-stage evaporative absorption type absorption chiller / heater,
It is to improve reliability.

【0009】また、本発明の目的は、多段蒸発吸収型の
吸収冷温水機を備える大温度差空調システムにおいて、
冷水の温度差が大きいときにも、蒸発器の性能低下を抑
制することにある。さらに、大温度差空調システムにお
いて、エネルギー効率を向上させることも目的とする。
Another object of the present invention is to provide a large temperature difference air conditioning system including a multi-stage evaporative absorption type absorption chiller / heater.
Even when the temperature difference of cold water is large, it is to suppress the deterioration of the performance of the evaporator. Furthermore, it aims at improving energy efficiency in a large temperature difference air conditioning system.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の特徴は、隔壁により上下方向に多段に
形成された蒸発器および吸収器と、凝縮器と、再生器と
を備えた多段蒸発吸収型の吸収冷温水機において、前記
多段の蒸発器と多段の吸収器は前記隔壁により各々蒸発
器と吸収器の対を形成し、この隔壁に冷媒を収容する冷
媒再分配器を形成し、この冷媒再分配器の深さを10〜
100mmとしたものである。
The first feature of the present invention for achieving the above object is to provide an evaporator and an absorber, which are vertically formed in multiple stages by partition walls, a condenser, and a regenerator. In a multi-stage evaporative absorption-type absorption chiller-heater provided with, the multi-stage evaporator and the multi-stage absorber each form a pair of an evaporator and an absorber by the partition wall, and a refrigerant re-distributor that stores a refrigerant in this partition wall. And the depth of this refrigerant re-distributor is 10-
It is 100 mm.

【0011】そして好ましくは、多段に形成された蒸発
器段の中で最も高圧の段に前記凝縮器から液冷媒を導
き、前記冷媒再分配器の底部に設けた多数の冷媒滴下孔
を経て上部に形成された蒸発器段から下部に形成された
蒸発器段へ、上部の蒸発器段で液のまま滞留した冷媒を
導いたものである。
Preferably, the liquid refrigerant is led from the condenser to the highest pressure stage among the evaporator stages formed in multiple stages, and the upper part is passed through a large number of refrigerant dropping holes provided at the bottom of the refrigerant re-distributor. The refrigerant that has remained in the liquid state in the upper evaporator stage is guided from the evaporator stage formed in (1) to the evaporator stage formed in the lower part.

【0012】また好ましくは、多段に形成された蒸発器
の中で空調負荷系から還流する冷水が最初に流入する蒸
発器段に、凝縮器から冷媒を導く;多段に形成された吸
収器の中で稀溶液を再生器へ送液する溶液循環ポンプが
接続された吸収器段と対をなす蒸発器段に、凝縮器から
冷媒を導くものである。
[0012] Preferably, the refrigerant is introduced from the condenser to the evaporator stage into which the cold water flowing back from the air conditioning load system first flows in the evaporator formed in multiple stages; The refrigerant is introduced from the condenser to the evaporator stage which is paired with the absorber stage to which the solution circulation pump for sending the diluted solution to the regenerator is connected.

【0013】上記目的を達成するための本発明の第2の
特徴は、隔壁により上下方向に多段に形成された蒸発器
および吸収器と、凝縮器と、再生器とを備えた多段蒸発
吸収型の吸収冷温水機において、前記多段の蒸発器と多
段の吸収器は前記隔壁により各々蒸発器と吸収器の対を
形成し、この隔壁にこの隔壁の上側の蒸発器内で未蒸発
の冷媒を収容する冷媒再分配器と、この隔壁の上側の吸
収器内の溶液を収容する溶液再分配器とを形成し、この
冷媒再分配器及び溶液再分配器の深さを10〜100m
mとしたものである。
A second feature of the present invention for achieving the above object is a multi-stage evaporative absorption type equipped with an evaporator and an absorber which are vertically formed in multiple stages by partition walls, a condenser, and a regenerator. In the absorption chiller-heater, the multi-stage evaporator and the multi-stage absorber each form a pair of an evaporator and an absorber by the partition wall, and the partition wall is provided with the non-evaporated refrigerant in the evaporator above the partition wall. A refrigerant re-distributor for accommodating and a solution re-distributor for accommodating the solution in the absorber above the partition wall are formed, and the depth of the refrigerant re-distributor and the solution re-distributor is 10 to 100 m.
m.

【0014】そして好ましくは、多段に形成された各段
の吸収器が、流下液膜式の吸収器段である;冷媒再分配
器は隔壁に形成された箱状の窪みであり、この窪みの底
面には、この冷媒再分配器の下に位置する蒸発器段の複
数の伝熱管位置に対応して多数の液体滴下孔が形成され
ている;溶液再分配器は隔壁に形成された箱状の窪みで
あり、この窪みの底面には、この溶液再分配器の下に位
置する吸収器段の複数の伝熱管位置に対応して多数の液
体滴下孔が形成されている;多段に形成された蒸発器段
の中で被冷却流体が最後に流通する蒸発器と対をなす吸
収器段が、再生器から還流する溶液が最初に導かれる吸
収器段であり、この吸収器段に導かれる溶液と冷却水と
を熱交換する溶液冷却用熱交換器を設けたものである。
And, preferably, the absorber of each stage formed in multiple stages is a falling film type absorber stage; the refrigerant re-distributor is a box-shaped recess formed in the partition wall, A large number of liquid drip holes are formed on the bottom surface corresponding to a plurality of heat transfer tube positions of the evaporator stage located below the refrigerant re-distributor; the solution re-distributor is box-shaped formed on a partition wall. And a large number of liquid drip holes are formed on the bottom surface of the dimple corresponding to the positions of the plurality of heat transfer tubes of the absorber stage located below the solution re-distributor; The absorber stage, which is paired with the evaporator through which the fluid to be cooled last circulates, is the absorber stage to which the solution refluxed from the regenerator is first introduced, and is introduced to this absorber stage. A solution cooling heat exchanger for exchanging heat between the solution and the cooling water is provided.

【0015】上記目的を達成するための第3の特徴は、
蒸発器と吸収器を内包する容器を、それぞれが蒸発器の
一部と吸収器の一部を含む複数の空間に分割することに
より複数の蒸発器および吸収器を形成し、運転時に前記
の各空間がそれぞれ異なる圧力で作動するように構成し
た多段蒸発吸収型吸収冷温水機において、冷却水をまず
前記複数の吸収器のうちの一部に通水し、次に一旦凝縮
器に通水し、さらに前記複数の吸収器のうちの残りの部
分に順次通水するように冷却水流路を構成したものであ
る。
The third feature for achieving the above object is as follows.
A container containing an evaporator and an absorber is divided into a plurality of spaces each including a part of the evaporator and a part of the absorber to form a plurality of evaporators and absorbers, and each of the above-mentioned each during operation. In a multi-stage evaporative absorption-type absorption chiller-heater configured so that spaces operate at different pressures, cooling water is first passed through a part of the plurality of absorbers, and then once through a condenser. Further, the cooling water flow path is configured so as to sequentially pass water to the remaining portions of the plurality of absorbers.

【0016】上記目的を達成するための本発明の第4の
特徴は、熱源機系と負荷系を往復する冷水の行き温度と
戻り温度との温度差が、定格運転状態において5Kより
も大きい大温度差空調システムであって、隔壁により上
下方向に多段に形成された蒸発器および吸収器と、凝縮
器と、再生器とを有する多段蒸発吸収型の吸収冷温水機
を備え、この吸収冷温水機は、前記多段の蒸発器と多段
の吸収器が前記隔壁により各々蒸発器と吸収器の対を形
成し、この隔壁に冷媒を収容する冷媒再分配器が形成さ
れ、この冷媒再分配器の深さが10〜100mmとした
ものである。
The fourth feature of the present invention for achieving the above object is that the temperature difference between the going temperature and the returning temperature of the cold water that reciprocates between the heat source system and the load system is larger than 5K in the rated operating condition. A temperature-difference air-conditioning system, comprising a multi-stage evaporative absorption-type water cooler having an evaporator and an absorber vertically formed by a partition wall in multiple stages, a condenser, and a regenerator. In the machine, the multi-stage evaporator and the multi-stage absorber each form a pair of evaporator and absorber by the partition wall, and a refrigerant re-distributor for accommodating a refrigerant is formed in the partition wall. The depth is 10 to 100 mm.

【0017】上記目的を達成するための本発明の第5の
特徴は、熱源機系と負荷系を往復する冷水の行き温度と
戻り温度との温度差が、定格運転状態において5Kより
も大きい大温度差空調システムであって、隔壁により上
下方向に多段に形成された蒸発器および吸収器と、凝縮
器と、再生器とを有する多段蒸発吸収型の吸収冷温水機
を備え、前記多段の蒸発器と多段の吸収器は前記隔壁に
より各々蒸発器と吸収器の対を形成し、この隔壁にこの
隔壁の上側の蒸発器内で未蒸発の冷媒を収容する冷媒再
分配器と、この隔壁の上側の吸収器内の溶液を収容する
溶液再分配器とを形成し、この冷媒再分配器及び溶液再
分配器の深さを10〜100mmとしたものである。
The fifth feature of the present invention for achieving the above object is that the temperature difference between the going temperature and the returning temperature of the cold water that reciprocates between the heat source system and the load system is larger than 5K in the rated operating condition. A temperature difference air-conditioning system, comprising a multi-stage evaporative absorption-type absorption chiller / heater having an evaporator and an absorber formed in multiple stages in the vertical direction by partition walls, a condenser, and a regenerator, and the multi-stage evaporation The reactor and the multi-stage absorber form a pair of an evaporator and an absorber by the partition, respectively, and a refrigerant re-distributor for accommodating the refrigerant that has not evaporated in the evaporator above the partition and a partition of this partition. A solution re-distributor for containing the solution in the upper absorber is formed, and the depths of the refrigerant re-distributor and the solution re-distributor are 10 to 100 mm.

【0018】上記目的を達成するための本発明の第6の
特徴は、熱源機系と負荷系を往復する冷水の行き温度と
戻り温度との温度差が、定格運転状態において5Kより
も大きい大温度差空調システムにおいて、隔壁により上
下方向に多段に形成した蒸発器および吸収器と、凝縮器
と、再生器とを有し、前記多段の蒸発器と多段の吸収器
が前記隔壁により各々蒸発器と吸収器の対を形成した吸
収冷温水機を前記熱源機系の熱源機に用いたものであ
る。
The sixth feature of the present invention for achieving the above object is that the temperature difference between the going temperature and the returning temperature of the cold water that reciprocates between the heat source system and the load system is larger than 5K in the rated operating condition. In a temperature difference air conditioning system, an evaporator and an absorber are vertically formed in multiple stages by partition walls, a condenser, and a regenerator, and the multi-stage evaporator and the multi-stage absorber are respectively formed by the partition walls. And an absorption chiller-heater having a pair of absorbers are used as a heat source machine of the heat source machine system.

【0019】[0019]

【発明の実施の形態】以下、本発明のいくつかの実施例
を図面を用いて説明する。図1ないし図5は、本発明の
第1の実施例にかかる図である。これらの図において、
多段蒸発吸収型の吸収冷温水機は2段蒸発吸収型にして
いるが、段数はそれに限るものではない。図1は、2段
蒸発吸収型の吸収冷温水機の模式図である。2段蒸発吸
収型の吸収冷温水機は、高温再生器1、低温再生器2、
凝縮器3、蒸発器4、吸収器5、低温熱交換器6、高温
熱交換器7の各熱交換器とこれらを結ぶ配管、および冷
媒ポンプ41、稀溶液ポンプ51、濃溶液ポンプ61を
備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings. 1 to 5 are diagrams according to a first embodiment of the present invention. In these figures,
The multi-stage evaporative absorption type absorption chiller / heater is of a two-stage evaporative absorption type, but the number of stages is not limited thereto. FIG. 1 is a schematic diagram of a two-stage evaporative absorption type absorption chiller-heater. The two-stage evaporative absorption type absorption chiller-heater includes a high temperature regenerator 1, a low temperature regenerator 2,
The condenser 3, the evaporator 4, the absorber 5, the low temperature heat exchanger 6, the high temperature heat exchanger 7, and the pipes connecting them, and the refrigerant pump 41, the dilute solution pump 51, and the concentrated solution pump 61 are provided. ing.

【0020】蒸発器4および吸収器5は、それぞれ第1
蒸発器4aと第2蒸発器4b、第1吸収器5aと第2吸
収器5bの2段に分割されている。第1蒸発器4aと第
1吸収器5aの部分は、第2蒸発器4bと第2吸収器4
bの部分と、隔壁45によって分割されている。またこ
の隔壁45には、第1蒸発器の蒸発伝熱管44a上を流
下した冷媒液を第2蒸発器内の蒸発伝熱管44b上に再
分配する冷媒再分配器46、及び第1吸収器の吸収伝熱
管54a上を流下した溶液を第2吸収器内の吸収伝熱管
54b上に再分配する溶液再分配器56が設けられてい
る。
The evaporator 4 and the absorber 5 each have a first
It is divided into two stages, an evaporator 4a and a second evaporator 4b, and a first absorber 5a and a second absorber 5b. The portions of the first evaporator 4a and the first absorber 5a are the same as the second evaporator 4b and the second absorber 4a.
It is divided by the part b and the partition wall 45. Further, to the partition wall 45, a refrigerant re-distributor 46 for redistributing the refrigerant liquid flowing down on the evaporation heat transfer tube 44a of the first evaporator onto the evaporation heat transfer tube 44b in the second evaporator, and the first absorber A solution re-distributor 56 that redistributes the solution flowing down on the absorption heat transfer tube 54a onto the absorption heat transfer tube 54b in the second absorber is provided.

【0021】このように構成した多段蒸発吸収型の吸収
冷温水機の動作を、以下に説明する。吸収器5から高温
再生器1に、稀溶液ポンプ51により稀溶液が低温熱交
換器6および高温熱交換器7を経て送られる。高温再生
器1に取付けられた図示しないバーナー等の加熱手段が
この稀溶液を加熱濃縮し、濃溶液ができる。この濃溶液
は、高温熱交換器7において吸収器5から送られた稀溶
液と熱交換した後に、低温再生器2で加熱濃縮された濃
溶液と、高温熱交換器7を出た後に合流する。一方、稀
溶液が加熱濃縮される際に発生した高温の冷媒蒸気は低
温再生器2に導かれて、後述する低温再生器2における
溶液の加熱源となる。
The operation of the multistage evaporative absorption type absorption chiller-heater configured as described above will be described below. The diluted solution is sent from the absorber 5 to the high temperature regenerator 1 by the diluted solution pump 51 via the low temperature heat exchanger 6 and the high temperature heat exchanger 7. A heating means such as a burner (not shown) attached to the high temperature regenerator 1 heats and concentrates this dilute solution to form a concentrated solution. This concentrated solution exchanges heat with the dilute solution sent from the absorber 5 in the high temperature heat exchanger 7, and then merges with the concentrated solution heated and concentrated in the low temperature regenerator 2 after leaving the high temperature heat exchanger 7. . On the other hand, the high-temperature refrigerant vapor generated when the dilute solution is heated and concentrated is guided to the low-temperature regenerator 2 and serves as a heating source for the solution in the low-temperature regenerator 2 described later.

【0022】低温再生器2には、高温再生器1と同様
に、稀溶液が吸収器5から稀溶液ポンプ51により低温
熱交換器6を経て送られる。この稀溶液を高温再生器1
で発生した高温の冷媒蒸気が加熱濃縮して、濃溶液がで
きる。低温再生器2から流出して濃縮された溶液は、高
温再生器1で加熱濃縮され高温熱交換器7で冷却された
濃溶液と合流する。合流した濃溶液は、低温熱交換器6
で稀溶液と熱交換して温度を下げた後に、濃溶液ポンプ
61の吸込側に導かれる。一方、稀溶液が加熱濃縮され
る際に発生した冷媒蒸気は、低温再生器2に連接する凝
縮器3で凝縮する。高温再生器1で発生して低温再生器
2に導かれた冷媒蒸気は、低温再生器2内で溶液を加熱
して凝縮した後に凝縮器3に流入する。
Like the high temperature regenerator 1, the dilute solution is sent to the low temperature regenerator 2 from the absorber 5 by the dilute solution pump 51 through the low temperature heat exchanger 6. This dilute solution is used as a high temperature regenerator 1
The high-temperature refrigerant vapor generated in step 1 is heated and concentrated to form a concentrated solution. The solution flowing out from the low temperature regenerator 2 and concentrated is combined with the concentrated solution heated and concentrated in the high temperature regenerator 1 and cooled in the high temperature heat exchanger 7. The combined concentrated solution was used as a low temperature heat exchanger 6
After the heat is exchanged with the dilute solution to lower the temperature, the solution is introduced to the suction side of the concentrated solution pump 61. On the other hand, the refrigerant vapor generated when the dilute solution is heated and concentrated is condensed in the condenser 3 connected to the low temperature regenerator 2. The refrigerant vapor generated in the high temperature regenerator 1 and guided to the low temperature regenerator 2 flows into the condenser 3 after heating and condensing the solution in the low temperature regenerator 2.

【0023】凝縮器3では、低温再生器2で発生した冷
媒蒸気が冷却水によって冷却されて凝縮する。さらにこ
の冷媒液に、高温再生器1で発生して低温再生器2内で
凝縮した冷媒液が合流する。この合流した冷媒液は、冷
媒配管31によって蒸発器4へと導かれる。
In the condenser 3, the refrigerant vapor generated in the low temperature regenerator 2 is cooled by the cooling water and condensed. Further, the refrigerant liquid generated in the high temperature regenerator 1 and condensed in the low temperature regenerator 2 joins with this refrigerant liquid. The combined refrigerant liquid is guided to the evaporator 4 by the refrigerant pipe 31.

【0024】蒸発器4では、凝縮器3から流入した冷媒
液が、第2蒸発器4bに導かれる。このとき、冷媒液の
温度は凝縮器3における凝縮温度の約40℃となる。流
入する冷媒液は第2蒸発器4b内の蒸発温度に対して過
熱状態であるから、一部自己蒸発し、その残りが底部に
滞留する。
In the evaporator 4, the refrigerant liquid flowing from the condenser 3 is guided to the second evaporator 4b. At this time, the temperature of the refrigerant liquid becomes about 40 ° C. which is the condensation temperature in the condenser 3. The inflowing refrigerant liquid is in a superheated state with respect to the evaporation temperature in the second evaporator 4b, so that it partially self-evaporates and the rest remains in the bottom.

【0025】第2蒸発器4bは冷水の流れの上流(高
温)側にあるから、第2蒸発器の冷水出口温度は、ほぼ
冷温水機全体の中間温度となる。冷水の温度差を通常の
5K(12℃→7℃)とすると、約9.5℃となる。し
たがって、蒸発温度に対するアプローチ温度を3Kとす
ると、第2蒸発器4bにおける蒸発温度は約6.5℃と
なる。これより、凝縮器3から流入する冷媒液が過熱状
態であることがわかる。
Since the second evaporator 4b is on the upstream (high temperature) side of the flow of cold water, the cold water outlet temperature of the second evaporator is approximately the intermediate temperature of the entire cold / hot water machine. Assuming that the temperature difference of cold water is 5 K (12 ° C. → 7 ° C.), the temperature difference is about 9.5 ° C. Therefore, if the approach temperature to the evaporation temperature is 3K, the evaporation temperature in the second evaporator 4b will be about 6.5 ° C. From this, it can be seen that the refrigerant liquid flowing from the condenser 3 is in an overheated state.

【0026】蒸発器4の底部に滞留した冷媒液は、第2
蒸発器4bの伝熱管群44b上で蒸発しきれずに流下し
た冷媒液と合流して、冷媒ポンプ41により冷媒吐出配
管42を通って第1蒸発器4a内に設けられた冷媒分配
装置43へ導かれる。
The refrigerant liquid accumulated at the bottom of the evaporator 4 is
On the heat transfer tube group 44b of the evaporator 4b, the refrigerant liquid merges with the refrigerant liquid that has not completely evaporated, and is guided by the refrigerant pump 41 through the refrigerant discharge pipe 42 to the refrigerant distribution device 43 provided in the first evaporator 4a. Get burned.

【0027】第1蒸発器4aでは、冷媒液が冷媒分配器
43から蒸発伝熱管44aの表面に供給される。これに
より、管外に流下液膜が形成され、冷媒液は管内を流れ
る冷水から熱を奪って蒸発する。管外で蒸発した冷媒蒸
気は、第1吸収器5aに吸収され、蒸発しきれずに残っ
た冷媒は隔壁45に設置された冷媒再分配器46へ流下
する。このとき、伝熱管を固定した蒸発器の内壁あるい
は管軸方向途中に設けられた伝熱管支持板に、伝熱管群
上を流下する過程で移動した冷媒や、管群上から飛散し
て蒸発器の内壁に付着して蒸発せずに流下した冷媒も、
冷媒再分配器46へ流下する。
In the first evaporator 4a, the refrigerant liquid is supplied from the refrigerant distributor 43 to the surface of the evaporation heat transfer tube 44a. As a result, a falling liquid film is formed outside the pipe, and the refrigerant liquid takes heat from the cold water flowing inside the pipe to evaporate. The refrigerant vapor evaporated outside the pipe is absorbed by the first absorber 5a, and the refrigerant that has not been completely evaporated and flows down to the refrigerant re-distributor 46 installed in the partition wall 45. At this time, the refrigerant that has moved in the process of flowing down the heat transfer tube group or the evaporator that is scattered from the tube group on the inner wall of the evaporator with the heat transfer tube fixed or the heat transfer tube support plate provided in the middle of the tube axis direction The refrigerant that adhered to the inner wall of the and flowed down without evaporating,
It flows down to the refrigerant re-distributor 46.

【0028】第2蒸発器4bでは、冷媒が冷媒再分配器
46から蒸発伝熱管44bの表面に供給され、第1蒸発
器と同様に蒸発伝熱管44bの管外で蒸発する。蒸発し
た冷媒蒸気は、第2吸収器5bに吸収される。蒸発せず
に流下した冷媒は、凝縮器3から流入した冷媒とともに
再び第1蒸発器内に送られる。冷水は、第2蒸発器で冷
却された後に第1蒸発器で冷却され、冷房負荷系へ導か
れる。したがって、伝熱管内を流れる冷水の温度は、上
流側にある第2蒸発器4bの方が高い。管外における冷
媒の蒸発温度も第2蒸発器4bの方が高い。すなわち、
第2蒸発器4bは、第1蒸発器4aに対して高い圧力で
作動する。冷房負荷系を通過して温度が上昇した冷水
は、再び第2蒸発器4bへ還流する。
In the second evaporator 4b, the refrigerant is supplied from the refrigerant re-distributor 46 to the surface of the evaporative heat transfer tube 44b and evaporates outside the evaporative heat transfer tube 44b like the first evaporator. The evaporated refrigerant vapor is absorbed by the second absorber 5b. The refrigerant that has flowed down without being evaporated is sent again into the first evaporator together with the refrigerant that has flowed in from the condenser 3. The cold water is cooled by the first evaporator after being cooled by the second evaporator, and is guided to the cooling load system. Therefore, the temperature of the cold water flowing in the heat transfer tube is higher in the second evaporator 4b on the upstream side. The evaporation temperature of the refrigerant outside the tube is also higher in the second evaporator 4b. That is,
The second evaporator 4b operates at a higher pressure than the first evaporator 4a. The cold water whose temperature has risen after passing through the cooling load system is recirculated to the second evaporator 4b again.

【0029】低温熱交換器6で稀溶液と熱交換して温度
を下げた濃溶液は、濃溶液ポンプ61によって昇圧され
た後にまず第1吸収器5aに導かれ、溶液分配器53か
ら吸収伝熱管54aの表面に供給される。吸収伝熱管5
4aの表面では、第1蒸発器4aで蒸発した冷媒蒸気
が、溶液の流下液膜に吸収される。このとき発生する吸
収熱は、伝熱管内を流れる冷却水により除去される。し
たがって、溶液の吸収能力が維持され、ひいては冷媒蒸
気の吸収が促進される。
The concentrated solution whose temperature has been lowered by exchanging heat with the dilute solution in the low-temperature heat exchanger 6 is first introduced into the first absorber 5a after being pressurized by the concentrated solution pump 61, and then absorbed from the solution distributor 53. It is supplied to the surface of the heat pipe 54a. Absorption heat transfer tube 5
On the surface of 4a, the refrigerant vapor evaporated in the first evaporator 4a is absorbed by the falling liquid film of the solution. The absorbed heat generated at this time is removed by the cooling water flowing in the heat transfer tube. Therefore, the absorption capacity of the solution is maintained, which in turn promotes the absorption of the refrigerant vapor.

【0030】第1吸収器5aで冷媒蒸気を吸収した溶液
は、吸収伝熱管54aの下方に設けられた溶液再分配器
56に流下する。この溶液再分配器56は、冷媒再分配
器46と同様に隔壁45に設けられている。溶液再分配
器56に流下した溶液と冷媒再分配器46に流下した冷
媒とは混合しないよう、別個に設けられている。
The solution which has absorbed the refrigerant vapor in the first absorber 5a flows down to the solution re-distributor 56 provided below the absorption heat transfer tube 54a. The solution re-distributor 56 is provided on the partition wall 45 similarly to the refrigerant re-distributor 46. The solution flowing down to the solution re-distributor 56 and the refrigerant flowing down to the refrigerant re-distributor 46 are separately provided so as not to be mixed.

【0031】伝熱管54aを固定する吸収器5の内壁あ
るいは管軸方向途中に設けられた伝熱管支持板に、伝熱
管群上を流下する過程で移動した溶液や、管群上から飛
散して吸収器5の内壁に付着したのちに流下した溶液も
溶液再分配器56に流下する。これらの溶液は、伝熱管
群上を流下して冷媒を吸収した溶液に再び合流する。
On the inner wall of the absorber 5 for fixing the heat transfer tubes 54a or on the heat transfer tube support plate provided midway in the tube axial direction, the solution moved in the process of flowing down on the heat transfer tube group or scattered from the tube group. The solution that has flowed down after adhering to the inner wall of the absorber 5 also flows down to the solution redistribution device 56. These solutions flow down over the heat transfer tube group and join again with the solution that has absorbed the refrigerant.

【0032】第2吸収器5bでは、溶液が溶液再分配器
56から吸収伝熱管54bの表面に供給される。この溶
液は、第1吸収器5aの場合と同様、吸収伝熱管54b
の管外に流下液膜を形成し、第2蒸発器4bで蒸発した
冷媒蒸気を吸収する。このとき発生する吸収熱も、第1
吸収器と同様に、伝熱管内を流れる冷却水によって除去
される。これにより、溶液の吸収能力が維持され、冷媒
蒸気の吸収が促進される。冷媒蒸気を吸収した溶液は、
吸収器5の底部に付設された稀溶液ポンプ51により、
低温熱交換器6に送られて吸収器に流入する濃溶液と熱
交換する。その後、一部は高温熱交換器7を経て高温再
生器1に送られ、残りは低温再生器2に送られる。
In the second absorber 5b, the solution is supplied from the solution redistribution device 56 to the surface of the absorption heat transfer tube 54b. This solution is the same as in the case of the first absorber 5a.
A falling liquid film is formed on the outside of the pipe to absorb the refrigerant vapor evaporated in the second evaporator 4b. The absorption heat generated at this time is also the first
Like the absorber, it is removed by the cooling water flowing in the heat transfer tube. Thereby, the absorption capacity of the solution is maintained and the absorption of the refrigerant vapor is promoted. The solution that has absorbed the refrigerant vapor is
With the dilute solution pump 51 attached to the bottom of the absorber 5,
It exchanges heat with the concentrated solution which is sent to the low temperature heat exchanger 6 and flows into the absorber. Then, a part is sent to the high temperature regenerator 1 through the high temperature heat exchanger 7, and the rest is sent to the low temperature regenerator 2.

【0033】冷却水は、図示しない冷却塔などの冷却手
段から、第2吸収器5bの吸収伝熱管54bの管内に送
られて溶液を冷却する。その後、第1吸収器5aに導か
れて同様に溶液を冷却する。さらに、凝縮器3に導かれ
て低温再生器2で発生した冷媒蒸気を冷却して凝縮さ
せ、冷却手段に戻される。
The cooling water is sent from a cooling means such as a cooling tower (not shown) into the absorption heat transfer tube 54b of the second absorber 5b to cool the solution. After that, the solution is guided to the first absorber 5a and similarly cooled. Further, the refrigerant vapor that is guided to the condenser 3 and generated in the low temperature regenerator 2 is cooled and condensed, and is returned to the cooling means.

【0034】吸収冷温水機内では、腐食抑制剤の反応等
により、不凝縮ガスが発生することがある。この不凝縮
ガスは、冷温水機内で最も圧力が低い吸収器に滞留する
傾向がある。不凝縮ガスが吸収器に滞留すると、冷媒蒸
気の吸収を妨げ、冷温水機の性能低下をもたらす。その
ため、この不凝縮ガスを速やかに機外へ排出して、性能
低下を防止する必要がある。本実施例によれば、冷温水
機内の不凝縮ガス排出手段を備えているので、この不具
合を解消できる。この詳細を、以下に説明する。
In the absorption chiller-heater, non-condensable gas may be generated due to the reaction of the corrosion inhibitor. This non-condensed gas tends to stay in the absorber having the lowest pressure in the water heater. When the non-condensed gas stays in the absorber, it hinders the absorption of the refrigerant vapor, resulting in a decrease in the performance of the chiller / heater. Therefore, it is necessary to quickly discharge the non-condensable gas to the outside of the machine to prevent the performance from deteriorating. According to this embodiment, since the non-condensable gas discharging means in the hot and cold water machine is provided, this problem can be solved. The details will be described below.

【0035】図2は、不凝縮ガス排出機構の系統図であ
る。吸収器5に滞留している不凝縮ガスは、稀溶液ポン
プ51に吸引される溶液に伴って高温再生器1および低
温再生器2に送られた後、凝縮器3に集まる。集まった
不凝縮ガスは、抽気吸込み配管80を介して抽気エジェ
クタ81で吸引される。稀溶液ポンプ51から吐出され
る溶液の一部がエジェクタ駆動配管82を介して導か
れ、抽気エジェクタ81の駆動源となる。抽気エジェク
タ81により凝縮器3から吸引された不凝縮ガスは、抽
気エジェクタ81を駆動した溶液とともに抽気エジェク
タ吐出配管83を通って気液分離器84に導かれる。気
液分離された溶液は第2吸収器5b内に導かれ、一方、
不凝縮ガスは抽気タンク85に集まる。
FIG. 2 is a system diagram of the noncondensable gas discharging mechanism. The non-condensable gas staying in the absorber 5 is sent to the high temperature regenerator 1 and the low temperature regenerator 2 along with the solution sucked by the dilute solution pump 51, and then collected in the condenser 3. The collected non-condensed gas is sucked by the extraction ejector 81 via the extraction suction pipe 80. A part of the solution discharged from the dilute solution pump 51 is guided through the ejector drive pipe 82 and serves as a drive source for the extraction ejector 81. The non-condensed gas sucked from the condenser 3 by the extraction ejector 81 is guided to the gas-liquid separator 84 through the extraction ejector discharge pipe 83 together with the solution that has driven the extraction ejector 81. The gas-liquid separated solution is introduced into the second absorber 5b, while
The non-condensable gas collects in the extraction tank 85.

【0036】凝縮器3に集まった不凝縮ガスの一部は、
冷媒液に伴って蒸発器に移動し、冷媒配管31が接続さ
れた第2蒸発器4bから冷媒蒸気の流れとともに第2吸
収器5bに移動する。第2吸収器5bには稀溶液ポンプ
51が接続されているので、不凝縮ガスは再び各再生器
1、2を経由して凝縮器3に集まる。
A part of the non-condensable gas collected in the condenser 3 is
It moves to the evaporator with the refrigerant liquid, and moves from the second evaporator 4b to which the refrigerant pipe 31 is connected to the second absorber 5b together with the flow of the refrigerant vapor. Since the dilute solution pump 51 is connected to the second absorber 5b, the non-condensed gas collects in the condenser 3 again via the regenerators 1 and 2.

【0037】次に、本実施例に用いる多段蒸発吸収器の
詳細を、図3及び図4を用いて説明する。蒸発器4およ
び吸収器5を隔壁45が複数段、本実施例においては2
段に分割している。この隔壁には、冷媒再分配器46、
溶液再分配器47及び吸収器4への冷媒の流入と蒸発器
への溶液の流入を防止する溢流防止板48が設けられて
いる。図3に、隔壁45の斜視図を示す。
Next, details of the multistage evaporative absorber used in this embodiment will be described with reference to FIGS. 3 and 4. The evaporator 4 and the absorber 5 have a plurality of partition walls 45, and in this embodiment, two partition walls are provided.
It is divided into columns. In this partition, the refrigerant re-distributor 46,
An overflow prevention plate 48 is provided to prevent the refrigerant from flowing into the solution re-distributor 47 and the absorber 4 and the solution from flowing into the evaporator. FIG. 3 shows a perspective view of the partition wall 45.

【0038】冷媒再分配器46は、隔壁45の蒸発器4
に対応する部分に箱状の窪みとして形成されている。そ
して、多数の冷媒滴下孔47が伝熱管軸方向に沿って複
数の列をなしている。同様に、溶液再分配器56は、隔
壁45の吸収器に対応する部分に箱状の窪みとして形成
され、多数の溶液滴下孔57が伝熱管軸方向に沿って複
数の列をなしている。
The refrigerant re-distributor 46 is the evaporator 4 of the partition wall 45.
Is formed as a box-shaped recess in a portion corresponding to. A large number of refrigerant dropping holes 47 form a plurality of rows along the heat transfer tube axial direction. Similarly, the solution re-distributor 56 is formed as a box-shaped recess in a portion of the partition wall 45 corresponding to the absorber, and a large number of solution dropping holes 57 form a plurality of rows along the axial direction of the heat transfer tube.

【0039】図4に、冷媒再分配器46に多数設けられ
た冷媒滴下孔47の各列と、その下部の第2蒸発器4b
内の蒸発伝熱管44bの各列の位置関係を示す。冷媒滴
下孔47は、蒸発伝熱管44bの列数と同数列設けられ
ている。そして、蒸発伝熱管44bの各列の中心軸の真
上に、冷媒滴下孔47の各列の中心軸が位置している。
冷媒再分配器46の深さは、Hである。本実施例では、
この深さHを50mmである。
In FIG. 4, each row of the refrigerant dripping holes 47 provided in the refrigerant re-distributor 46 and the second evaporator 4b below the rows.
The positional relationship of each row of the evaporation heat transfer tubes 44b in the inside is shown. The refrigerant dropping holes 47 are provided in the same number of rows as the number of rows of the evaporation heat transfer tubes 44b. The central axis of each row of the refrigerant dropping holes 47 is located directly above the central axis of each row of the evaporation heat transfer tubes 44b.
The depth of the refrigerant re-distributor 46 is H. In this embodiment,
This depth H is 50 mm.

【0040】以上説明したように、本実施例では、蒸発
器と吸収器との対からなる蒸発吸収器を複数備えた吸収
冷温水機において、凝縮器から蒸発器に流入する冷媒
を、空調負荷系から還流する冷水が最初に流入する第2
蒸発器4bを含む第2蒸発吸収器に導いている。これに
より、冷媒をこの第2蒸発吸収器内で自己蒸発させ、冷
水を低温に冷却する第1蒸発器4a内の冷媒蒸気の圧力
を低く保つことができる。そして、第1蒸発器4a内の
蒸発温度を低く保ち、冷水の出口温度を低い温度で安定
させるとともに、蒸発温度と冷水の温度差を確保でき
る。これにより、伝熱面積を削減でき、蒸発器を小型化
できる。
As described above, in the present embodiment, in the absorption chiller-heater having a plurality of evaporative absorbers each consisting of a pair of an evaporator and an absorber, the refrigerant flowing from the condenser to the evaporator is cooled by the air conditioning load. The second inflow of cold water refluxing from the system first
It leads to a second evaporative absorber including the evaporator 4b. Thereby, the refrigerant is allowed to self-evaporate in the second evaporative absorber, and the pressure of the refrigerant vapor in the first evaporator 4a for cooling the cold water to a low temperature can be kept low. Then, the evaporation temperature in the first evaporator 4a can be kept low, the outlet temperature of the cold water can be stabilized at a low temperature, and the difference between the evaporation temperature and the cold water can be secured. Thereby, the heat transfer area can be reduced and the evaporator can be downsized.

【0041】ところで本実施例においては、凝縮器の冷
媒を、複数ある蒸発器の中で最も高い圧力で作動する第
2蒸発器に導いている。凝縮器から流入する冷媒の全流
量に対する自己蒸発量の割合は、流入する蒸発器内の圧
力により異なる。表1に、第1蒸発器と第2蒸発器の冷
水出口温度、蒸発温度、およびこの蒸発温度に対応する
凝縮器から流入する冷媒の自己蒸発率の比較を示す。
By the way, in this embodiment, the refrigerant in the condenser is led to the second evaporator which operates at the highest pressure among the plurality of evaporators. The ratio of the amount of self-evaporation with respect to the total flow rate of the refrigerant flowing from the condenser varies depending on the pressure in the evaporator that flows in. Table 1 shows a comparison of the cold water outlet temperature of the first evaporator and the second evaporator, the evaporation temperature, and the self-evaporation rate of the refrigerant flowing from the condenser corresponding to this evaporation temperature.

【0042】[0042]

【表1】 [Table 1]

【0043】ここで、第2蒸発器については、冷水の温
度差を標準の5Kとしたものの他に、大温度差空調シス
テムを想定して冷水の温度差を8Kとしたものも併記し
ている。この表1において、第2蒸発器の冷水出口温度
は、冷温水機全体の冷水の入口温度と出口温度の中央値
である。また、蒸発温度は、すべて冷水出口温度からの
アプローチ温度を3Kとして定めた。冷媒自己蒸発率
は、凝縮器から流入する冷媒の一部が蒸発して、蒸発温
度と等しくなるまで潜熱冷却されるときの蒸発量として
求めた。
Here, as for the second evaporator, in addition to the standard temperature difference of 5K for cold water, the temperature difference of 8K for cold water is also shown assuming a large temperature difference air conditioning system. . In Table 1, the cold water outlet temperature of the second evaporator is the median value of the cold water inlet temperature and the cold water outlet temperature of the entire cold / hot water machine. Further, the evaporation temperatures were all set to be 3K as the approach temperature from the cold water outlet temperature. The refrigerant self-evaporation rate was obtained as an evaporation amount when a part of the refrigerant flowing from the condenser was evaporated and was cooled by latent heat until it became equal to the evaporation temperature.

【0044】表1から、冷媒自己蒸発率は、蒸発温度が
高い、したがって高い圧力で作動する蒸発器ほど低いこ
とがわかる。冷媒の自己蒸発は、蒸発器内を低圧に維持
することの妨げになるばかりでなく、冷媒ミストの発生
を誘発する。この冷媒ミストの一部は、冷房能力に寄与
しない無効冷媒として蒸発器から吸収器への冷媒蒸気の
流れによって吸収器に運ばれ、冷温水機の性能を低下さ
せる一因となる。
From Table 1 it can be seen that the refrigerant self-evaporation rate is lower for evaporators with higher evaporation temperatures and therefore higher pressures. The self-evaporation of the refrigerant not only hinders maintaining a low pressure inside the evaporator, but also induces the generation of a refrigerant mist. A part of this refrigerant mist is carried to the absorber by the flow of the refrigerant vapor from the evaporator to the absorber as an ineffective refrigerant that does not contribute to the cooling capacity, which is one of the causes for lowering the performance of the chiller-heater.

【0045】これに対して本実施例においては、凝縮器
からの冷媒を、第1蒸発器に比べて高い蒸発温度および
蒸発圧力で動作する第2蒸発器に導いているので、自己
蒸発に伴って生じる冷媒ミストの発生が少ない。これに
より、冷媒ミストが無効冷媒化して性能を低下させるの
を減少できる。
On the other hand, in the present embodiment, the refrigerant from the condenser is guided to the second evaporator which operates at a higher evaporation temperature and higher evaporation pressure than the first evaporator, so that the self-evaporation is accompanied. There is little generation of refrigerant mist. Thereby, it can be reduced that the refrigerant mist becomes an ineffective refrigerant and the performance is deteriorated.

【0046】また、本実施例によれば、凝縮器3から蒸
発器4に冷媒を導く冷媒配管31を、稀溶液ポンプ51
を接続した第2吸収器5bに連通している第2蒸発器4
bに接続しているので、凝縮器から冷媒液に随伴して蒸
発器4内に流入した不凝縮ガスを、吸収器5から速やか
に除去できる。
Further, according to this embodiment, the refrigerant pipe 31 for guiding the refrigerant from the condenser 3 to the evaporator 4 is connected to the diluted solution pump 51.
Second evaporator 4 communicating with a second absorber 5b connected to
Since it is connected to b, the non-condensable gas flowing from the condenser to the evaporator 4 along with the refrigerant liquid can be quickly removed from the absorber 5.

【0047】ところで、吸収冷温水機の蒸発器では、冷
水流路内の空気を容易に取り除けるように、冷水を下部
の伝熱管から上部に向かって通水する方法が一般的であ
る。本実施例においても、凝縮器3から冷媒が流入する
第2蒸発器は最下段となっている。このため、上段の第
1蒸発器4aには別途冷媒を送る手段が必要となる。そ
こで、蒸発器4および吸収器5を構成する容器を、第1
蒸発器4aおよび第1吸収器5aからなる部分と、第2
蒸発器4bおよび第2吸収器5bからなる部分とに、上
下方向に分割している。それとともに、最下段の第2蒸
発器4bの底部に、冷媒ポンプ41を設けている。
By the way, in the evaporator of the absorption chiller-heater, it is general to pass cold water from the lower heat transfer pipe toward the upper part so that the air in the cold water flow path can be easily removed. Also in this embodiment, the second evaporator into which the refrigerant flows from the condenser 3 is at the lowest stage. Therefore, the first evaporator 4a in the upper stage requires a separate means for sending the refrigerant. Therefore, the containers forming the evaporator 4 and the absorber 5 are
A portion composed of the evaporator 4a and the first absorber 5a, and a second
It is divided in the vertical direction into a portion composed of the evaporator 4b and the second absorber 5b. At the same time, the refrigerant pump 41 is provided at the bottom of the second evaporator 4b at the bottom.

【0048】凝縮器から蒸発器に導かれた冷媒の中で、
自己蒸発せずに底部に流下した大部分の冷媒液は、この
冷媒ポンプから第1蒸発器の伝熱管群上に供給される。
そして、この伝熱管群で蒸発せずに流下した冷媒は、重
力によって第2蒸発器の伝熱管群上に供給される。
In the refrigerant introduced from the condenser to the evaporator,
Most of the refrigerant liquid that has flowed to the bottom without self-evaporating is supplied from the refrigerant pump onto the heat transfer tube group of the first evaporator.
The refrigerant that has flowed down without evaporating in the heat transfer tube group is supplied to the heat transfer tube group of the second evaporator by gravity.

【0049】さらに、吸収器も蒸発器と同様に上下方向
に分割されているので、稀溶液ポンプもまた最下段の第
2吸収器の底部に1台のみ設置している。したがって、
本実施例では蒸発器への冷媒供給個所を下部に設けたに
もかかわらず、2つの蒸発吸収器の各々に冷媒を供給で
きる。これにより、冷媒ポンプ及び稀溶液ポンプの台数
を削減できる。
Further, since the absorber is also divided in the vertical direction like the evaporator, only one dilute solution pump is installed at the bottom of the second absorber at the bottom. Therefore,
In this embodiment, the refrigerant can be supplied to each of the two evaporation absorbers, although the refrigerant supply portion to the evaporator is provided in the lower portion. This can reduce the number of refrigerant pumps and dilute solution pumps.

【0050】また、隔壁に冷媒再分配器を箱状の窪みと
して設けたので,管板、伝熱管の支持板および蒸発器の
内壁などの垂直面上に移動して流下する冷媒や、液滴と
なってエリミネータに捕捉された冷媒を、この冷媒再分
配器に集めることが出来る。そして、蒸発伝熱管群上を
流下した冷媒も、この冷媒再分配器に集めることができ
る。この冷媒再分配器に集められた冷媒は、冷媒再分配
器の底部に形成された穴から再び第2蒸発器内の伝熱管
の表面に供給される。これにより、蒸発器全体では、下
部に位置する第2蒸発器4bにおいても、伝熱管群上を
流下する冷媒流量の減少要因は冷媒自身の蒸発だけとな
る。したがって、伝熱管表面の濡れ面積すなわち気液界
面の減少と、それに伴う伝熱性能の低下を抑制できる。
Further, since the refrigerant re-distributor is provided on the partition wall as a box-shaped recess, the refrigerant and liquid droplets that move down on the vertical surfaces such as the tube plate, the support plate of the heat transfer tube and the inner wall of the evaporator, and the liquid droplets. The refrigerant captured by the eliminator can be collected in this refrigerant re-distributor. Then, the refrigerant flowing down on the evaporation heat transfer tube group can also be collected in this refrigerant re-distributor. The refrigerant collected in the refrigerant re-distributor is supplied again to the surface of the heat transfer tube in the second evaporator through the hole formed in the bottom of the refrigerant re-distributor. As a result, in the entire evaporator, even in the second evaporator 4b located at the lower part, the only factor that reduces the flow rate of the refrigerant flowing down on the heat transfer tube group is evaporation of the refrigerant itself. Therefore, it is possible to suppress a decrease in the wetting area of the surface of the heat transfer tube, that is, the gas-liquid interface, and the accompanying decrease in heat transfer performance.

【0051】同様に吸収器5においても、隔壁45に溶
液再分配器56を設けているので、吸収伝熱管54aの
表面から、管板、伝熱管の支持板、吸収器5の内壁など
の垂直面上に移動して流下する溶液や、液滴となってエ
リミネータ50に捕捉された溶液が、第1吸収器5a内
の溶液再分配器56に導かれる。この溶液再分配器に導
かれた溶液は、吸収伝熱管群上を流下した冷媒ととも
に、再び第2吸収器5b内の伝熱管54bの表面に供給
される。したがって、吸収器5全体の下部に位置する第
2吸収器5bにおいても吸収伝熱管群上を流下する溶液
流量が減少せず、これに伴う伝熱性能の低下を生じな
い。
Similarly, in the absorber 5 as well, since the solution re-distributor 56 is provided in the partition wall 45, the absorption plate 5a, the support plate of the heat transfer pipe, the inner wall of the absorber 5 and the like are vertically arranged from the surface of the absorption heat transfer pipe 54a. The solution that moves to the surface and flows down, or the solution that becomes droplets and is captured by the eliminator 50 is guided to the solution redistributor 56 in the first absorber 5a. The solution introduced to the solution re-distributor is supplied again to the surface of the heat transfer tube 54b in the second absorber 5b together with the refrigerant flowing down on the absorption heat transfer tube group. Therefore, even in the second absorber 5b located in the lower part of the entire absorber 5, the flow rate of the solution flowing down on the absorption heat transfer tube group does not decrease, and accordingly, the heat transfer performance does not decrease.

【0052】さらに、第1吸収器内で管板や伝熱管の支
持板および吸収器5の内壁などの垂直面上に移動して流
下した溶液や、液滴となってエリミネータ50に捕捉さ
れた溶液は、冷却水で冷却されていないので、冷媒蒸気
の吸収割合が低い。そのため、伝熱管群上において冷媒
蒸気を吸収しながら流下した溶液に比べて、濃度が高
い。したがって、本実施例においては、濃度が高い溶液
を伝熱管群上から流下した溶液に合流させるので、第2
吸収器5bに供給される溶液濃度が濃くなり、第2吸収
器の5b吸収能力が向上する。
Further, in the first absorber, the solution that has moved to and flowed down on the vertical surface such as the tube plate, the support plate of the heat transfer tube, and the inner wall of the absorber 5 and droplets are captured by the eliminator 50. Since the solution is not cooled with cooling water, the absorption rate of the refrigerant vapor is low. Therefore, the concentration is higher than that of the solution flowing down while absorbing the refrigerant vapor on the heat transfer tube group. Therefore, in the present embodiment, since the solution having a high concentration is combined with the solution flowing down from the heat transfer tube group,
The concentration of the solution supplied to the absorber 5b is increased, and the 5b absorption capacity of the second absorber is improved.

【0053】また本実施例によれば、第1吸収器5aの
伝熱管群上から逸れた濃度の濃い溶液が、直接吸収器5
の下部に流入することを防止できる。そのため、稀溶液
ポンプ51により各再生器に送られる稀溶液濃度が低下
して濃溶液との濃度差が大きくなる。この結果、溶液循
環量が少なくてすみ、配管サイズや稀溶液ポンプ、濃溶
液ポンプの容量を小型化できる。
Further, according to this embodiment, the concentrated solution deviated from the heat transfer tube group of the first absorber 5a is directly absorbed by the absorber 5
Can be prevented from flowing into the lower part of. Therefore, the concentration of the diluted solution sent to each regenerator by the diluted solution pump 51 decreases, and the concentration difference from the concentrated solution increases. As a result, the solution circulation amount is small, and the pipe size and the volumes of the dilute solution pump and the concentrated solution pump can be reduced.

【0054】なお、上記実施例においては、冷媒再分配
器46および溶液再分配器56の深さを50mmとして
いる。その結果、冷媒および溶液を、これら再分配器の
滴下孔の真下にそれぞれ位置する第2蒸発器4bおよび
第2吸収器5b伝熱管群上に、確実に供給する液ヘッド
を確保することができる。この理由について図5を用い
てさらに説明する。
In the above embodiment, the depths of the refrigerant re-distributor 46 and the solution re-distributor 56 are set to 50 mm. As a result, it is possible to secure a liquid head for reliably supplying the refrigerant and the solution onto the heat transfer tube group of the second evaporator 4b and the second absorber 5b, which are located directly below the dropping holes of the re-distributor. . The reason for this will be further described with reference to FIG.

【0055】図5は、図3および図4に示した隔壁45
を模擬して、冷媒再分配器46および溶液再分配器56
の適正な深さを、本発明者らが実験的に求めた結果を示
すグラフである。実験は、箱状の窪みを有するトレー形
状の液体分配器を用い、供試液体には水を使用した。そ
して、水の流量を変化させながらトレー内の水深および
各滴下孔からの滴下状態を観察した。滴下孔の数は、8
個、12個および16個の3種類である。
FIG. 5 shows the partition wall 45 shown in FIGS. 3 and 4.
The refrigerant re-distributor 46 and the solution re-distributor 56.
5 is a graph showing a result obtained experimentally by the present inventors about an appropriate depth of. In the experiment, a tray-shaped liquid distributor having a box-shaped depression was used, and water was used as a test liquid. Then, the water depth in the tray and the dropping state from each dropping hole were observed while changing the flow rate of water. The number of drip holes is 8
There are three types, namely, 12 pieces, and 16 pieces.

【0056】図5の横軸は、トレーに供給される水の流
量を表しており、縦軸はトレー内の水深と適正滴下率を
表す。ここで、適正滴下率を、供試液体が滴下孔から真
下に供給されている滴下孔の数を、全滴下孔数で割った
値として定義している。したがって、液体の分配が適正
に行われている状態では、この適性滴下率が100%と
なる。この状態は、トレー水深が約10mmを超える
と、ほぼ実現している。すなわち、滴下孔からその真下
に設置された伝熱管に、的確に液体を供給するために
は、少なくとも10mmのヘッドが必要であることがわ
かった。
The horizontal axis of FIG. 5 represents the flow rate of water supplied to the tray, and the vertical axis represents the water depth in the tray and the proper dropping rate. Here, the proper dropping rate is defined as a value obtained by dividing the number of dropping holes in which the liquid under test is directly supplied from the dropping holes by the total number of dropping holes. Therefore, in the state where the liquid is properly distributed, the appropriate dropping rate is 100%. This state is almost realized when the water depth of the tray exceeds about 10 mm. That is, it was found that a head of at least 10 mm was required to accurately supply the liquid from the dropping hole to the heat transfer tube installed directly thereunder.

【0057】一方、蒸発器内の冷媒量及び吸収器内の溶
液量には、適正値がある。また、トレーの深さが深くな
ると、蒸発器と吸収器を一体に形成した容器の大きさが
増大する。これらを考慮して、トレー深さの上限を10
0mmに定める。
On the other hand, the amount of refrigerant in the evaporator and the amount of solution in the absorber have appropriate values. Further, as the tray becomes deeper, the size of the container in which the evaporator and the absorber are integrally formed increases. Taking these into consideration, the upper limit of the tray depth is 10
Set to 0 mm.

【0058】本実施例では、冷媒再分配器46および溶
液再分配器56ともに50mmの深さがあるので、箱状
の窪みの内部に10mm以上のヘッドを確保することが
できる。そして、冷媒および溶液の伝熱管群上への再分
配を的確に行うことができ、伝熱管内を流れる冷水およ
び冷却水との熱交換を良好に保てる。
In this embodiment, since both the refrigerant re-distributor 46 and the solution re-distributor 56 have a depth of 50 mm, it is possible to secure a head of 10 mm or more inside the box-shaped recess. Then, the refrigerant and the solution can be accurately redistributed onto the heat transfer tube group, and the heat exchange with the cold water and the cooling water flowing in the heat transfer tube can be maintained well.

【0059】次に、本発明の他の実施例を、図6を用い
て説明する。本実施例は、上述の実施例とは、溶液冷却
熱交換器8を設けて、濃溶液ポンプ61から吸収器5に
送られる濃溶液を冷却している点が相違している。ここ
で、濃溶液を冷却する冷却源として、吸収器5に送られ
る冷却水の一部を分岐して用いている。そして、溶液冷
却熱交換器8を通過した冷却水を、吸収器5を通過した
後の冷却水に再び合流させている。
Next, another embodiment of the present invention will be described with reference to FIG. This embodiment is different from the above-mentioned embodiments in that the solution cooling heat exchanger 8 is provided to cool the concentrated solution sent from the concentrated solution pump 61 to the absorber 5. Here, a part of the cooling water sent to the absorber 5 is branched and used as a cooling source for cooling the concentrated solution. Then, the cooling water that has passed through the solution cooling heat exchanger 8 is merged again with the cooling water that has passed through the absorber 5.

【0060】このように構成した本実施例では、吸収器
5に流入する濃溶液を吸収器入口で冷却しているので、
濃溶液が吸収器に流入する際にサブクール状態となる。
これにより、溶液が吸収器内に供給されたときの自己蒸
発とそれに伴う溶液ミストの発生、さらには蒸発器への
溶液ミストの飛散による性能低下を防止できる。
In this embodiment thus constructed, the concentrated solution flowing into the absorber 5 is cooled at the inlet of the absorber,
The subcooled state occurs when the concentrated solution flows into the absorber.
As a result, it is possible to prevent self-evaporation when the solution is supplied into the absorber and generation of the solution mist accompanying the self-evaporation, and further it is possible to prevent performance deterioration due to scattering of the solution mist to the evaporator.

【0061】なお本実施例では、冷却源に用いる冷却水
を吸収器入口で分岐し、吸収器出口で合流している。し
かしながら、冷却水を吸収器出口、すなわち凝縮器入口
で分岐し、凝縮器出口で合流してもよいし、吸収器入口
で分岐し、凝縮器出口で合流してもよい。
In this embodiment, the cooling water used for the cooling source is branched at the absorber inlet and merged at the absorber outlet. However, the cooling water may be branched at the absorber outlet, that is, the condenser inlet and merged at the condenser outlet, or may be branched at the absorber inlet and merged at the condenser outlet.

【0062】本発明のさらに他の実施例を、図7を用い
て説明する。本実施例は、図1に示した実施例とは、第
2吸収器5bを通過した後の冷却水を第1吸収器5aに
通水しないで凝縮器3に導き、凝縮器3を通水した後に
第1吸収器5aに導いている点が相違する。
Still another embodiment of the present invention will be described with reference to FIG. This embodiment is different from the embodiment shown in FIG. 1 in that the cooling water after passing through the second absorber 5b is guided to the condenser 3 without passing through the first absorber 5a, and the condenser 3 is passed through. After that, it is different in that it is guided to the first absorber 5a.

【0063】本実施例によれば、冷却水を吸収器、凝縮
器、吸収器の順に通水しているので、冷却水の出口温度
を高くすることができ、冷却水の大温度差化が可能にな
る。また、上記各実施例と同様、蒸発器が2段構成とな
っているので、冷水温度が高く蒸発温度および圧力が高
い第2蒸発器4bの影響が第1蒸発器4aに及ばない。
したがって、第1蒸発器4a内の圧力および蒸発温度を
低く保って冷水との温度差を確保できる。これにより、
伝熱面積を有効に利用することができるので、単一の蒸
発器とに比べて蒸発伝熱管を削減できる。この効果は、
冷水の温度差が大きい大温度差空調システムにおいて顕
著に現れることは明白である。
According to this embodiment, since the cooling water is passed through the absorber, the condenser, and the absorber in this order, the outlet temperature of the cooling water can be increased and the temperature difference of the cooling water can be increased. It will be possible. Further, as in the above-described respective embodiments, since the evaporator has a two-stage configuration, the influence of the second evaporator 4b having a high cold water temperature and a high evaporation temperature and pressure does not affect the first evaporator 4a.
Therefore, the pressure in the first evaporator 4a and the evaporation temperature can be kept low, and a temperature difference from the cold water can be secured. This allows
Since the heat transfer area can be effectively used, the number of evaporative heat transfer tubes can be reduced as compared with a single evaporator. This effect is
It is obvious that the temperature difference of cold water is large, and it is obvious in a large temperature difference air conditioning system.

【0064】また表1から、冷水を大温度差とした場合
の第2蒸発器における自己蒸発量は、標準温度差の場合
よりもさらに少なくなることが分かる。したがって、2
段蒸発吸収型としたことによる冷媒ミストの発生量削減
の効果も冷水の大温度差化によって顕著となる。
Further, it can be seen from Table 1 that the amount of self-evaporation in the second evaporator when the cold water has a large temperature difference is smaller than that in the case of the standard temperature difference. Therefore, 2
The effect of reducing the generation amount of the refrigerant mist by adopting the stepwise evaporation absorption type becomes remarkable by increasing the temperature difference of the cold water.

【0065】すなわち、以上の各実施例を、冷水の温度
差が大きい大温度差空調システムに用いればその効果が
増大する。特に図7に示した実施例では、冷却水の大温
度差化が可能であるから、冷水と冷却水の両方を大温度
差とした空調システムに好適である。
That is, if the above embodiments are used in a large temperature difference air conditioning system in which the temperature difference of cold water is large, the effect is increased. In particular, in the embodiment shown in FIG. 7, it is possible to make the temperature difference of the cooling water large, and therefore it is suitable for an air conditioning system in which both the cooling water and the cooling water have a large temperature difference.

【0066】本発明のさらに他の実施例を図8に示す。
これは、大温度差空調システムの例である。大温度差空
調システムは、空調運転時に冷水または温水を生成する
多段蒸発吸収型吸収冷温水機100、冷房運転時にこの
冷温水機の冷却水を生成する冷却塔110、この冷却水
を冷温水機に送る冷却水ポンプ120、冷温水機で生成
した冷温水と空気と熱交換する空調機130、熱交換し
た空気を室内に送風するファン131、熱交換した冷温
水を再び冷温水機100に送る冷温水ポンプ140を備
えている。
FIG. 8 shows still another embodiment of the present invention.
This is an example of a large temperature difference air conditioning system. The large temperature difference air conditioning system includes a multi-stage evaporative absorption absorption chiller / heater 100 that produces cold water or hot water during air conditioning operation, a cooling tower 110 that produces chilled water for the chiller / heater during cooling operation, and a chiller / hot water machine for this chilled water. Cooling water pump 120, an air conditioner 130 for exchanging heat between the cold and warm water generated by the cool and warm water machine and the air, a fan 131 for blowing the heat-exchanged air into the room, and the cool and warm water for heat exchange to the cool and warm water machine 100 again. A cold / hot water pump 140 is provided.

【0067】冷房運転時の冷水と冷却水、および室内と
空調機130との間を循環する空気の各要素間における
温度分布を、図8に示す。温度差を従来の5.5Kから
7.4Kに増大させたことにより、冷却水流量は75%
に低減される。温度差を従来の5Kから8Kに増大させ
たことにより、冷水流量は63%に低減される。その結
果、冷水および冷却水の搬送動力削減と配管サイズの小
型化を実現できる。
FIG. 8 shows the temperature distribution between the cold water and the cooling water during the cooling operation, and between the elements of the air circulating between the room and the air conditioner 130. By increasing the temperature difference from the conventional 5.5K to 7.4K, the cooling water flow rate is 75%.
Is reduced to. By increasing the temperature difference from the conventional 5K to 8K, the cold water flow rate is reduced to 63%. As a result, it is possible to reduce the transport power of cold water and cooling water and reduce the size of the pipe.

【0068】本実施例では、大温度差空調システムの熱
源機に、冷水を大温度差としても蒸発器の性能低下がな
い多段蒸発吸収型吸収冷温水機を用いているので、空調
システム全体のエネルギー効率が改善される。なお、本
実施例では冷温水機から空調機に送られる冷水の温度を
7℃としているが、これをさらに低温とすればさらに大
温度差化と搬送動力を低減できる。例えば、冷水温度を
5℃とすると、空調機から冷温水機に還流する冷水との
温度差は10Kとなり、従来の温度差5Kとした場合に
比べて冷水流量を50%低減できる。その結果、より一
層の搬送動力の低減と、配管サイズおよび冷水ポンプの
小型化による設置コストの削減が可能になる。
In this embodiment, since the multi-stage evaporative absorption type absorption chiller / heater that does not deteriorate the performance of the evaporator is used as the heat source device of the large temperature difference air conditioning system, even if the cold water has a large temperature difference, Energy efficiency is improved. In the present embodiment, the temperature of the cold water sent from the cold / hot water machine to the air conditioner is 7 ° C., but if the temperature is further lowered, the temperature difference can be further increased and the transport power can be reduced. For example, if the cold water temperature is 5 ° C., the temperature difference from the cold water flowing back from the air conditioner to the cold / hot water machine is 10K, and the flow rate of cold water can be reduced by 50% compared to the conventional case where the temperature difference is 5K. As a result, it is possible to further reduce the transportation power and reduce the installation cost by downsizing the pipe size and the chilled water pump.

【0069】[0069]

【発明の効果】以上説明したように本発明によれば、多
段蒸発吸収型の吸収冷温水機において、吸収器内に滴下
する溶液の自己蒸発を防止できるので、吸収器を小型化
できる。また本発明によれば、冷水の大温度差化によ
り、搬送動力を低減した低コストな大温度差空調システ
ムが可能になる。
As described above, according to the present invention, in the multi-stage evaporative absorption type absorption chiller-heater, the self-evaporation of the solution dropped in the absorber can be prevented, so that the absorber can be downsized. Further, according to the present invention, a large temperature difference in cold water makes it possible to provide a low-cost large temperature difference air conditioning system with reduced transport power.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る多段蒸発吸収型の吸収冷温水機の
一実施例の系統図である。
FIG. 1 is a system diagram of an embodiment of a multi-stage evaporative absorption type absorption chiller-heater according to the present invention.

【図2】図1に示した吸収冷温水機の不凝縮ガスを排出
する部分の詳細図である。
FIG. 2 is a detailed view of a portion of the absorption chiller-heater shown in FIG. 1 for discharging non-condensable gas.

【図3】図1に示した吸収冷温水機の冷媒再分配器部の
斜視図である。
FIG. 3 is a perspective view of a refrigerant re-distributor section of the absorption chiller-heater shown in FIG. 1.

【図4】図1に示した吸収冷温水機の冷媒再分配器を説
明するための図である。
FIG. 4 is a diagram for explaining a refrigerant re-distributor of the absorption chiller-heater shown in FIG. 1.

【図5】図1に示した吸収冷温水機の再分配部における
滴下状況を説明する図である。
FIG. 5 is a diagram illustrating a dropping condition in the redistribution unit of the absorption chiller-heater shown in FIG. 1.

【図6】本発明に係る多段蒸発吸収型の吸収冷温水機の
他の実施例の系統図である。
FIG. 6 is a system diagram of another embodiment of a multi-stage evaporative absorption type absorption chiller-heater according to the present invention.

【図7】本発明に係る多段蒸発吸収型の吸収冷温水機の
さらに他の実施例の系統図である。
FIG. 7 is a system diagram of still another embodiment of the absorption chiller-heater of the multi-stage evaporative absorption type according to the present invention.

【図8】本発明に係る大温度差空調システムの一実施例
の系統図である。
FIG. 8 is a system diagram of an embodiment of a large temperature difference air conditioning system according to the present invention.

【符号の説明】[Explanation of symbols]

1…高温再生器、2…低温再生器、3…凝縮器、4…蒸
発器、5…吸収器、6…低温熱交換器、7…高温熱交換
器、31…冷媒配管、4a…第1蒸発器、4b…第2蒸
発器、41…冷媒ポンプ、42…冷媒吐出配管、43…
冷媒分配器、44a、44b…蒸発伝熱管、45…隔
壁、46…冷媒再分配器、50…エリミネータ、5a…
第1吸収器、5b…第2吸収器、51…稀溶液ポンプ、
53…溶液分配器、54a、54b…吸収伝熱管、56
…溶液再分配器、61…濃溶液ポンプ、100…多段蒸
発吸収型吸収冷温水機、110…冷却塔、120…冷却
水ポンプ、130…空調機、131…ファン、140…
冷水ポンプ。
1 ... High temperature regenerator, 2 ... Low temperature regenerator, 3 ... Condenser, 4 ... Evaporator, 5 ... Absorber, 6 ... Low temperature heat exchanger, 7 ... High temperature heat exchanger, 31 ... Refrigerant piping, 4a ... 1st Evaporator, 4b ... 2nd evaporator, 41 ... Refrigerant pump, 42 ... Refrigerant discharge piping, 43 ...
Refrigerant distributor, 44a, 44b ... Evaporative heat transfer tube, 45 ... Partition wall, 46 ... Refrigerant re-distributor, 50 ... Eliminator, 5a ...
1st absorber, 5b ... 2nd absorber, 51 ... Dilute solution pump,
53 ... Solution distributor, 54a, 54b ... Absorption heat transfer tube, 56
... Solution re-distributor, 61 ... Concentrated solution pump, 100 ... Multistage evaporative absorption type absorption chiller / heater, 110 ... Cooling tower, 120 ... Cooling water pump, 130 ... Air conditioner, 131 ... Fan, 140 ...
Cold water pump.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 聡 茨城県土浦市神立町603番地 株式会社 日立製作所 土浦工場内 (56)参考文献 特開 平9−14792(JP,A) 特開 平2−78866(JP,A) 特開 平7−332802(JP,A) 特開 平1−273972(JP,A) 実開 昭58−74059(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 303 F25B 37/00 F25B 39/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Miyake 603, Jinrachi-cho, Tsuchiura-shi, Ibaraki Hitachi Tsuchiura factory (56) References JP-A-9-14792 (JP, A) JP-A-2- 78866 (JP, A) JP 7-332802 (JP, A) JP 1-273972 (JP, A) Actual development Sho 58-74059 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 15/00 303 F25B 37/00 F25B 39/02

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】隔壁により上下方向に多段に形成された蒸
発器および吸収器と、凝縮器と、再生器とを備えた多段
蒸発吸収型の吸収冷温水機において、前記多段の蒸発器
と多段の吸収器は前記隔壁により各々蒸発器と吸収器の
対を形成し、この隔壁に冷媒を収容する冷媒再分配器を
形成し、この冷媒再分配器の深さを10〜100mmと
したことを特徴とする多段蒸発吸収型の吸収冷温水機。
1. A multi-stage evaporative absorption-type absorption chiller-heater equipped with an evaporator and an absorber which are vertically formed in multiple stages by partition walls, a condenser, and a regenerator, wherein the multi-stage evaporator and the multi-stage are provided. In the above-mentioned absorber, a pair of evaporator and absorber are formed by the partition walls, and a refrigerant re-distributor for accommodating the refrigerant is formed in the partition walls, and the depth of the refrigerant re-distributor is set to 10 to 100 mm. Characteristic multi-stage evaporative absorption type absorption chiller / heater.
【請求項2】前記多段に形成された蒸発器段の中で最も
高圧の段に前記凝縮器から液冷媒を導き、前記冷媒再分
配器の底部に設けた多数の冷媒滴下孔を経て上部に形成
された蒸発器段から下部に形成された蒸発器段へ、上部
の蒸発器段で液のまま滞留した冷媒を導くことを特徴と
する請求項1に記載の多段蒸発型の吸収冷温水機。
2. The liquid refrigerant is led from the condenser to the highest pressure stage of the evaporator stages formed in multiple stages, and the liquid coolant is led to the upper side through a large number of refrigerant dropping holes provided at the bottom of the refrigerant re-distributor. The multi-stage evaporation type absorption chiller-heater according to claim 1, wherein the refrigerant that has remained as a liquid in the upper evaporator stage is guided from the formed evaporator stage to the lower evaporator stage. .
【請求項3】前記多段に形成された蒸発器の中で空調負
荷系から還流する冷水が最初に流入する蒸発器段に、前
記凝縮器から冷媒を導くことを特徴とする請求項1に記
載の多段蒸発吸収型の吸収冷温水機。
3. The condenser according to claim 1, wherein the refrigerant is guided from the condenser to an evaporator stage in which cold water refluxing from an air conditioning load system first flows into the evaporator formed in the multiple stages. Multi-stage evaporative absorption type absorption cold / hot water machine.
【請求項4】前記多段に形成された吸収器の中で稀溶液
を前記再生器へ送液する溶液循環ポンプが接続された吸
収器段と対をなす蒸発器段に、前記凝縮器から冷媒を導
くことを特徴とする請求項1に記載の多段蒸発吸収型の
吸収冷温水機。
4. A refrigerant from the condenser to an evaporator stage paired with an absorber stage connected to a solution circulation pump for feeding a dilute solution to the regenerator in the multi-stage absorber. The multistage evaporative absorption-type absorption chiller-heater according to claim 1, wherein
【請求項5】隔壁により上下方向に多段に形成された蒸
発器および吸収器と、凝縮器と、再生器とを備えた多段
蒸発吸収型の吸収冷温水機において、前記多段の蒸発器
と多段の吸収器は前記隔壁により各々蒸発器と吸収器の
対を形成し、この隔壁にこの隔壁の上側の蒸発器内で未
蒸発の冷媒を収容する冷媒再分配器と、この隔壁の上側
の吸収器内の溶液を収容する溶液再分配器とを形成し、
この冷媒再分配器及び溶液再分配器の深さを10〜10
0mmとしたことを特徴とする多段蒸発吸収型の吸収冷
温水機。
5. A multi-stage evaporative absorption-type absorption chiller-heater comprising an evaporator and an absorber which are vertically formed in multiple stages by partition walls, a condenser, and a regenerator, wherein the multi-stage evaporator and the multi-stage are provided. Each of the absorbers forms a pair of an evaporator and an absorber by the partition wall, and a refrigerant re-distributor for accommodating the refrigerant that has not evaporated in the evaporator above the partition wall, and an absorber above the partition wall. And a solution re-distributor for containing the solution in the vessel,
The depth of the refrigerant re-distributor and the solution re-distributor is 10 to 10
A multi-stage evaporative absorption-type absorption chiller-heater characterized by being set to 0 mm.
【請求項6】前記多段に形成された各段の吸収器が、流
下液膜式の吸収器段であることを特徴とする請求項5に
記載の多段蒸発吸収型の吸収冷温水機。
6. The multi-stage evaporative absorption-type absorption chiller / heater according to claim 5, wherein each of the multi-staged absorbers is a falling liquid film type absorber stage.
【請求項7】前記冷媒再分配器は隔壁に形成された箱状
の窪みであり、この窪みの底面には、この冷媒再分配器
の下に位置する蒸発器段の複数の伝熱管位置に対応して
多数の液体滴下孔が形成されていることを特徴とする請
求項5に記載の多段蒸発吸収型の吸収冷温水機。
7. The refrigerant re-distributor is a box-shaped recess formed in a partition wall, and the bottom surface of the recess is located at a plurality of heat transfer tube positions in an evaporator stage located below the refrigerant re-distributor. The multistage evaporative absorption-type absorption chiller-heater according to claim 5, wherein a large number of liquid dropping holes are formed correspondingly.
【請求項8】前記溶液再分配器は隔壁に形成された箱状
の窪みであり、この窪みの底面には、この溶液再分配器
の下に位置する吸収器段の複数の伝熱管位置に対応して
多数の液体滴下孔が形成されていることを特徴とする請
求項5に記載の多段蒸発吸収型の吸収冷温水機。
8. The solution redistributor is a box-shaped recess formed in a partition wall, and the bottom surface of the recess is located at a plurality of heat transfer tube positions of an absorber stage located below the solution redistributor. The multistage evaporative absorption-type absorption chiller-heater according to claim 5, wherein a large number of liquid dropping holes are formed correspondingly.
【請求項9】前記多段に形成された蒸発器段の中で被冷
却流体が最後に流通する蒸発器と対をなす吸収器段が、
前記再生器から還流する溶液が最初に導かれる吸収器段
であり、この吸収器段に導かれる溶液と冷却水とを熱交
換する溶液冷却用熱交換器を設けたことを特徴とする請
求項1または5に記載の多段蒸発吸収型の吸収冷温水
機。
9. An absorber stage, which is paired with an evaporator through which a fluid to be cooled last flows, among the evaporator stages formed in multiple stages,
A solution cooling heat exchanger for exchanging heat between the solution guided to the absorber stage and the cooling water is an absorber stage to which the solution refluxed from the regenerator is first introduced. The multistage evaporative absorption type absorption cold / hot water machine according to 1 or 5.
【請求項10】蒸発器と吸収器を内包する容器を、それ
ぞれが蒸発器の一部と吸収器の一部を含む複数の空間に
分割することにより複数の蒸発器および吸収器を形成
し、運転時に前記の各空間がそれぞれ異なる圧力で作動
するように構成した多段蒸発吸収型吸収冷温水機におい
て、冷却水をまず前記複数の吸収器のうちの一部に通水
し、次に一旦凝縮器に通水し、さらに前記複数の吸収器
のうちの残りの部分に順次通水するように冷却水流路を
構成したことを特徴とする多段蒸発吸収型の吸収冷温水
機。
10. A container containing an evaporator and an absorber is divided into a plurality of spaces each including a part of the evaporator and a part of the absorber to form a plurality of evaporators and absorbers. In a multi-stage evaporative absorption-type absorption chiller-heater configured such that each space operates at a different pressure during operation, cooling water is first passed through a part of the plurality of absorbers, and then condensed once. A multi-stage evaporative absorption-type absorption chiller / heater characterized in that a cooling water flow path is configured so that water is passed through the vessel and the rest of the plurality of absorbers is sequentially passed through.
【請求項11】熱源機系と負荷系を往復する冷水の行き
温度と戻り温度との温度差が、定格運転状態において5
Kよりも大きい大温度差空調システムであって、隔壁に
より上下方向に多段に形成された蒸発器および吸収器
と、凝縮器と、再生器とを有する多段蒸発吸収型の吸収
冷温水機を備え、この吸収冷温水機は、前記多段の蒸発
器と多段の吸収器が前記隔壁により各々蒸発器と吸収器
の対を形成し、この隔壁に冷媒を収容する冷媒再分配器
が形成され、この冷媒再分配器の深さが10〜100m
mであることを特徴とする大温度差空調システム。
11. A temperature difference between an outgoing temperature and a returning temperature of cold water that reciprocates between a heat source system and a load system is 5 in a rated operating state.
A large temperature difference air conditioning system larger than K, comprising a multi-stage evaporative absorption-type absorption chiller / heater having an evaporator and an absorber formed in multiple stages in the vertical direction by partition walls, a condenser, and a regenerator. In this absorption chiller-heater, the multi-stage evaporator and the multi-stage absorber each form a pair of an evaporator and an absorber by the partition wall, and a refrigerant re-distributor that stores a refrigerant is formed in the partition wall. Refrigerant redistributor depth is 10-100m
A large temperature difference air conditioning system characterized by being m.
【請求項12】熱源機系と負荷系を往復する冷水の行き
温度と戻り温度との温度差が、定格運転状態において5
Kよりも大きい大温度差空調システムであって、隔壁に
より上下方向に多段に形成された蒸発器および吸収器
と、凝縮器と、再生器とを有する多段蒸発吸収型の吸収
冷温水機を備え、前記多段の蒸発器と多段の吸収器は前
記隔壁により各々蒸発器と吸収器の対を形成し、この隔
壁にこの隔壁の上側の蒸発器内で未蒸発の冷媒を収容す
る冷媒再分配器と、この隔壁の上側の吸収器内の溶液を
収容する溶液再分配器とを形成し、この冷媒再分配器及
び溶液再分配器の深さを10〜100mmとしたことを
特徴とする大温度差空調システム。
12. A temperature difference between an outgoing temperature and a returning temperature of cold water that reciprocates between a heat source system and a load system is 5 in a rated operation state.
A large temperature difference air conditioning system larger than K, comprising a multi-stage evaporative absorption-type absorption chiller / heater having an evaporator and an absorber formed in multiple stages in the vertical direction by partition walls, a condenser, and a regenerator. The multi-stage evaporator and the multi-stage absorber each form a pair of evaporator and absorber by the partition wall, and a refrigerant re-distributor for accommodating the un-evaporated refrigerant in the evaporator above the partition wall in the partition wall. And a solution re-distributor for accommodating the solution in the absorber on the upper side of the partition wall, and the depth of the refrigerant re-distributor and the solution re-distributor was set to 10 to 100 mm. Differential air conditioning system.
【請求項13】熱源機系と負荷系を往復する冷水の行き
温度と戻り温度との温度差が、定格運転状態において5
Kよりも大きい大温度差空調システムにおいて、隔壁に
より上下方向に多段に形成した蒸発器および吸収器と、
凝縮器と、再生器とを有し、前記多段の蒸発器と多段の
吸収器が前記隔壁により各々蒸発器と吸収器の対を形成
した吸収冷温水機を前記熱源機系の熱源機に用いたこと
を特徴とする大温度差空調システム。
13. A temperature difference between an outgoing temperature and a returning temperature of cold water that reciprocates between a heat source system and a load system is 5 in a rated operating state.
In a large temperature difference air conditioning system that is larger than K, an evaporator and an absorber formed in multiple stages in the vertical direction by partition walls,
An absorption chiller-heater having a condenser and a regenerator, in which the multistage evaporator and the multistage absorber each form a pair of evaporator and absorber by the partition wall, is used as a heat source unit of the heat source system. A large temperature difference air conditioning system that is characterized by
JP35866998A 1998-12-17 1998-12-17 Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same Expired - Lifetime JP3445941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35866998A JP3445941B2 (en) 1998-12-17 1998-12-17 Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35866998A JP3445941B2 (en) 1998-12-17 1998-12-17 Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same

Publications (2)

Publication Number Publication Date
JP2000179975A JP2000179975A (en) 2000-06-30
JP3445941B2 true JP3445941B2 (en) 2003-09-16

Family

ID=18460514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35866998A Expired - Lifetime JP3445941B2 (en) 1998-12-17 1998-12-17 Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same

Country Status (1)

Country Link
JP (1) JP3445941B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101988773A (en) * 2009-07-31 2011-03-23 三洋电机株式会社 Absorption type refrigerator
CN101988772A (en) * 2009-07-31 2011-03-23 三洋电机株式会社 Absorption type refrigerator

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553741B2 (en) * 2005-01-26 2010-09-29 荏原冷熱システム株式会社 Absorption refrigerator
JP2007198700A (en) * 2006-01-30 2007-08-09 Hitachi Zosen Corp Evaporator for multiple effect-type fresh water generator
JP2009097848A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Absorption chiller and heater
KR101037311B1 (en) 2011-02-16 2011-05-26 주식회사 성지공조기술 Absorption refrigerating machine
KR101291169B1 (en) * 2011-05-18 2013-07-31 삼성중공업 주식회사 Absorption refrigerator for a ship
KR101357631B1 (en) * 2012-07-11 2014-02-04 삼성중공업 주식회사 Absorption refrigerator for ship
KR101392212B1 (en) * 2012-08-13 2014-05-12 (주) 월드에너지 Absorption chiller
JP2014173810A (en) * 2013-03-12 2014-09-22 Hitachi Appliances Inc Air-cooling absorption type refrigerator
CN103808059B (en) * 2014-02-17 2015-12-16 双良节能系统股份有限公司 Secondary generation secondary absorbs Equations of The Second Kind lithium bromide absorption type heat pump unit
JP6326899B2 (en) * 2014-03-26 2018-05-23 株式会社豊田中央研究所 Evaporator
CN107014075A (en) * 2017-05-03 2017-08-04 辽宁三利节能科技有限公司 Unit dual temperature area Teat pump boiler
JP2023078590A (en) 2021-11-26 2023-06-07 パナソニックIpマネジメント株式会社 Absorber unit, heat exchange unit and absorption-type refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101988773A (en) * 2009-07-31 2011-03-23 三洋电机株式会社 Absorption type refrigerator
CN101988772A (en) * 2009-07-31 2011-03-23 三洋电机株式会社 Absorption type refrigerator
CN101988773B (en) * 2009-07-31 2012-11-21 三洋电机株式会社 Absorption type refrigerator
CN101988772B (en) * 2009-07-31 2013-01-30 三洋电机株式会社 Absorption type refrigerator

Also Published As

Publication number Publication date
JP2000179975A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
CN109892029B (en) Active/passive cooling system
EP1365199B1 (en) Evaporator with mist eliminator
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP3932241B2 (en) Absorption refrigerator
US9903659B2 (en) Low pressure chiller
EP2386050B1 (en) Heat exchanger, heat pump system and air conditioning system
JP4701147B2 (en) 2-stage absorption refrigerator
US20100126213A1 (en) Liquid-Vapor Separating Method and a Liquid-Vapor Separating Type Evaporator
KR101947679B1 (en) High-efficient two stage absorption refrigerator of low temperature water with increased efficiency by two stage separated heat exchange method
CN216048500U (en) Supercooling type efficient evaporative condenser
CN113587498B (en) Supercooling type efficient evaporative condenser
JP2009250485A (en) Absorption type refrigerating machine
JP2009068816A (en) Absorption refrigerating machine
KR100213780B1 (en) Water supply system of absortion type cooler
JP2005337688A (en) Refrigeration device
US20230288078A1 (en) Cooling system with intermediate chamber
CN219797580U (en) Condenser
KR19990029907A (en) Absorption Chiller
KR102711184B1 (en) Heat exchanger
JP2004340546A (en) Evaporator for refrigerating machine
JP2018048769A (en) Heat exchanger
JP2007263461A (en) Absorption refrigerating machine
JP2875614B2 (en) Air cooling absorption air conditioner
JP2014173810A (en) Air-cooling absorption type refrigerator
JP2022032090A (en) Heat exchanger for refrigerator and refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term