JP3444781B2 - Method for modifying medical polymer and medical polymer substrate - Google Patents
Method for modifying medical polymer and medical polymer substrateInfo
- Publication number
- JP3444781B2 JP3444781B2 JP07508798A JP7508798A JP3444781B2 JP 3444781 B2 JP3444781 B2 JP 3444781B2 JP 07508798 A JP07508798 A JP 07508798A JP 7508798 A JP7508798 A JP 7508798A JP 3444781 B2 JP3444781 B2 JP 3444781B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- additive
- base material
- acrylate
- polymer base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Treatments Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Eyeglasses (AREA)
- Materials For Medical Uses (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、特定のポリマー膨
潤助剤(c) を用いて超臨界流体(d) により添加剤(b)を
ポリマー基材(a) に含浸する等ことにより、添加剤 (b)
が溶出性試験において検出限界以下である程度にポリマ
ー基材(a) から実質的に溶出しない改質した医療用ポリ
マー基材及びその改質方法に関するものである。TECHNICAL FIELD The present invention relates to the addition of a specific polymer swelling aid (c ) by adding an additive (b) to a polymer substrate (a ) with a supercritical fluid (d ). Agent (b)
The present invention relates to a modified medical polymer base material which does not substantially elute from the polymer base material (a ) to a certain extent below the detection limit in the dissolution test, and a method for modifying the same.
【0002】[0002]
【従来の技術】これまで、ポリマー特に医療用具として
応用されてきたポリマー基材に、種々の添加剤を含浸す
る試みがなされてきた。例えば、特定の添加剤を含む溶
液中にポリマーを長期に浸漬させることによって所定の
添加剤を含浸することができる。さらに、超臨界流体中
で添加剤を溶解しポリマーに含浸させる事により所定の
添加剤を含浸させられる。代表的な方法としては、所定
の添加剤が超臨界流体(例えば炭酸ガス)に可溶であ
り、かつ、超臨界流体に溶解した添加剤がポリマーと相
溶性である条件下で含浸する方法である。2. Description of the Related Art Up to now, attempts have been made to impregnate various additives into a polymer base material which has been applied as a polymer, particularly as a medical device. For example, the predetermined additive can be impregnated by immersing the polymer in a solution containing the specific additive for a long period of time. Furthermore, predetermined additives can be impregnated by dissolving the additives in a supercritical fluid and impregnating the polymer. A typical method is to impregnate a given additive under conditions where the additive is soluble in a supercritical fluid (for example, carbon dioxide gas) and the additive dissolved in the supercritical fluid is compatible with the polymer. is there.
【0003】例えば、米国特許第4、598、006号
明細書には、熱可塑性ポリマーを含浸剤(芳香剤、除虫
剤、医薬等)と超臨界流体(例えば、炭酸ガス)で含浸
する方法が記載されている。同様に、米国特許第4、8
20、752号明細書には、圧縮された流体(例えば、
炭酸ガス)に添加剤が特定の濃度に溶解され、この溶液
をポリマーと接触してポリマー中に溶解させ、添加剤を
含浸する方法が記載されている。これらで使用されてい
る添加剤は、ポリマーにかなりの溶解性を有するもの
で、臨界点以下の温度でも含浸される添加剤を含浸する
方法であり、含浸されたポリマーからの溶出性も大き
い。For example, US Pat. No. 4,598,006 describes a method of impregnating a thermoplastic polymer with an impregnating agent (fragrance, insecticide, medicine, etc.) and a supercritical fluid (eg carbon dioxide gas). Is listed. Similarly, US Pat.
No. 20,752 describes a compressed fluid (eg,
It describes a method in which an additive is dissolved in carbon dioxide gas) at a specific concentration, and the solution is brought into contact with the polymer to be dissolved in the polymer to impregnate the additive. The additive used in these has a considerable solubility in the polymer, is a method of impregnating the additive that is impregnated even at a temperature below the critical point, and has a large elution property from the impregnated polymer.
【0004】一方、特表平8−506612号公報に
は、ポリマー基材に不溶である添加剤を含浸させる方法
として、ポリマー基材とキャリアー液体(実質的にポリ
マー及び超臨界流体に不溶)および含浸剤(実質的に超
臨界流体に不溶)の混合物を超臨界流体(例えば、炭酸
ガス)中で接触させ、含浸剤をポリマーに封じ込める方
法が記載されている。この方法によれば、実質的にポリ
マーに溶解しない添加剤を含浸することが可能となる
が、含浸ポリマーから添加剤の溶出性が大きく、水や緩
衝液などの溶媒で添加剤が容易に溶出する。On the other hand, Japanese Patent Publication No. 8-506612 discloses a method of impregnating a polymer base material with an additive which is insoluble in the polymer base material, a carrier liquid (substantially insoluble in the polymer and supercritical fluid) and A method is described in which a mixture of impregnating agents (substantially insoluble in the supercritical fluid) is contacted in a supercritical fluid (eg, carbon dioxide) to confine the impregnating agents in the polymer. According to this method, it becomes possible to impregnate an additive that is substantially insoluble in the polymer, but the additive has a large elution property from the impregnated polymer, and the additive can be easily eluted with a solvent such as water or a buffer solution. To do.
【0005】[0005]
【発明が解決しようとする課題】本発明の課題は、医療
用具として優れた機能を付与する添加剤を溶出性試験に
おいて検出限界以下である程度にポリマー基材から実質
的に溶出させずに、医療用具として優れた機能を長期に
わたり安定して有するポリマー基材を提供することを目
的とするものである。DISCLOSURE OF THE INVENTION An object of the present invention is to conduct an elution test with an additive that imparts an excellent function as a medical device.
It is an object of the present invention to provide a polymer base material which does not substantially elute from the polymer base material to a certain extent below the detection limit and has a stable function excellent as a medical device for a long period of time.
【0006】[0006]
【課題を解決するための手段】本発明者は、ポリマー基
材(a) に添加剤を含浸する方法について鋭意研究を重ね
た結果、超臨界流体に可溶で、ポリマー基材(a) に含浸
可能な低分子化合物で常態でのポリマー基剤に10%以
下の溶解性を有し且つポリマー基材を構成するモノマー
と同じか、或いは特定の化合物から選択された少なくと
も1種の類似の化学的性質を有するポリマー膨潤助剤
(c) を添加剤 (b)と共存させることにより、添加剤をポ
リマー基材中に実質的に封じ込め得ることを見い出し、
この知見に基づいて本発明をなすに至った。Means for Solving the Problems The present inventor has conducted extensive studies on a method of impregnating a polymer base material (a) with an additive, and as a result, the polymer base material (a) is soluble in a supercritical fluid. It is an impregnable low-molecular compound and has a solubility of 10% or less in a normal polymer base and is the same as the monomer constituting the polymer substrate , or at least selected from specific compounds.
Also polymeric swelling aid having a chemistry of one similar
By coexisting (c) with the additive (b), it was found that the additive can be substantially contained in the polymer substrate,
The present invention has been completed based on this finding.
【0007】即ち、本発明は:
(1) ポリマー基材(a) 、ポリマー基材に実質的に溶
解しない添加剤 (b)および超臨界流体に可溶でポリマー
基材) に含浸可能な低分子化合物で常態でのポリマー基
剤に10%以下の溶解性を有し且つポリマー基材を構成
するモノマーと同じか、或いはシロキサニルメタアクリ
レートを主成分とするシリコン系メタアクリル共重合ポ
リマー基材(a) にはシロキサニルメタアクリレート、メ
チル(メタ)アクリレート;ジメチルシロキサン系のオ
リゴマーを主成分とするシリコン系ポリマー基材(a) に
は分子量が約1000以下のジメチルシリコーン系のオ
イル;フッ素含有アクリレート或いはメタクリレートを
主成分とするフルオロ(メタ)アクリレートポリマー基
材(a) にはシロキサニル(メタ)アクリレート、フッ素
含有(メタ)アクリレートからなる群から選択された少
なくとも1種の類似の化学的性質を有するポリマー膨潤
助剤(c) を圧力容器内に入れ、(2)超臨界流体(d) に接
触保持して該ポリマー基材(a) に該添加剤 (b)と該ポリ
マー膨潤助剤(c) を含浸させ、(3)次いで超臨界流体
(d) を圧力容器内に流通させて該ポリマー膨潤助剤(c)
を流出分離した後、(4) 圧力容器内の圧力を減少させて
該添加剤(b)を該ポリマー基材(a) 中に封じ込めること
を特徴とする、添加剤 (b)によりポリマー基材(a) を改
質する方法を提供する。また、
ポリマー基材(a) が、コンタクトレンズ材料、眼内
レンズ材料、眼鏡レンズ材料、カテーテル材料である点
にも特徴を有する。また、
添加剤 (b)が、染料、紫外線吸収剤、防眩剤、ホト
クロニック剤、柔軟剤、親水性付与剤である点にも特徴
を有する。また、
ポリマー膨潤助剤(c) がシロキサニルメタアクリレ
ート或いはメチルメタアクリレートである点にも特徴を
有する。また、
(1) ポリマー基材(a) 、ポリマー基材に実質的に溶
解しない添加剤 (b)および超臨界流体に可溶でポリマー
基材に含浸可能な低分子化合物で常態でのポリマー基剤
に10%以下の溶解性を有し且つポリマー基材を構成す
るモノマーと同じか、或いはシロキサニルメタアクリレ
ートを主成分とするシリコン系メタアクリル共重合ポリ
マー基材(a) にはシロキサニルメタアクリレート、メチ
ル(メタ )アクリレート;ジメチルシロキサン系のオリ
ゴマーを主成分とするシリコン系ポリマー基材(a) には
分子量が約1000以下のジメチルシリコーン系のオイ
ル;フッ素含有アクリレート或いはメタクリレートを主
成分とするフルオロ(メタ)アクリレートポリマー基材
(a) にはシロキサニル(メタ)アクリレート、フッ素含
有(メタ)アクリレートからなる群から選択された少な
くとも1種の類似の化学的性質を有するポリマー膨潤助
剤(c) を圧力容器内に入れ、(2)超臨界流体(d) に接触
保持して該ポリマー基材(a) に該添加剤 (b)と該ポリマ
ー膨潤助剤(c) を含浸させ、(3)次いで超臨界流体(d)
を圧力容器内に流通させて該ポリマー膨潤助剤(c) を流
出分離した後、(4) 圧力容器内の圧力を減少させて該添
加剤 (b)を該ポリマー基材(a) 中に封じ込める方法で得
られ得る、該添加剤 (b)が溶出性試験において検出限界
以下であることを特徴とする、医療用ポリマー基材を提
供する。また、 ポリマー膨潤助剤(c) がシロキサニ
ルメタアクリレート或いはメチルメタアクリレートであ
る点にも特徴を有する。That is, the present invention comprises: (1) a polymer base material (a), an additive (b) which is substantially insoluble in the polymer base material, and a polymer base material which is soluble in the supercritical fluid and which can be impregnated. It is a molecular compound that has a solubility of 10% or less in a normal polymer base and is the same as the monomer constituting the polymer substrate , or siloxanyl methacrylic acid.
Silicon-based methacrylic copolymer copolymer with rate as the main component
For the limer base (a), siloxanyl methacrylate,
Chill (meth) acrylate; dimethyl siloxane type
For silicone-based polymer base material (a) whose main component is rigomer
Is a dimethyl silicone type with a molecular weight of about 1000 or less.
Ill; Fluorine-containing acrylate or methacrylate
Fluoro (meth) acrylate polymer group as the main component
Material (a) is siloxanyl (meth) acrylate, fluorine
Containing (meth) acrylates selected from the group consisting of
At least one polymer swelling aid (c) having similar chemical properties is placed in a pressure vessel, and (2) is contacted with a supercritical fluid (d) and is added to the polymer substrate (a). Agent (b) and the polymer swelling aid (c) are impregnated, (3) then supercritical fluid
The polymer swelling aid by circulating (d) in a pressure vessel (c)
And (4) reducing the pressure in the pressure vessel to confine the additive (b) in the polymer base material (a). A method for modifying (a) is provided. It is also characterized in that the polymer substrate (a) is a contact lens material, an intraocular lens material, a spectacle lens material, or a catheter material. It is also characterized in that the additive (b) is a dye, an ultraviolet absorber, an antiglare agent, a photochronic agent, a softening agent, and a hydrophilicity-imparting agent. It is also characterized in that the polymer swelling aid (c) is siloxanyl methacrylate or methyl methacrylate. Further, (1) a polymer base material (a), an additive that is not substantially dissolved in the polymer base material (b), and a low molecular weight compound that is soluble in a supercritical fluid and can be impregnated in the polymer base material The same as the monomer that has a solubility of 10% or less in the agent and that constitutes the polymer base , or siloxanyl methacrylic acid
Silicone-based methacrylic copolymer poly
The polymer base (a) contains siloxanyl methacrylate and methyl
(Meth ) acrylate; dimethylsiloxane-based ori
Silicon-based polymer base material (a) containing gomer as the main component
A dimethyl silicone oil with a molecular weight of about 1000 or less
Mainly fluorine-containing acrylate or methacrylate
Fluoro (meth) acrylate polymer base material
(a) contains siloxanyl (meth) acrylate and fluorine
A few selected from the group consisting of (meth) acrylates
At least one polymer swelling aid (c) having similar chemical properties is placed in a pressure vessel and (2) is contacted with a supercritical fluid (d) and added to the polymer substrate (a). Agent (b) and the polymer swelling aid (c) are impregnated, (3) then supercritical fluid (d)
The polymer swelling aid (c) by flowing out into a pressure vessel to separate out, (4) the pressure in the pressure vessel is reduced to add the additive (b) into the polymer substrate (a). Provided is a polymer base material for medical use, which is obtainable by a method of encapsulation and characterized in that the additive (b) is below a detection limit in a dissolution test. It is also characterized in that the polymer swelling aid (c) is siloxanyl methacrylate or methyl methacrylate.
【0008】以下、本発明を詳細に説明する。
(A) ポリマー基材(a)
本発明により提供されるポリマー基材(a) は、染料、紫
外線吸収剤、防眩剤、ホトクロニック剤、柔軟剤、親水
性付与剤等の添加剤 (b)を長期に渡り安定して含有し、
水、生理食塩水等使用環境下では、添加剤 (b)は溶出性
試験において検出限界以下である程度に実質的に溶出が
無く、優れた機能を維持することができることを特徴と
する。本発明におけるポリマー基材(a) は、具体的に
は、コンタクトレンズ材料、眼内レンズ材料、眼鏡レン
ズ材料、カテーテル材料等に使用されるポリマーであ
る。例えば、アクリル(メタクリル)系の単独ポリマー
或いは該モノマーと他のモノマーとの共重合ポリマー、
シリコン系の単独ポリマー或いは該モノマーと他のモノ
マーとの共重合ポリマー、ポリカーボネート系の単独ポ
リマー或いは該カーボネート系モノマーと他のモノマー
との共重合ポリマーであり、製品の形状に加工されたも
の或いはその原料が使用できる。The present invention will be described in detail below. Polymer substrate provided by (A) a polymer substrate (a) (a) of the present invention include dyes, UV absorbers, antiglare, Hotokuronikku agents, softeners, hydrophilizing agents such additives (b ) Is contained stably over a long period of time,
Additive (b) is soluble under the environment of use such as water and saline
It is characterized by being able to maintain an excellent function with substantially no elution to some extent below the detection limit in the test . The polymer base material (a ) in the present invention is specifically a polymer used for contact lens materials, intraocular lens materials, spectacle lens materials, catheter materials and the like. For example, an acrylic (methacrylic) homopolymer or a copolymer of the monomer and another monomer,
Silicon-based homopolymers or copolymers of the monomers with other monomers, polycarbonate homopolymers or copolymers of the carbonate-based monomers with other monomers, which have been processed into product shapes or Raw materials can be used.
【0009】特に、該ポリマー基材(a) としては、(i)
コンタクトレンズと眼内レンズに広く使用されているシ
ロキサニル(メタ)アクリレート、フルオロアルキル
(メタ)アクリレート、アルキル(メタ)アクリレー
ト、および(メタ)アクリル酸、ヒドロキシアルキル
(メタ)アクリレートなど親水性モノマーから選ばれた
成分及び/又はエチレングリコールジ(メタ)アクリレ
ート、テトラエチレングリコール(メタ)アクリレート
など架橋性モノマーから選ばれた成分から得られる架橋
ポリマー基材、
(ii)ポリジメチルシリコーンジメタアクリレート、フル
オロ変性ポリジメチルシリコーンジメタアクリレート等
を主成分としこれらと上記親水性モノマー、及び架橋性
モノマーから得られる架橋ポリマー基材、
(iii) ヘキサメチルシクロトリシロキサン、オクタメチ
ルシクロテトラシロキサン、ビニルメチルシクロシロキ
サン、トリフロロプロピルメチルシクロシロキサンなど
環状シロキサン、ジフェニルシランジオール、ヘキサメ
チルジシロキサン、テトラメチルジシロキサン、ジビニ
ルテトラメチルジシロキサンなど低分子シロキサンから
生成されるシリコーンポリマー基材、或いは
(iv) スチレン、ブチルアクリレートおよび架橋性モノ
マーとから得られる形状記憶性ポリマー基材が好まし
い。Particularly, the polymer substrate (a ) includes (i)
Widely used in contact lenses and intraocular lenses, selected from siloxanyl (meth) acrylate, fluoroalkyl (meth) acrylate, alkyl (meth) acrylate, and hydrophilic monomers such as (meth) acrylic acid and hydroxyalkyl (meth) acrylate. Polymer and / or crosslinked polymer base material obtained from a component selected from crosslinkable monomers such as ethylene glycol di (meth) acrylate and tetraethylene glycol (meth) acrylate, (ii) polydimethyl silicone dimethacrylate, fluoro-modified A cross-linked polymer base material mainly composed of polydimethyl silicone dimethacrylate and the like, the above hydrophilic monomer and a cross-linkable monomer, (iii) hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxa , Vinylmethylcyclosiloxane, trifluoropropylmethylcyclosiloxane, cyclic siloxane, diphenylsilanediol, hexamethyldisiloxane, tetramethyldisiloxane, divinyltetramethyldisiloxane, etc. iv) Shape memory polymer substrates obtained from styrene, butyl acrylate and crosslinkable monomers are preferred.
【0010】(B) 添加剤 (b)
1)本発明における添加剤 (b)は、染料、紫外線吸収
剤、防眩剤、ホトクロニック剤、柔軟剤、親水性付与剤
等であり、実使用環境下でポリマーから溶出しないこと
が必要であり、且つ常態においてポリマー基材(a) には
実質的に溶解しないか、極微量しか溶解しないものであ
る。これらの添加剤 (b)は、ポリマー基材(a) の物理化
学的特性に応じて適宜選択されるが、アントラキノン系
染料、ジアゾ系染料、ベンゾトリアゾール系紫外線吸収
剤、ベンゾフェノン系紫外線吸収剤、スピロピラン系ホ
トクリニック染料、シリコーン系オリゴマー、親水性の
シリコーン系オリゴマー、高級脂肪酸エステル、親油性
の界面活性剤などが使用できる。(B) Additive (b) 1) The additive (b) in the present invention is a dye, an ultraviolet absorber, an antiglare agent, a photochronic agent, a softening agent, a hydrophilicity imparting agent, etc. It is necessary that it is not eluted from the polymer under the environment, and in the normal state, it does not substantially dissolve in the polymer substrate (a) , or it dissolves only in a very small amount. These additives (b) are appropriately selected according to the physicochemical characteristics of the polymer substrate (a) , anthraquinone dyes, diazo dyes, benzotriazole UV absorbers, benzophenone UV absorbers, Spiropyran-based photoclinic dyes, silicone-based oligomers, hydrophilic silicone-based oligomers, higher fatty acid esters, lipophilic surfactants and the like can be used.
【0011】例えば、ポリマー基材(a) に色を着けてレ
ンズの光学特性をコントロールする目的にバイエル社製
のMacrolex Blue RR、Violet
3R、Green 5B、Green G、Viole
t B等のアントラキノン系染料;Macrolex
Yellow3G等のピラゾロン系染料;紫外線透過率
をコントロールする目的に共同薬品(株)製Vioso
rb 550、580、582、583、590および
591;住友化学工業(株)製スミソーブ 250;旭
電化工業(株)製アデカスタブ LA−31等のベンゾ
トリアゾール系紫外線吸収剤;旭電化工業(株)製アデ
カスタブ LA−51等のベンゾフェノン系紫外線吸収
剤;ポリマー基材(a) の機械的強度を改良する目的に信
越シリコン(株)製のシリコーンオイル;また機械的強
度とともにポリマー基材表面に親水性を付与する目的に
信越シリコン(株)製のKF355、615、353、
945、6004などのポリエーテル変性シリコーンオ
イルなどが好ましく、これら単独で或いは2種以上を組
み合わせて使用される。For example, for the purpose of controlling the optical characteristics of the lens by coloring the polymer substrate (a ), Macrolex Blue RR, Violet manufactured by Bayer Co.
3R, Green 5B, Green G, Violet
Anthraquinone dyes such as t B; Macrolex
Pyrazolone dyes such as Yellow 3G; Vioso manufactured by Kyodo Chemical Co., Ltd. for the purpose of controlling the ultraviolet transmittance
rb 550, 580, 582, 583, 590 and 591; Sumitomo Chemical Co., Ltd. Sumisosorb 250; Asahi Denka Kogyo Co., Ltd. ADEKA STAB LA-31 and other benzotriazole ultraviolet absorbers; Asahi Denka Kogyo KK Benzphenone UV absorbers such as ADK STAB LA-51; Silicone oil manufactured by Shin-Etsu Silicon Co., Ltd. for the purpose of improving the mechanical strength of the polymer base (a ); KF355, 615, 353 manufactured by Shin-Etsu Silicon Co., Ltd.
Polyether-modified silicone oils such as 945 and 6004 are preferable, and these are used alone or in combination of two or more kinds.
【0012】2)これら添加剤 (b)は、その目的により
適切な量をポリマー基材(a) に添加されるが、例えば染
料、紫外線吸収剤などは5〜5000ppmの範囲で添
加され、機械的強度、柔軟性及び親水性などポリマー特
性の改良の目的で添加される添加剤では0.01〜10
重量%の範囲内で添加される。 2) These additives (b) are added to the polymer substrate (a ) in an appropriate amount according to the purpose, but for example, dyes, ultraviolet absorbers, etc. are added in the range of 5 to 5000 ppm. Additives added for the purpose of improving polymer properties such as dynamic strength, flexibility and hydrophilicity are 0.01 to 10
It is added within the range of weight%.
【0013】(C) ポリマー膨潤助剤(c)
本発明におけるポリマー膨潤助剤(c) は、超臨界流体に
可溶で且つポリマー基材に含浸可能な低分子化合物で常
態でのポリマー基剤に10%以下の溶解性を有し且つポ
リマー基材を構成するモノマーと同じか、或いはシロキ
サニルメタアクリレートを主成分とするシリコン系メタ
アクリル共重合ポリマー基材(a) にはシロキサニルメタ
アクリレート、メチル(メタ)アクリレート;ジメチル
シロキサン系のオリゴマーを主成分とするシリコン系ポ
リマー基材(a) には分子量が約1000以下のジメチル
シリコーン系のオイル;フッ素含有アクリレート或いは
メタクリレートを主成分とするフルオロ(メタ)アクリ
レートポリマー基材(a) にはシロキサニル(メタ)アク
リレート、フッ素含有(メタ)アクリレートからなる群
から選択された少なくとも1種の類似の化学的性質を有
する化合物である。これらポリマー膨潤助剤(c) は、使
用するポリマー基材(a) 及び添加剤 (b)の性質に応じて
適宜選択される。その基準は一義的に決められないが、
一般的に実使用状態の超臨界流体(d) に1%以上溶解
し、常態でのポリマー基材(a) に10%以下、超臨界流
体(d) の共存下でも10%以下の溶解性を有し、添加剤
(b)の当該助剤(c) への溶解性が常態で3%以下でかつ
超臨界流体共存下でも3%以下であるものが好ましい。(C) Polymer swelling aid (c) The polymer swelling aid (c) in the present invention is a low molecular weight compound which is soluble in a supercritical fluid and can be impregnated into a polymer substrate in a normal state. It has a solubility of 10% or less and is the same as the monomer that constitutes the polymer substrate , or
Silicon-based meth- ane whose main component is sanyl methacrylate
The acrylic copolymer base (a) contains siloxanylmeth
Acrylate, methyl (meth) acrylate; dimethyl
Silicon-based polymer whose main component is siloxane-based oligomer
The limer base material (a) contains dimethyl having a molecular weight of about 1000 or less.
Silicone oil; Fluorine-containing acrylate or
Fluoro (meth) acrylate containing methacrylate as the main component
The rate polymer substrate (a) contains siloxanyl (meth) actuate.
Group consisting of relate and fluorine-containing (meth) acrylate
Is a compound having at least one similar chemical property selected from These polymer swelling aids (c) are appropriately selected according to the properties of the polymer base material (a) and the additive (b) used. Although the standard cannot be determined unambiguously,
Generally, 1% or more solubility in supercritical fluid (d) in actual use, 10% or less in normal polymer base material (a), and 10% or less even in the coexistence of supercritical fluid (d) Has an additive
It is preferable that the solubility of (b) in the auxiliary agent (c) is 3% or less in the normal state and 3% or less even in the presence of a supercritical fluid.
【0014】さらに、得られるポリマー基材(a) を医療
用として使用する上で、添加剤 (b)がポリマー基材(a)
から溶出することにより生体に悪影響が考えられる場合
も有り、添加剤 (b)の溶出が実質上無い様にするため
に、また、ポリマー基材(a) に残留してポリマーの強
度、弾性率、クリープ変形などの機械的性質、体液中で
の寸法安定性など物理的性質が低下しない様にするため
に、実使用状態の超臨界流体(d) への溶解度が1%〜1
0%の範囲内、常態でのポリマー基材(a) への溶解性が
5%以下、超臨界流体(d) 共存下でも10%以下、添加
剤 (b)の当該助剤(c) への溶解性が常態で1%以下で超
臨界流体(d) 共存下でも1%以下であるものがより好ま
しい。[0014] is et al., On the use of the resulting polymeric substrate (a) as a medical additive (b) is polymeric substrate (a)
In some cases, it may have a negative effect on the living body by being eluted from the polymer.In order to prevent the additive (b) from being substantially eluted, and in order to prevent the additive (b) from remaining in the polymer substrate (a ), the strength and elastic modulus of the polymer , To prevent deterioration of mechanical properties such as creep deformation and physical properties such as dimensional stability in body fluids, the solubility in the supercritical fluid (d ) in actual use is 1% to 1%.
Within the range of 0%, the solubility in the polymer base material (a ) in the normal state is 5% or less, 10% or less even in the coexistence of the supercritical fluid (d) , and the additive (b) to the auxiliary agent (c ). It is more preferable that the solubility of is 1% or less in the normal state and is 1% or less even in the coexistence of the supercritical fluid (d) .
【0015】その具体的な例としては、ポリマー基材
(a) の構成モノマーと同じかそれと類似の化学的性質を
有する有機化合物の内、超臨界流体に溶解し易いものか
ら選ぶのが好ましい。例えば、シロキサニルメタアクリ
レートを主成分とするシリコン系メタアクリル共重合ポ
リマーにはシロキサニルメタアクリレート、メチル(メ
タ)アクリレートが;ジメチルシロキサン系のオリゴマ
ーを主成分とするシリコン系ポリマーには分子量が約1
000以下のジメチルシリコーン系のオイルが;フッ素
含有アクリレート或いはメタクリレートを主成分とする
フルオロ(メタ)アクリレートポリマーにはシロキサニ
ル(メタ)アクリレート、フッ素含有(メタ)アクリレ
ートなどが好ましい。特に、(メタ)アクリレート系ポ
リマー膨潤助剤は、添加剤 (b)の溶解性、ポリマー膨潤
能力、ポリマー基材(a) との親和力バランス、添加剤
(b)の含浸後に超臨界流体で膨潤助剤を流去するときに
ポリマー基材(a) と超臨界流体(d) への溶解性バランス
などが良く、ポリマー基材(a) から抽出が容易でポリマ
ー基材(a) への残留が実質上無く、ポリマー基材(a) の
物理的特性、例えば寸法安定性、クリープ変形特性など
の物性が優れるために、シロキサニル(メタ)アクリレ
ートがより好ましい。[0015] As a specific example of that is, the polymer substrate
Among the organic compounds having chemical properties same or similar to the constituent monomers of (a), preferably selected from those easily dissolved in the supercritical fluid. For example, siloxanyl methacrylate and methyl (meth) acrylate are used for the silicone-based methacrylic copolymer having siloxanyl methacrylate as the main component; and molecular weight is used for the silicone-based polymer having dimethylsiloxane oligomer as the main component. Is about 1
A dimethyl silicone-based oil of 000 or less; siloxanyl (meth) acrylate, fluorine-containing (meth) acrylate and the like are preferable for the fluoro (meth) acrylate polymer containing fluorine-containing acrylate or methacrylate as a main component. In particular, (meth) acrylate-based polymer swelling aids include the solubility of the additive (b) , the polymer swelling ability, the affinity balance with the polymer substrate (a ), the additive
When the swelling aid is removed with a supercritical fluid after impregnation with (b), the solubility in the polymer substrate (a ) and the supercritical fluid (d ) is well balanced, and the extraction from the polymer substrate (a ) easy residual to the polymeric substrate (a) is not over substantially the physical properties of the polymeric substrate (a), for example, dimensional stability, because the excellent physical properties such as creep deformation characteristics, more siloxanyl (meth) acrylate preferable.
【0016】本発明に係わる膨潤助剤(c) は、使用する
ポリマー基材(a) 、添加剤 (b)および超臨界流体(d) が
決まった時点でそれぞれの媒体への溶解度を測定して、
上述の基準に基づき選択される。本発明の膨潤助剤(c)
の作用効果は、正確には判っていないが、添加剤 (b)の
超臨界流体(d) への溶解度を高める効果よりも、添加剤
(b)のポリマー基材(a)への拡散を助けるためにポリマ
ー基材(a) の超臨界流体(d) による膨潤を高める効果を
示し、ポリマー基材(a) 自体からは超臨界流体(d) によ
って容易に抽出除去できる性質を有している。このこと
によって、添加剤 (b)の含浸率が高くかつポリマー基材
(a) の特性が変化することなく含浸することが出来ると
思われる。The swelling aid (c ) according to the present invention is measured for solubility in each medium when the polymer base material (a ), the additive (b) and the supercritical fluid (d ) to be used are determined. hand,
It is selected based on the above criteria. Swelling aid of the present invention (c )
The effect of the additive is not known exactly, but it is more effective than the effect of increasing the solubility of the additive (b) in the supercritical fluid (d ).
(b) in order to assist the diffusion of the polymer substrate (a) shows the effect of increasing the swelling by the supercritical fluid (d) of the polymer substrate (a), the polymer substrate (a) is from itself supercritical fluid It has the property of being easily extracted and removed by (d) . Due to this, the impregnation rate of the additive (b) is high and the polymer substrate
It seems that the impregnation can be performed without changing the properties of (a ).
【0017】(D) 超臨界流体(d)
超臨界流体(d) は、臨界温度(Tc)および臨界圧力
(Pc)以上に維持された流体であり、気体の性質と液
体の性質との両方の性質を示し、気体のように拡散し易
くかつ液体の溶解性を示す。本発明で使用できる超臨界
流体(d) は、ポリマー基材(a) 、添加剤 (b)、および膨
潤助剤(c) に応じて適宜選択されるが、一般的には炭酸
ガス(Tc=31.1℃、Pc=7.38MPa)、亜
酸化窒素(Tc=36.5℃、Pc=7.26MP
a)、エタン(Tc=32.3℃、Pc=4.88MP
a)などが好ましく使える。特に炭酸ガスは、医療用の
ポリマー基材(a) に対する超臨界状態での溶解性、膨潤
性が適度でポリマー基材の形状を変形させる事がなく、
かつ安全性が高く好ましい。超臨界流体(d) の温度、圧
力は、使用する材料、目的に応じて決められるが。一般
的には、使用する超臨界流体(d) の臨界温度(Tc)と
臨界圧力(Pc)以上、好ましくはTc〜Tc+100
℃の範囲の温度、Pc〜Pc+30MPaの範囲の圧力
で使用される。(E) その他の添加剤また、超臨界流体
(d) の溶解性を制御する目的でエントレーナーとして、
水、メタノール、エタノールなどをポリマー基材(a) へ
の影響が少ない範囲で数%添加することも出来る。(D) Supercritical fluid (d) Supercritical fluid (d ) is a fluid maintained above a critical temperature (Tc) and a critical pressure (Pc), and has both gas and liquid properties. It has the property of being easy to diffuse like a gas and shows the solubility of a liquid. The supercritical fluid (d ) that can be used in the present invention is appropriately selected according to the polymer base material (a ), the additive (b) , and the swelling aid (c ), but in general, carbon dioxide gas (Tc = 31.1 ° C, Pc = 7.38 MPa, nitrous oxide (Tc = 36.5 ° C, Pc = 7.26MP)
a), ethane (Tc = 32.3 ° C., Pc = 4.88 MP
A) etc. can be preferably used. In particular, carbon dioxide gas has moderate solubility and swelling property in the supercritical state with respect to the medical polymer base material (a ) and does not deform the shape of the polymer base material.
Moreover, it is highly safe and preferable. The temperature and pressure of the supercritical fluid (d) are determined according to the material used and the purpose. In general, the critical temperature (Tc) and critical pressure (Pc) of the supercritical fluid (d ) used are equal to or higher than the critical temperature (Tc), preferably Tc to Tc + 100.
It is used at a temperature in the range of ° C and a pressure in the range of Pc to Pc + 30 MPa. (E) Other additives and supercritical fluids
As an entrainer for the purpose of controlling the solubility of (d ),
It is also possible to add water, methanol, ethanol, etc. in an amount of several% within a range in which the influence on the polymer substrate (a ) is small.
【0018】(F) 医療用ポリマー基材の製造
本発明の医療用ポリマー基材は、ポリマー基材(a) と添
加剤 (b)およびポリマー膨潤助剤(c) を圧力容器内にい
れ、超臨界流体(d) に接触保持してポリマー基材(a) に
添加剤 (b)とポリマー膨潤助剤(c) を含浸させ、ついで
超臨界流体(d)を圧力容器内に流通させてポリマー膨潤
助剤(c) を流出分離した後、圧力容器内の圧力を減少さ
せて添加剤 (b)をポリマー基材(a) 中に封じ込めて製作
される。・ポリマー基材(a) と添加剤 (b)およびポリマ
ー膨潤助剤(c) を圧力容器内にいれる方法としては、ポ
リマー基材(a) の形状や厚み、添加剤 (b)の性状、例え
ば液状、固形状、粉末状などにより目標の含浸量になる
ように設定されるが、例えば粉末状の添加剤 (b)をポリ
マー基材(a) にまぶして仕込んだり、圧力容器の容積に
たいして一定の比表面積を有する添加剤用の仕込皿に入
れる方法などが適宜選択される。(F) Manufacture of Medical Polymer Substrate The medical polymer substrate of the present invention comprises a polymer substrate (a ), an additive (b) and a polymer swelling aid (c ) placed in a pressure vessel, impregnated additive to the polymer substrate in contact held in the supercritical fluid (d) (a) and (b) polymeric swelling aid (c), then a supercritical fluid (d) was circulated in the pressure vessel After the polymer swelling aid (c ) is separated by outflow, the pressure in the pressure vessel is reduced and the additive (b) is enclosed in the polymer substrate (a ) to produce the polymer.・ The method of putting the polymer substrate (a ), the additive (b) and the polymer swelling aid (c ) in the pressure vessel includes the shape and thickness of the polymer substrate (a ), the properties of the additive (b) , For example, the target impregnation amount is set depending on the liquid, solid, powder, etc., for example, the powdered additive (b) is sprinkled on the polymer base material (a ) and charged, or the volume of the pressure vessel is reduced. The method of putting in an additive preparation dish having a certain specific surface area is appropriately selected.
【0019】・ポリマー膨潤助剤(c) は、常態でポリマ
ーに対して溶解性が小さい為ポリマー基材にまぶして仕
込んだり、専用の皿状容器に単独でいれて仕込んだり、
添加剤と一緒に仕込んだり適宜選択される。
・得られるポリマー基材(a) の後処理、添加剤 (b)の含
浸量、濃度分布等から、圧力容器の内容積に対して40
〜200cm2 /リットルの比表面積になるような容器
に添加剤 (b)とポリマー膨潤助剤(c) を入れ、かつポリ
マー基材(a) とは別に仕込む方法がより好ましい。The polymer swelling aid (c ) has a low solubility in the polymer in a normal state, so that the polymer swelling aid may be sprinkled on the polymer base material, or may be placed alone in a dedicated dish-shaped container.
It is charged together with an additive or appropriately selected.・ Depending on the post-treatment of the obtained polymer substrate (a ), the impregnated amount of the additive (b) , the concentration distribution, etc., it is 40
It is more preferable to add the additive (b) and the polymer swelling aid (c ) into a container having a specific surface area of ˜200 cm 2 / liter, and charge the container separately from the polymer base material (a ).
【0020】・超臨界流体(d) に接触保持する時間は、
使用するポリマー基材(a) の種類、厚みおよび形状、膨
潤助剤(c) の種類、添加剤 (b)の種類、超臨界流体(d)
の圧力および温度などにより適宜選択され、ポリマー基
材(a) 中への含浸状態を確認して、基材中心部まで含浸
する時間に設定される。
・含浸が終了した時点では、ポリマー基材(a) には添加
剤 (b)とポリマー膨潤助剤(c) が含浸されており、本発
明では引き続き超臨界流体(d) を流通させてポリマー膨
潤助剤(c) を流去分離する。この時の超臨界流体(d) の
状態は、含浸時の条件と同じでも違ってもよいが、変え
る場合は温度、圧力は含浸時よりも低い条件に設定する
のが好ましい。
・ポリマー膨潤剤(c) がポリマー基材(a) 中に残留して
物性に影響する事があるために、流出分離を完全に行う
には超臨界流体(d) を流通させて圧力容器内のポリマー
膨潤助剤(c) を流去した後、さらに超臨界流体(d) に接
触保持してポリマー基材(a) からポリマー膨潤助剤(c)
を抽出して除去する事が好ましい。The time for contacting and holding the supercritical fluid (d ) is
Polymer base material (a ) type, thickness and shape, swelling aid (c ) type, additive (b) type, supercritical fluid (d )
The pressure is appropriately selected according to the pressure and temperature, and the time for impregnation to the center of the base material is set by confirming the impregnation state in the polymer base material (a ). When the impregnation is completed, the polymer substrate (a ) is impregnated with the additive (b) and the polymer swelling aid (c ), and in the present invention, the supercritical fluid (d ) is continuously circulated to polymer the polymer. The swelling aid (c ) is separated by running off. The state of the supercritical fluid (d ) at this time may be the same as or different from the condition at the time of impregnation, but in the case of changing it, it is preferable to set the temperature and pressure to be lower than those at the time of impregnation.・ Since the polymer swelling agent (c ) may remain in the polymer substrate (a ) and affect the physical properties, in order to completely perform the outflow separation, the supercritical fluid (d ) should be circulated in the pressure vessel. polymeric swelling aid was poured off the (c), further the supercritical fluid (d) to the contact holding to the polymeric substrate (a) from the polymer swelling aid (c)
Is preferably extracted and removed.
【0021】・さらに、本発明の医療用ポリマー基材
は、以上の様にして添加剤 (b)を含浸したポリマー基材
(a) を取り出すために、圧力容器内の圧力を超臨界状態
から減少させて製造される。この過程では、ポリマー基
材(a) の形状を維持するために、その形状に応じて緩か
に圧力を低下させることが好ましい。通常、厚み5mm
のポリマー製品では0.02MPa/min以下の減圧
速度で低下するのが好ましい。Further, the medical polymer substrate of the present invention is a polymer substrate impregnated with the additive (b) as described above.
In order to take out (a ), the pressure inside the pressure vessel is reduced from the supercritical state. In this process, in order to maintain the shape of the polymer base material (a ), it is preferable to gently reduce the pressure according to the shape. Usually 5 mm thick
In the polymer product (1), the pressure is preferably reduced at a pressure reduction rate of 0.02 MPa / min or less.
【0022】(G) 医療用ポリマー基材の特徴
本発明の医療用ポリマー基材は、医療用として有用な各
種添加剤 (b)をポリマー基材(a) の構成モノマーを重合
する時に添加すると、重合時のラジカルの影響、重合熱
の影響で添加剤が変質したり、或いは重合速度に影響を
与え重合を妨害したりする添加剤 (b)を、これら悪影響
無くポリマー基材(a) に含浸できる。また、高分子量の
界面活性剤や改質剤では、モノマーへの溶解度が小さく
効果がでる添加量まで加えることが出来ない場合が多い
が、本発明の方法ではポリマー基材(a) に含浸させるた
めこれら高分子量の添加剤 (b)の含浸が可能であり、得
られたポリマー基材(a) からの水、生理食塩水、涙液、
体液など実使用時にポリマー基材(a) と接触する液体中
への添加剤 (b)の溶出が実質上ないか、あっても極微量
である高機能のポリマー基材(a) を提供できる。(G) Characteristics of medical-use polymer base material The medical-use polymer base material of the present invention contains various additives (b) useful for medical use when the constituent monomers of the polymer base material (a ) are polymerized. Addition of an additive (b) that changes the properties of the additives under the influence of radicals during polymerization or the heat of polymerization or interferes with the polymerization by affecting the polymerization rate to the polymer base material (a ) without adverse effects. Can be impregnated. Also, in the case of high molecular weight surfactants and modifiers, it is often not possible to add up to the addition amount at which the solubility in the monomer is small and the effect is obtained, but in the method of the present invention, the polymer base material (a ) is impregnated. Therefore, it is possible to impregnate these high molecular weight additives (b) , water from the obtained polymer substrate (a ), physiological saline, tear fluid,
It is possible to provide a highly functional polymer base material (a ) that has virtually no elution of the additive (b) into the liquid that comes into contact with the polymer base material (a ) during actual use, such as body fluid, or even a very small amount. .
【0023】[0023]
【実施例】次に、実施例及び比較例によって本発明をさ
らに詳細に説明するが、これらは、本発明の範囲を制限
しない。実施例中の%は重量%である。なお、実施例に
おける特性評価は以下の方法で実施した。
(1) 添加剤の含浸量の定量
含浸処理したポリマー基材(a) ほぼ中央部分から、厚み
1mmのポリマー材料を切り出し、エタノールに浸漬し
て添加剤 (b)を溶出してエタノール溶液の吸光度を測定
する。また、添加剤 (b)の一定濃度のエタノール溶液の
吸光度から検量線を作成して、試料中の濃度を求める。
特異的吸光度を持たない添加剤 (b)の場合は、光散乱検
出器を使用して高速液体クロマトグラフィーで定量す
る。The present invention will now be described in more detail by way of examples and comparative examples, which do not limit the scope of the present invention. In the examples,% is% by weight. The characteristic evaluation in the examples was carried out by the following methods. (1) Quantitative determination of the impregnated amount of additive Polymer base material impregnated (a ) A polymer material with a thickness of 1 mm is cut out from approximately the center part and immersed in ethanol to elute the additive (b) and the absorbance of the ethanol solution To measure. Further, a calibration curve is prepared from the absorbance of an ethanol solution of additive (b) having a constant concentration to determine the concentration in the sample.
In the case of the additive (b) which does not have a specific absorbance, it is quantified by high performance liquid chromatography using a light scattering detector.
【0024】(2) 添加剤 (b)のポリマー基材(a) からの
溶出性試験
含浸したポリマー基材(a) を、生理食塩水および10%
エタノール含有生理食塩水に浸漬して37℃で24時間
放置する。浸漬液の吸光度あるいは光散乱を測定して液
中の添加剤濃度を求める。
(3) レンズの寸法安定性
含浸したポリマー基材(a) からレンズを作成して生理食
塩水に浸漬して、レンズの曲率半径を経時的に測定す
る。曲率半径が初期の値から3/100mm以上変化し
たら変形ありとする。また、レンズの直径方向に1.2
gの荷重をかけて1週間放置して曲率半径の変化を測定
する。曲率半径の変化が15/100mm以上ある場合
をクリープ変形が大きいとする。(2) Test for dissolution of additive (b) from polymer substrate (a ) The impregnated polymer substrate (a ) was treated with physiological saline and 10%.
Immerse in physiological saline containing ethanol and leave at 37 ° C. for 24 hours. The absorbance or light scattering of the immersion liquid is measured to determine the additive concentration in the liquid. (3) Dimensional stability of lens A lens is prepared from the impregnated polymer substrate (a ) and immersed in physiological saline, and the radius of curvature of the lens is measured with time. If the radius of curvature changes from the initial value by 3/100 mm or more, it is determined that there is deformation. In addition, 1.2 in the diameter direction of the lens
A load of g is applied and left for 1 week to measure the change in radius of curvature. The creep deformation is large when the change in the radius of curvature is 15/100 mm or more.
【0025】(実施例1)
シロキサニルメタアクリレート75%、フルオロメタア
クリレート8%、メタアクリル酸9%、架橋剤8%のポ
リマーからなる径13mm厚み6mmの円盤状ポリマー
基材26個を、内径31mm長さ200mmの圧力容器
に入れ、マクロレックス Violet 3R(バイエ
ル社製、アントラキノン系染料)を930ppm溶解さ
せたシロキサニルメタアクリレート1gを皿状容器に入
れて圧力容器の上部に設置して、蓋を閉じて液化炭酸ガ
スを40℃に加熱して17.5MPaの圧力まで圧入し
た。この超臨界状態で17時間保持した後、同じ超臨界
状態の炭酸ガスを流通して容器内のシロキサニルメタア
クリレートを流去した。さらに、17時間超臨界状態に
保持してポリマー基材中のシロキサニルメタアクリレー
トを超臨界炭酸ガス流体中に抽出し、同じ超臨界状態の
炭酸ガスを流通してこれを流去した。圧力容器の減圧バ
ルブを少しずつ開き、内圧を0.016MPa/min
で減圧した。圧力が大気圧になってから開放してポリマ
ー基材を取り出した。ポリマー基材は紫色に染色され、
Violet 3Rの含浸量は31ppmで、溶出性試
験の結果はViolet 3Rの検出限界(0.02p
pm)以下であった。このポリマー基材からベースカー
ブ7.70mm、パワー−3.00、サイズ8.8mm
のコンタクトレンズを製作して寸法安定性を評価したと
ころ、寸法安定性に優れ変形が無く、クリープ変形も無
かった。Example 1 Twenty-six disc-shaped polymer bases having a diameter of 13 mm and a thickness of 6 mm and made of a polymer of 75% siloxanyl methacrylate, 8% fluoromethacrylate, 9% methacrylic acid, and 8% crosslinking agent were prepared. It was placed in a pressure vessel having an inner diameter of 31 mm and a length of 200 mm, and 1 g of siloxanyl methacrylate in which 930 ppm of Macrolex Violet 3R (Anthraquinone dye manufactured by Bayer Co., Ltd.) was dissolved was placed in a dish-shaped vessel and placed on the top of the pressure vessel. The lid was closed, and the liquefied carbon dioxide gas was heated to 40 ° C. and pressed into the autoclave up to a pressure of 17.5 MPa. After maintaining in this supercritical state for 17 hours, carbon dioxide gas in the same supercritical state was circulated to remove the siloxanyl methacrylate in the container. Furthermore, while maintaining the supercritical state for 17 hours, siloxanyl methacrylate in the polymer substrate was extracted into a supercritical carbon dioxide gas, and the same carbon dioxide in the supercritical state was circulated to remove this. Open the pressure reducing valve of the pressure vessel little by little and set the internal pressure to 0.016 MPa / min.
The pressure was reduced by. After the pressure reached atmospheric pressure, it was released and the polymer substrate was taken out. The polymer substrate is dyed purple
The impregnation amount of Violet 3R was 31 ppm, and the result of the dissolution test was the detection limit of Violet 3R (0.02 p
pm) or less. From this polymer substrate, base curve 7.70mm, power-3.00, size 8.8mm
When the contact lens was manufactured and the dimensional stability was evaluated, the dimensional stability was excellent and there was no deformation and no creep deformation.
【0026】(実施例2)
シロキサニルメタアクリレート75%、フルオロメタア
クリレート8%、メタアクリル酸9%、架橋剤8%のポ
リマーからなる径13mm厚み6mmの円盤状ポリマー
基材26個を、内径31mm長さ200mmの圧力容器
に入れ、マクロレックス Violet 3R(バイエ
ル社製、アントラキノン系染料)を930ppm、スミ
ソーブ 250(住友化学社製、ベンゾトリアゾール系
紫外線吸収剤)を4.7%分散させたシロキサニルメタ
クアリレート3gを皿状容器に入れて圧力容器の上部に
設置して、蓋を閉じて液化炭酸ガスを50℃に加熱して
17.5MPaの圧力まで圧入した。この超臨界状態で
17時間保持した後、同じ超臨界状態の炭酸ガスを流通
して容器内のシロキサニルメタアクリレートを流去し
た。圧力容器の温度を40℃、圧力を17.5MPaに
してさらに17時間超臨界状態に保持してポリマー基材
中のシロキサニルメタクリレートを超臨界炭酸ガス流体
中に抽出し、同じ超臨界状態の炭酸ガスを流通してこれ
を流去した。圧力容器の減圧バルブを少しずつ開き、内
圧を0.02MPa/minで減圧した。圧力が大気圧
になってから開放してポリマー基材を取り出した。ポリ
マー基材は紫色に染色され、Violet 3Rの含浸
量は31ppmで、紫外線吸収剤の含浸量は1500p
pmであった。溶出性試験の結果、いづれも検出限界
(スミソーブ250、0.04ppm)以下であった。
このポリマー基材からベースカーブ7.70mm、パワ
ー−3.00、サイズ8.8mmのコンタクトレンズを
製作して寸法安定性を評価したところ、寸法安定性に優
れ変形が無く、クリープ変形も無かった。また、レンズ
の識別性に優れ、270〜310nmでの紫外線カット
率は96%で優れた性能を示した。Example 2 Twenty-six disc-shaped polymer bases each having a diameter of 13 mm and a thickness of 6 mm and made of a polymer of 75% siloxanyl methacrylate, 8% fluoromethacrylate, 9% methacrylic acid and 8% crosslinking agent were prepared. It was placed in a pressure vessel having an inner diameter of 31 mm and a length of 200 mm, and 930 ppm of Macrolex Violet 3R (Anthraquinone dye manufactured by Bayer Co.) and 4.7% of Smithsorb 250 (benzotriazole ultraviolet absorber manufactured by Sumitomo Chemical Co., Ltd.) were dispersed. 3 g of siloxanyl metaqualate was placed in a dish-shaped container, placed on the upper part of the pressure container, the lid was closed, and liquefied carbon dioxide gas was heated to 50 ° C. to pressurize it to a pressure of 17.5 MPa. After maintaining in this supercritical state for 17 hours, carbon dioxide gas in the same supercritical state was circulated to remove the siloxanyl methacrylate in the container. The temperature of the pressure vessel was set to 40 ° C., the pressure was set to 17.5 MPa, and the state was kept in the supercritical state for another 17 hours to extract siloxanyl methacrylate in the polymer substrate into the supercritical carbon dioxide gas fluid. Carbon dioxide gas was passed through and this was drained off. The pressure reducing valve of the pressure vessel was opened little by little, and the internal pressure was reduced at 0.02 MPa / min. After the pressure reached atmospheric pressure, it was released and the polymer substrate was taken out. The polymer substrate was dyed in purple, the impregnation amount of Violet 3R was 31ppm, and the impregnation amount of the ultraviolet absorber was 1500p.
It was pm. As a result of the dissolution test, each was below the detection limit (Sumisorb 250, 0.04 ppm).
A contact lens having a base curve of 7.70 mm, a power of −3.00, and a size of 8.8 mm was manufactured from this polymer base material, and the dimensional stability was evaluated. As a result, the dimensional stability was excellent and there was no deformation and no creep deformation. . In addition, the lens was excellent in distinguishability, and the ultraviolet cut-off rate at 270 to 310 nm was 96%, which showed excellent performance.
【0027】(比較例1)
シロキサニルメタアクリレート75%、フルオロメタア
クリレート8%、メタアクリル酸9%、架橋剤8%のポ
リマーからなる径13mm厚み6mmの円盤状ポリマー
基材26個を、内径31mm長さ200mmの圧力容器
に入れ、マクロレックス Violet 3R(バイエ
ル社製、アントラキノン系染料)を0.0093g、ス
ミソーブ 250(住友化学社製、ベンゾトリアゾール
系紫外線吸収剤)を0.14gを皿状容器に入れて圧力
容器の上部に設置して、蓋を閉じて液化炭酸ガスを50
℃に加熱して17.5MPaの圧力まで圧入した。この
超臨界状態で17時間保持した後、同じ超臨界状態の炭
酸ガスを流通した。圧力容器の温度を40℃、圧力を1
7.5MPaにしてさらに17時間超臨界状態に保持し
てポリマー基材中のシロキサニルメタクリレート(残留
モノマー)を超臨界炭酸ガス流体中に抽出し、同じ超臨
界状態の炭酸ガスを流通してこれを流去した。圧力容器
の減圧バルブを少しずつ開き、内圧を0.02MPa/
minで減圧した。圧力が大気圧になってから開放して
ポリマー基材を取り出した。ポリマー基材は淡紫色に染
色され、Violet 3Rの含浸量は10ppmで、
紫外線吸収剤の含浸量は400ppmであった。溶出性
試験はいづれも検出限界以下であった。このポリマー基
材からコンタクトレンズを製作したが、色が薄く識別性
に劣り、紫外線のカット率も270〜310nmで50
%しかなく劣るものであった。(Comparative Example 1) 26 disk-shaped polymer base materials having a diameter of 13 mm and a thickness of 6 mm and made of a polymer containing 75% of siloxanyl methacrylate, 8% of fluoromethacrylate, 9% of methacrylic acid and 8% of a crosslinking agent, Place in a pressure vessel with an inner diameter of 31 mm and a length of 200 mm, and plate with 0.0093 g of Macrolex Violet 3R (Anthraquinone type dye manufactured by Bayer) and 0.14 g of Smithsorb 250 (benzotriazole type ultraviolet absorber manufactured by Sumitomo Chemical Co., Ltd.). Place it in the container and place it on top of the pressure container.
The mixture was heated to 0 ° C. and press-fitted to a pressure of 17.5 MPa. After maintaining in this supercritical state for 17 hours, carbon dioxide gas in the same supercritical state was circulated. Pressure vessel temperature is 40 ℃, pressure is 1
The mixture was kept at 7.5 MPa for 17 hours and kept in a supercritical state to extract siloxanyl methacrylate (residual monomer) in the polymer base material into a supercritical carbon dioxide gas fluid, and the same supercritical carbon dioxide gas was circulated. It was washed away. Open the pressure reducing valve of the pressure vessel little by little and set the internal pressure to 0.02 MPa /
The pressure was reduced at min. After the pressure reached atmospheric pressure, it was released and the polymer substrate was taken out. The polymer substrate was dyed a light purple color, and the impregnation amount of Violet 3R was 10 ppm,
The impregnated amount of the ultraviolet absorber was 400 ppm. The dissolution tests were all below the detection limit. A contact lens was made from this polymer base material, but the color was thin and the discrimination was poor, and the UV cut rate was 50 at 270 to 310 nm.
It was inferior only by%.
【0028】(実施例3)
実施例2においてシロキサニルメタアクリレートの替わ
りにメチルメタアクリレートをポリマー膨潤助剤として
使用した他は同様の方法で含浸処理を行って、ポリマー
基材を処理した。得られたポリマー基材中のViole
t 3Rの含浸量は43ppmで濃い紫色をしめし、紫
外線吸収剤の含浸量は1800ppmであった。溶出性
試験も検出限界以下であった。このポリマー基材から同
様にコンタクトレンズを作成して寸法安定性を評価した
結果、3ヵ月後にベースカーブが約18/100変化し
た。また、クリープ変形は15/100で若干変形しや
すいものであった。Example 3 A polymer substrate was treated by the same method as in Example 2 except that methylmethacrylate was used as a polymer swelling aid instead of siloxanylmethacrylate. Violes in the obtained polymer substrate
The impregnated amount of t 3R was 43 ppm, which showed a deep purple color, and the impregnated amount of the ultraviolet absorber was 1800 ppm. The dissolution test was also below the detection limit. A contact lens was similarly prepared from this polymer base material, and the dimensional stability was evaluated. As a result, the base curve changed by about 18/100 after 3 months. Further, the creep deformation was 15/100, which was slightly deformable.
【0029】(実施例4)
シロキサニルメタアクリレート55%、メチルメタアク
リレート10%、フルオロメタアクリレート18%、メ
タクリル酸9%、架橋剤8%のポリマーからなる径13
mm厚み6mmの円盤状ポリマー基材26個を、内径3
1mm長さ200mmの圧力容器に入れ、メチルフェニ
ルシリコーンオイル1g(信越シリコーン社製 HIV
AC F−5)とシロキサニルメタクリレート2gを皿
状容器に入れて圧力容器の上部に設置して、蓋を閉じて
液化炭酸ガスを40℃に加熱して17.5MPaの圧力
まで圧入した。この超臨界状態で17時間保持した後、
同じ超臨界状態の炭酸ガスを流通して容器内のシロキサ
ニルメタクリレートを流去した。さらに17時間超臨界
状態に保持してポリマー基材中のシロキサニルメタクリ
レートを超臨界炭酸ガス流体中に抽出し、同じ超臨界状
態の炭酸ガスを流通してこれを流去した。圧力容器の減
圧バルブを少しずつ開き、内圧を0.016MPa/m
inで減圧した。圧力が大気圧になってから開放してポ
リマー基材を取り出した。ポリマー基材は透明でシリコ
ーンオイルの含浸量は約210ppmで、溶出性は検出
限界(0.5ppm)以下であった。このポリマー基材
からベースカーブ7.70mm、パワー−3.00、サ
イズ8.8mmのコンタクトレンズを製作して寸法安定
性を評価したところ、寸法安定性に優れ変形が無く、ク
リープ変形も無かった。また、落球衝撃試験で耐衝撃性
を評価した結果、未含浸のポリマー基材からのレンズの
約2倍の耐衝撃強度を示した。Example 4 Diameter 13 composed of a polymer of 55% siloxanyl methacrylate, 10% methyl methacrylate, 18% fluoromethacrylate, 9% methacrylic acid and 8% crosslinking agent.
26 disc-shaped polymer base materials with a thickness of 6 mm and an inner diameter of 3
Put in a pressure vessel with a length of 1 mm and a length of 200 mm, and add 1 g of methylphenyl silicone oil (Shin-Etsu Silicone HIV
AC F-5) and 2 g of siloxanyl methacrylate were placed in a dish-shaped container and placed on the upper part of the pressure container, the lid was closed and liquefied carbon dioxide gas was heated to 40 ° C. and pressure-inserted to 17.5 MPa. After holding in this supercritical state for 17 hours,
The same supercritical carbon dioxide gas was circulated to remove the siloxanyl methacrylate in the container. Further, while maintaining the supercritical state for 17 hours, siloxanyl methacrylate in the polymer substrate was extracted into a supercritical carbon dioxide gas, and the same carbon dioxide in the supercritical state was circulated to remove this. Open the pressure reducing valve of the pressure vessel little by little and set the internal pressure to 0.016 MPa / m.
The pressure was reduced in. After the pressure reached atmospheric pressure, it was released and the polymer substrate was taken out. The polymer substrate was transparent, the impregnation amount of silicone oil was about 210 ppm, and the elution property was below the detection limit (0.5 ppm). A contact lens having a base curve of 7.70 mm, a power of −3.00, and a size of 8.8 mm was manufactured from this polymer base material, and the dimensional stability was evaluated. As a result, the dimensional stability was excellent and there was no deformation and no creep deformation. . The impact resistance was evaluated by a falling ball impact test, and as a result, the impact resistance was about twice as high as that of a lens made of an unimpregnated polymer base material.
【0030】(実施例5)
シロキサニルメタアクリレート55%、メチルメタアク
リレート10%、フルオロメタアクリレート18%、メ
タアクリル酸9%、架橋剤8%のポリマーからなる径1
3mm厚み6mmの円盤状ポリマー基材26個を、内径
31mm長さ200mmの圧力容器に入れ、親水性変性
シリコーン(信越シリコーン社製 変性シリコーン K
F355A)1gとシロキサニルメタアクリレート2g
を皿状容器に入れて圧力容器の上部に設置して、蓋を閉
じて液化炭酸ガスを40℃に加熱して17.5MPaの
圧力まで圧入した。この超臨界状態で17時間保持した
後、同じ超臨界状態の炭酸ガスを流通して容器内のシロ
キサニルメタアクリレートを流去した。さらに17時間
超臨界状態に保持してポリマー基材中のシロキサニルメ
タクリレートを超臨界炭酸ガス流体中に抽出し、同じ超
臨界状態の炭酸ガスを流通してこれを流去した。圧力容
器の減圧バルブを少しずつ開き、内圧を0.016MP
a/minで減圧した。圧力が大気圧になってから開放
してポリマー基材を取り出した。ポリマー基材は透明で
親水性シリコーンオイルの含浸量は約360ppmであ
った。また、溶出性試験は検出限界(o.3ppm)以
下であった。このポリマー基材からベースカーブ7.7
0mm、パワー−3.00、サイズ8.8mmのコンタ
クトレンズを製作して寸法安定性を評価したところ、寸
法安定性に優れ変形が無く、クリープ変形も無かった。
また、落球衝撃試験で耐衝撃性を評価した結果、未含浸
のポリマー基材からのレンズの約2.5倍の耐衝撃強度
を示した。さらに、レンズ表面の水濡れ性に優れ、レン
ズを生理食塩水に浸漬して引き上げてから水切れが始ま
るまでの時間が長く2分以上濡れ性が保持された。Example 5 Diameter 1 composed of a polymer of 55% siloxanyl methacrylate, 10% methyl methacrylate, 18% fluoromethacrylate, 9% methacrylic acid and 8% crosslinking agent.
Twenty-six disc-shaped polymer base materials having a thickness of 3 mm and a thickness of 6 mm were placed in a pressure vessel having an inner diameter of 31 mm and a length of 200 mm, and a hydrophilic modified silicone (modified silicone K manufactured by Shin-Etsu Silicone Co., Ltd.
F355A) 1 g and siloxanyl methacrylate 2 g
Was placed in a dish-shaped container, placed on the upper part of the pressure container, the lid was closed, and liquefied carbon dioxide gas was heated to 40 ° C. to pressurize it to a pressure of 17.5 MPa. After maintaining in this supercritical state for 17 hours, carbon dioxide gas in the same supercritical state was circulated to remove the siloxanyl methacrylate in the container. Further, while maintaining the supercritical state for 17 hours, siloxanyl methacrylate in the polymer substrate was extracted into a supercritical carbon dioxide gas, and the same carbon dioxide in the supercritical state was circulated to remove this. Open the pressure reducing valve of the pressure vessel little by little and set the internal pressure to 0.016MP
The pressure was reduced at a / min. After the pressure reached atmospheric pressure, it was released and the polymer substrate was taken out. The polymer substrate was transparent and the impregnation amount of hydrophilic silicone oil was about 360 ppm. The dissolution test was below the detection limit (o.3ppm). Base curve 7.7 from this polymer substrate
When a contact lens having a size of 0 mm, a power of −3.00, and a size of 8.8 mm was manufactured and the dimensional stability was evaluated, the dimensional stability was excellent and there was no deformation and no creep deformation.
In addition, as a result of evaluating impact resistance by a falling ball impact test, it showed an impact resistance strength about 2.5 times that of a lens made of an unimpregnated polymer base material. Further, the lens surface was excellent in water wettability, and the time from the immersion of the lens in physiological saline to the pulling up until the drainage started was long and the wettability was maintained for 2 minutes or more.
【0031】(実施例6)
スチレン45%、ブチルアクリレート55%、2、2−
ビス[4−(メタクリロイルポリ(オキシエチレン)オ
キシフェニル]プロパン20%からなるガラス転移点2
0℃の非含水フォーダブル眼内レンズ用のポリマー基材
を圧力容器に入れて、スミソーブ250(住友化学社
製、ベンゾトリアゾール系紫外線吸収剤)を4.7%分
散させたスチレン3gを皿状容器に入れて圧力容器の上
部と下部に設置して、蓋を閉じて液化炭酸ガスを50℃
に加熱して17.5MPaの圧力まで圧入した。この超
臨界状態で17時間保持した後、同じ超臨界状態の炭酸
ガスを流通して容器内のシロキサニルメタクリレートを
流去した。圧力容器の温度を40℃、圧力を17.5M
Paにしてさらに17時間超臨界状態に保持してポリマ
ー基材中のスチレンを超臨界炭酸ガス流体中に抽出し、
同じ超臨界状態の炭酸ガスを流通してこれを流去した。
圧力容器の減圧バルブを少しずつ開き、内圧を0.02
MPa/minで減圧した。圧力が大気圧になってから
開放してポリマー基材を取り出した。ポリマー基材中の
紫外線吸収剤の含浸量は2300ppmであった。ま
た、溶出性試験の結果検出限界(0.04ppm)以下
であった。このポリマー基材から眼内レンズを製作して
寸法安定性を評価したところ、寸法安定性に優れ変形が
無く、クリープ変形も無かった。また、270〜310
nmでの紫外線カット率は97%で優れた性能を示し
た。添加剤の溶出性試験の結果は検出限界以下であっ
た。(Example 6) Styrene 45%, butyl acrylate 55%, 2,2-
Glass transition point 2 consisting of 20% of bis [4- (methacryloyl poly (oxyethylene) oxyphenyl] propane]
Put a polymer base material for a 0 ° C non-hydrate fodable intraocular lens in a pressure vessel, and disperse 3% of styrene in which 4.7% of Sumisorb 250 (benzotriazole type ultraviolet absorber manufactured by Sumitomo Chemical Co., Ltd.) was dispersed. Put it in a container and install it at the top and bottom of the pressure container, close the lid and let the liquefied carbon dioxide gas reach
The mixture was heated to a pressure of 17.5 MPa. After maintaining in this supercritical state for 17 hours, carbon dioxide gas in the same supercritical state was circulated to remove the siloxanyl methacrylate in the container. Pressure vessel temperature is 40 ° C, pressure is 17.5M
While maintaining Pa in the supercritical state for another 17 hours, styrene in the polymer substrate is extracted into the supercritical carbon dioxide fluid,
The same carbon dioxide in the supercritical state was circulated and the carbon dioxide was discharged.
Open the pressure reducing valve of the pressure vessel little by little and set the internal pressure to 0.02.
The pressure was reduced at MPa / min. After the pressure reached atmospheric pressure, it was released and the polymer substrate was taken out. The impregnated amount of the ultraviolet absorber in the polymer substrate was 2300 ppm. The result of the dissolution test was below the detection limit (0.04 ppm). When an intraocular lens was manufactured from this polymer base material and dimensional stability was evaluated, it was excellent in dimensional stability, and there was no deformation and no creep deformation. Also, 270 to 310
The UV cut-off ratio in nm was 97%, indicating excellent performance. The results of the additive dissolution test were below the detection limit.
【0032】[0032]
【発明の効果】本発明は、医療用の器具や用具に有用な
高機能のポリマー基材を提供する。さらに本発明の方法
によれば、高分子量の添加剤 (b)の含浸が可能であり、
得られるポリマー基材(a) からの水、生理食塩水、涙
液、体液など実使用時にポリマー基材(a) と接触する液
体中への添加剤 (b)の溶出が実質上ない、或いはあって
も極微量である(即ち、溶出性試験において検出限界以
下である)高機能のポリマー基材(a) を提供する事が出
来る。INDUSTRIAL APPLICABILITY The present invention provides a highly functional polymer base material useful for medical instruments and tools. Furthermore, according to the method of the present invention, it is possible to impregnate the high molecular weight additive (b) ,
There is substantially no elution of the additive (b) from the resulting polymer base material (a ) into a liquid such as water, physiological saline solution, tear fluid, or body fluid that comes into contact with the polymer base material (a) during actual use, or Even if it exists, the amount is extremely small (that is, below the detection limit in the dissolution test).
It is possible to provide a high-performance polymer base material (a ) ( below ).
Claims (6)
実質的に溶解しない添加剤 (b)および超臨界流体に可溶
でポリマー基材に含浸可能な低分子化合物で常態でのポ
リマー基剤に10%以下の溶解性を有し且つポリマー基
材を構成するモノマーと同じか、或いはシロキサニルメ
タアクリレートを主成分とするシリコン系メタアクリル
共重合ポリマー基材(a) にはシロキサニルメタアクリレ
ート、メチル(メタ)アクリレート;ジメチルシロキサ
ン系のオリゴマーを主成分とするシリコン系ポリマー基
材(a) には分子量が約1000以下のジメチルシリコー
ン系のオイル;フッ素含有アクリレート或いはメタクリ
レートを主成分とするフルオロ(メタ)アクリレートポ
リマー基材(a) にはシロキサニル(メタ)アクリレー
ト、フッ素含有(メタ)アクリレートからなる群から選
択された少なくとも1種の類似の化学的性質を有するポ
リマー膨潤助剤(c) を圧力容器内に入れ、(2)超臨界流
体(d) に接触保持して該ポリマー基材(a) に該添加剤
(b)と該ポリマー膨潤助剤(c) を含浸させ、(3)次いで
超臨界流体(d) を圧力容器内に流通させて該ポリマー膨
潤助剤(c) を流出分離した後、(4) 圧力容器内の圧力を
減少させて該添加剤 (b)を該ポリマー基材(a) 中に封じ
込めることを特徴とする、添加剤によりポリマー基材を
改質する方法。1. A polymer base material (a), an additive (b) which is substantially insoluble in the polymer base material, and a low-molecular compound which is soluble in a supercritical fluid and can be impregnated into the polymer base material, in a normal state. It has a solubility of 10% or less in the polymer base and is the same as the monomer constituting the polymer base , or siloxanil
Silicon-based methacrylic with taacrylate as the main component
The copolymer polymer substrate (a) contains siloxanyl methacrylic acid.
, Methyl (meth) acrylate; dimethylsiloxa
Silicon-based polymer group mainly composed of vinyl-based oligomers
The material (a) is dimethyl silicone having a molecular weight of about 1000 or less.
Oils; fluorine-containing acrylate or methacrylic acid
Fluoro (meth) acrylate containing mainly rate
Siloxanyl (meth) acrylate for the limer base (a)
And fluorine-containing (meth) acrylate
At least one selected polymer swelling aid having similar chemical properties (c) is placed in a pressure vessel, and (2) is brought into contact with the supercritical fluid (d) to be retained on the polymer substrate (a). The additive
(b) and the polymer swelling aid (c) are impregnated, (3) then the supercritical fluid (d) is circulated in the pressure vessel to separate the polymer swelling aid (c) by outflow separation, and then (4) ) A method for modifying a polymer substrate with an additive, characterized in that the pressure in a pressure vessel is reduced and the additive (b) is enclosed in the polymer substrate (a).
材料、眼内レンズ材料、眼鏡レンズ材料、カテーテル材
料であることを特徴とする、請求項1記載の添加剤によ
りポリマー基材を改質する方法。2. The polymer base material is modified with the additive according to claim 1, wherein the polymer base material (a) is a contact lens material, an intraocular lens material, a spectacle lens material, or a catheter material. how to.
眩剤、ホトクロニック剤、柔軟剤、親水性付与剤である
ことを特徴とする、請求項1又は2記載の添加剤により
ポリマー基材を改質する方法。3. The additive according to claim 1 or 2, wherein the additive (b) is a dye, an ultraviolet absorber, an antiglare agent, a photochronic agent, a softening agent, or a hydrophilicity-imparting agent. A method of modifying a polymer substrate by means of.
タアクリレート或いはメチルメタアクリレートであるこ
とを特徴とする請求項1〜3のいずれかに記載のポリマ
ー基材を改質する方法。4. The method for modifying a polymer base material according to claim 1, wherein the polymer swelling aid (c) is siloxanyl methacrylate or methyl methacrylate.
実質的に溶解しない添加剤 (b)および超臨界流体に可溶
でポリマー基材に含浸可能な低分子化合物で常態でのポ
リマー基剤に10%以下の溶解性を有し且つポリマー基
材を構成するモノマーと同じか、或いはシロキサニルメ
タアクリレートを主成分とするシリコン系メタアクリル
共重合ポリマー基材(a) にはシロキサニルメタアクリレ
ート、メチル(メタ)アクリレート;ジメチルシロキサ
ン系のオリゴマーを主成分とするシリコン系ポリマー基
材(a) には分子量が約1000以下のジメチルシリコー
ン系のオイル;フッ素含有アクリレート或いはメタクリ
レートを主成分とするフルオロ(メタ)アクリレートポ
リマー基材(a) にはシロキサニル(メタ)アクリレー
ト、フッ素含有(メタ)アクリレートからなる群から選
択された少なくとも1種の類似の化学的性質を有するポ
リマー膨潤助剤(c) を圧力容器内に入れ、(2)超臨界流
体(d) に接触保持して該ポリマー基材(a) に該添加剤
(b)と該ポリマー膨潤助剤(c) を含浸させ、(3)次いで
超臨界流体(d) を圧力容器内に流通させて該ポリマー膨
潤助剤(c) を流出分離した後、(4) 圧力容器内の圧力を
減少させて該添加剤 (b)を該ポリマー基材(a) 中に封じ
込める方法で得られ得る、該添加剤 (b)が溶出性試験に
おいて検出限界以下であることを特徴とする、医療用ポ
リマー基材。5. A polymer base material (a), an additive (b) which is substantially insoluble in the polymer base material, and a low-molecular compound which is soluble in the supercritical fluid and can be impregnated into the polymer base material in a normal state. It has a solubility of 10% or less in the polymer base and is the same as the monomer constituting the polymer base , or siloxanil
Silicon-based methacrylic with taacrylate as the main component
The copolymer polymer substrate (a) contains siloxanyl methacrylic acid.
, Methyl (meth) acrylate; dimethylsiloxa
Silicon-based polymer group mainly composed of vinyl-based oligomers
The material (a) is dimethyl silicone having a molecular weight of about 1000 or less.
Oils; fluorine-containing acrylate or methacrylic acid
Fluoro (meth) acrylate containing mainly rate
Siloxanyl (meth) acrylate for the limer base (a)
And fluorine-containing (meth) acrylate
At least one selected polymer swelling aid having similar chemical properties (c) is placed in a pressure vessel, and (2) is brought into contact with the supercritical fluid (d) to be retained on the polymer substrate (a). The additive
(b) and the polymer swelling aid (c) are impregnated, (3) then the supercritical fluid (d) is circulated in the pressure vessel to separate the polymer swelling aid (c) by outflow separation, and then (4) ) The additive (b) can be obtained by a method in which the pressure in the pressure vessel is reduced to confine the additive (b) in the polymer substrate (a), and the additive (b) is below the detection limit in the dissolution test. A medical polymer base material characterized by:
タアクリレート或いはメチルメタアクリレートであるこ
とを特徴とする請求項5記載の医療用ポリマー基材。6. The medical polymer base material according to claim 5, wherein the polymer swelling aid (c) is siloxanyl methacrylate or methyl methacrylate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07508798A JP3444781B2 (en) | 1998-03-10 | 1998-03-10 | Method for modifying medical polymer and medical polymer substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07508798A JP3444781B2 (en) | 1998-03-10 | 1998-03-10 | Method for modifying medical polymer and medical polymer substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11255925A JPH11255925A (en) | 1999-09-21 |
JP3444781B2 true JP3444781B2 (en) | 2003-09-08 |
Family
ID=13566047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07508798A Expired - Lifetime JP3444781B2 (en) | 1998-03-10 | 1998-03-10 | Method for modifying medical polymer and medical polymer substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3444781B2 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1301221B1 (en) * | 2000-05-16 | 2006-02-15 | Ortho-McNeil Pharmaceutical, Inc. | Process for coating medical devices using super-critical carbon dioxide |
DE10041003A1 (en) * | 2000-08-22 | 2002-03-28 | Sueddeutsche Kalkstickstoff | Process for impregnating a carrier matrix with solid and / or liquid compounds with the aid of compressed gases and substances impregnated in this way |
GB0205868D0 (en) * | 2002-03-13 | 2002-04-24 | Univ Nottingham | Polymer composite with internally distributed deposition matter |
JP4251641B2 (en) * | 2002-08-16 | 2009-04-08 | 学校法人日本大学 | Method for producing polymer composite material |
US7285287B2 (en) * | 2002-11-14 | 2007-10-23 | Synecor, Llc | Carbon dioxide-assisted methods of providing biocompatible intraluminal prostheses |
KR101118026B1 (en) | 2003-07-24 | 2012-03-21 | 가부시키가이샤 구라레 | Oxygen-absorbing body, method for producing same, and packaging material using same |
JP4631256B2 (en) * | 2003-08-08 | 2011-02-16 | 日本精工株式会社 | Method for modifying plastic molded product and plastic molded product |
JP2005179403A (en) * | 2003-12-16 | 2005-07-07 | Terumo Corp | Polymeric material and medical equipment |
US20050153055A1 (en) * | 2003-12-22 | 2005-07-14 | Bausch & Lomb Incorporated | Surface treatment utilizing supercritical fluid |
JP2005272668A (en) * | 2004-03-25 | 2005-10-06 | Japan Science & Technology Agency | Method for modifying resin molded body surface and resin molded body having modified surface |
JP2006257180A (en) * | 2005-03-16 | 2006-09-28 | Hayakawa Rubber Co Ltd | Method for producing colored particles |
AU2006283601B2 (en) * | 2005-08-22 | 2011-10-20 | The General Hospital Corporation Dba Massachusetts General Hospital | Oxidation resistant homogenized polymeric material |
EP2113536B1 (en) | 2007-02-20 | 2012-07-04 | FUJIFILM Corporation | Use of polymer material containing ultraviolet absorbent |
JP2010521560A (en) | 2007-03-12 | 2010-06-24 | ユニヴァーシティ オブ ワシントン | Method for changing the impact strength of non-porous thermoplastic materials |
WO2008123504A1 (en) | 2007-03-30 | 2008-10-16 | Fujifilm Corporation | Ultraviolet ray absorber composition |
JP5329789B2 (en) * | 2007-10-12 | 2013-10-30 | オイレス工業株式会社 | Method for producing oil-containing thermoplastic synthetic resin molding |
JP2009191177A (en) | 2008-02-14 | 2009-08-27 | Nippon Boron:Kk | Additive, method for producing it, and composition containing it |
JP5250289B2 (en) | 2008-03-31 | 2013-07-31 | 富士フイルム株式会社 | UV absorber composition |
JP5244437B2 (en) | 2008-03-31 | 2013-07-24 | 富士フイルム株式会社 | UV absorber composition |
JP2009270062A (en) | 2008-05-09 | 2009-11-19 | Fujifilm Corp | Ultraviolet absorbent composition |
GB0812742D0 (en) | 2008-07-11 | 2008-08-20 | Critical Pharmaceuticals Ltd | Process |
JP5251931B2 (en) * | 2010-07-08 | 2013-07-31 | 日本精工株式会社 | Method for modifying plastic molded product and plastic molded product |
JP7011237B2 (en) * | 2017-05-12 | 2022-01-26 | 住友ゴム工業株式会社 | Method for manufacturing polymer-impregnated base resin |
-
1998
- 1998-03-10 JP JP07508798A patent/JP3444781B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11255925A (en) | 1999-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3444781B2 (en) | Method for modifying medical polymer and medical polymer substrate | |
TWI519844B (en) | Wettable silicone hydrogel contact lenses | |
KR101742351B1 (en) | Phosphine-containing hydrogel contact lenses | |
TWI531826B (en) | Dimensionally stable silicone hydrogel contact lenses and method of manufacturing the same | |
US7201481B2 (en) | Contact lens | |
KR101197842B1 (en) | Silicone hydrogel contact lenses and methods of making silicone hydrogel contact lenses | |
TWI506334B (en) | Silicone hydrogel contact lenses having acceptable levels of energy loss | |
AU2002227331B2 (en) | Solvents useful in the preparation of polymers containing hydrophilic and hydrophobic monomers | |
JPWO2019031477A1 (en) | Medical device and manufacturing method thereof | |
KR101743320B1 (en) | Silicone hydrogel contact lenses | |
TWI548905B (en) | Silicone hydrogel contact lenses with high freezable water content and preparation method thereof | |
WO2011056761A1 (en) | A silicone hydrogel lens with a grafted hydrophilic coating | |
AU2002227331A1 (en) | Solvents useful in the preparation of polymers containing hydrophilic and hydrophobic monomers | |
WO2002081485A1 (en) | Monomer, polymer, and ocular lens and contact lens each obtained therefrom | |
JP2015500913A (en) | Multi-stage UV method for producing surface modified contact lenses | |
JP6843441B2 (en) | New polymer materials for contact lens applications | |
Yasuda | Biocompatibility of nanofilm‐encapsulated silicone and silicone‐hydrogel contact lenses | |
JP5332569B2 (en) | Medical materials | |
JP2010032992A (en) | Ophthalmic lens | |
JPH0627909B2 (en) | Oxygen permeable lens | |
JP2003519538A (en) | Implantable ophthalmic lens coating to reduce edge glare | |
CN1894620B (en) | Contact lens material | |
JPH05257094A (en) | Contact lens | |
ES2397072T3 (en) | Contact lens material | |
KR20210102222A (en) | medical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080627 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 8 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 8 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S634 | Written request for registration of reclamation of nationality |
Free format text: JAPANESE INTERMEDIATE CODE: R313634 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 9 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |